Реферат математика в музыке

Обновлено: 05.07.2024

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Математика и музыка - два школьных предмета, два полюса человеческой культуры. Слушая музыку, мы попадаем в волшебный мир звуков. Решая задачи, погружаемся в строгое пространство чисел. И не задумываемся о том, что мир звуков и пространство чисел издавна соседствуют друг с другом.

Казалось бы, искусство - весьма отвлеченная от математики область. Однако связь математики и музыки обусловлена как исторически, так и внутренне, несмотря на то, что математика - самая абстрактная из наук, а музыка - наиболее отвлеченный вид искусства.

2) Историческая справка

2.1 Открытие Пифагора в области теории музыки

Для воплощения своего открытия Пифагор использовал монохорд – полуинструмент, полуприбор. Под струной на верхней крышке ученый начертил шкалу, с помощью которой можно было делить струну на части. Было проделано много опытов, в результате которых Пифагор описал математически звучание натянутой струны.

2.2 Что определяет консонанс

Долгое время не было единого мнения о том, что определяет приятное для слуха звучание струны (в музыке это явление называют консонансом). Ясность в этот вопрос внес Архит (IV в. до н.э.), который сущность высоты тона видел не в длине струны и не в силе натяжения, а в скорости ее движения, т.е. скорости ударения струны по частичкам воздуха.

Сегодня эта "скорость движения" носит название частоты колебания струны. Архит установил, что высота тона (или частота колебания струны) обратно пропорциональна ее длине.

2.3 Законы пифагорейской музыки

В основе этой музыкальной системы были два закона, которые носят имена двух великих ученых - Пифагора и Архита. Вот эти законы:

1) Две звучащие струны определяют консонанс, если их длины относятся как целые числа, образующие треугольное число 10=1+2+3+4, т.е. как 1:2, 2:3, 3:4. Причем, чем меньше число n в отношении n:(n+1) (n=1,2,3), тем созвучнее получающийся интервал.

2) Частота колебания w звучащей струны обратно пропорциональна ее длине:

где а - коэффициент, характеризующий физические свойства струны.

3) Тоника – основной наиболее устойчивый тон в гамме. С него начинается данная музыкальная система.

Лад – приятная для слуха взаимосвязь музыкальных звуков, определяемая зависимостью неустойчивых звуков от устойчивых и имеющая определенный характер звучания.

Музыкальный строй – математическое выражение системы звуковысотных соотношений – лада.

3. Математическое описание построения музыкальной гаммы:

1. Основой музыкальной шкалы–гаммы пифагорейцев был интервал – октава. Она является консонансом, повторяющим верхний звук. Для построения музыкальной гаммы пифагорейцам требовалось разделить октаву на красиво звучащие части. Так как они верили в совершенные пропорции, то связали устройство гаммы со средними величинами: арифметическим, гармоническим.

Среднее арифметическое частот колебаний тоники (w1 ) и ее октавного повторения (w2 ) помогает найти совершенный консонанс квинту.

Т.к. w2 = 2w1 , то w3 = (w1 + w2 ) : 2 = 3w1 : 2 или w3 : w1 = 3 : 2 (w3 – частота колебаний квинты).

Длина струны l3 , соответствующая квинте, по второму закону Пифагора-Архита будет средним гармоническим длин струн тоники l1 и ее октавного повторения l2 .

Т.к. l2 = l1 : 2, то l3 = 2 l1 l2 : (l1 + l2 ) = 2 l1 l1 : 2 : (l1 + l1 : 2) = l1 2 : ((2 l1 + l1 ) : 2) = 2 l1 2 : :3 l1 = 2 l1 : 3; или l3 : l1 = 2 : 3.

Взяв далее среднее гармоническое частот основного тона w1 и октавы w2 , получим w4 = = 2w1 w2 : (w1 + w2 ) = 2w1 2w1 : ( w1 + 2w1 ) = 4w1 2 : 3w1 = 4w1 : 3.

Значит w4 : w1 = 4 : 3. В результате находим еще один совершенный консонанс – кварту.

Определим, как связаны длины струн найденных частот (l4 и l1 ):

l4 = ( l1 + l2 ) : 2 = ( l1 + l1 : 2 ) : 2 = ( 2 l1 + l1 ) : 2 : 2 = 3 l1 : 4; l4 : l1 = 3 : 4.

Это значит, что длины струн l1 , l2 и l4 связаны между собой средним арифметическим.

Итак, частота колебаний квинты является средним арифметическим частот колебаний основного тона w1 и октавы w2 , а частота колебаний кварты - средним гармоническим w1 и w2 . Или иначе: длина струны квинты есть среднее гармоническое длин струн основного тона l1 и октавы l2 , а длина струны кварты – среднее арифметическое l1 и l2 . Это лишь незначительная часть тех прекрасных пропорций, которые были воплощены в пифагорейской музыкальной гамме.

2. У древних греков существовал и другой способ построения музыкальной гаммы, кроме описанного выше. Он был более простым и удобным и до сих пор применяется при настройке музыкальных инструментов.

Оказывается, гамму можно построить, пользуясь лишь совершенными консонансами - квинтой и октавой. Суть этого метода состоит в том, что от исходящего звука, например "до" (3/2)0 = 1, мы движемся по квартам вверх и вниз и полученные звуки собираем в одну октаву. И тогда получаем: (3/2)1 = 3/2 - соль, (3/2)2 :2 = 9/8 - ре, (3/2)3 :2 =27/16 - ля, (3/2)4 :22 = 81/64 - ми, (3/2)5 : 22 = 243/128 - си, (3/2)-1 :2 =4/3 - фа.

3. Идея совершенства окружающего мира владела умами ученых и в последующие эпохи. В первой половине XVII в. И.Кеплер установил семь основных гармонических интервалов: октаву - 2/1, большую сексту - 5/3, малую сексту - 8/5, чистую квинту - 3/2, чистую кварту - 4/3, большую терцию - 5/4 и малую терцию - 6/5.

С помощью этих интервалов он выводит весь звукоряд как мажорного, так и минорного наклонения. После долгих поисков гармоничных отношений "на небе", проделав огромную вычислительную работу, И.Кеплер установил, что отношения экстремальных углов скоростей для некоторых планет близки к гармоническим: Марс - 3/2, Юпитер - 6/5, Сатурн - 5/4. "Солнце гармонии засияло во всем блеске. Небесное движение есть не что иное, как ни на миг не прекращающаяся музыка", - так думал ученый. Здесь Кеплера не оставляет буйная фантазия. Небольшие расхождения в расчетах и наблюдениях он объясняет тем, что небесный секстет должен звучать одинаково согласно и в мажоре, и в миноре, а для этого ему необходимо иметь возможность перестраивать свои инструменты.

XVIII век открыл новые страницы в истории музыки. Около 1700 года немецкий органист А.Веркмайстер осуществил гениальное решение: отказался от совершенных и несовершенных консонансов пифагорейской гаммы. Сохранив октаву, он разделил ее на 12 равных частей. Пифагорова комма исчезла. Новый музыкальный строй позволил выполнять транспонирование мелодии. С введением этого строя в музыке восторжествовала темперация (от лат.соразмерность). В чем же состояло математическое описание равномерно-темперированного строя?

Вначале было дано физическое определение звука. Музыкальный тон, как уже говорилось, есть колебательный процесс с некоторой фиксированной частотой. Известно, что человеческое ухо способно воспринимать колебания частоты от 16 до 20000 гц. Если рассмотреть таблицу для среднего, наиболее употребительного участка частот в диапазоне первой октавы фортепиано, то увидим следующие частоты:

Эти частоты выбраны не случайно, ведь в основе устройства музыкальной гаммы лежат определенные закономерности. Шкала полностью определяется, если известно число ее ступеней между частотой w и частотой 2w. Для построения гаммы гораздо удобнее пользоваться, оказывается, логарифмами соответствующих частот: log2 w0 , log2 w1 . log2 wm . Октава (w0 ,2w0 ) при этом перейдет в промежуток от log2 w0 до log2 w0 = log2 w0 +1, т.е. в промежуток длиной 1. Геометрическая прогрессия w0 ,w1 . wm будет соответствовать арифметической log2 w0 , , , . или , , , . . Разность этой прогрессии равна . Таким образом, на оси логарифмов шкала будет состоять из точек А, А+1/m; А+2/m;. ; А+1, где А - величина . На сколько же частей должна быть разделена музыкальная шкала, чему равно m? Анализ многих традиционных примеров народной музыки показал, что чаще всего в ней встречаются интервалы, выражаемые с помощью отношений частот: 2 (октава), 3/2 (квинта), 5/4 (терция), 4/3 (кварта), 5/3 (секста), 9/8 (секунда), 15/8 (септима). Эти и другие выводы показали, что музыкальная шкала должна быть разделена на 12 частей. Найдем теперь соответствующие значения логарифмов по основанию двух приведенных выше отношений. На рисунке шкала разделена на 12 равных отрезков. Здесь мы видим указанные частоты и их логарифмы. Построенная двенадцатиступенная шкала реализует перечисленные ранее условия. Отношение соседних частот равномерно-темперированного строя постоянно и равно .

Органы, настроенные А. Веркмайстером, зазвучали в равномерно-темперированном строе. Преимущества нового строя были бесспорными. Строй носил замкнутый характер и состоял из интервалов, вполне приемлемых для музыкального слуха как в мелодическом, так и в гармоническом отношении. В нем совершенно спокойно можно было осуществлять переходы из тональности в тональность. И.С.Бах доказал жизнеспособность новой музыкальной системы, написав "Хорошо темперированный клавир", состоящий из 12 мажорных и 12 минорных произведений. Авторитет великого композитора примирил споры математиков и музыкантов, выступавших "за" или "против" нового музыкального строя.

В музыке ХХ века было много разных музыкальных направлений, основанных на рациональных математических принципах. Те же нововенцы активно использовали приемы, описанные при помощи магического квадрата, этот символ даже был высечен на могиле Веберна.

С развитием компьютеров и электронной музыки математический компонент в музыке только усилился. Можно назвать многих композиторов, двигавшихся в этом направлении, назовем только некоторых. При помощи электроники создавал многие свои сочинения выдающийся новатор и продолжатель идей ШёнбергаКарлхайнцШтокхаузен.

Уже в нашем веке появлялись попытки усовершенствования равномерно-темперированного строя. Не надо забывать, что в его основу положены частоты, выражающиеся приближенными значениями чисел. А приближенное значение иррационального числа всегда определяется с заданной степенью точности. В музее музыкальной культуры можно увидеть музыкальные инструменты, в которых число ступеней в октаве значительно больше двенадцати. Были попытки создания инструментов с числом ступеней в октаве 24, 48, 53 для того, чтобы получить интервалы, наиболее близкие к чистым. В музыкальной практике, однако, такие инструменты не использовались.

Цель работы рассказать о тесной связи музыкального искусства
и науки математики, есть ли что-нибудь общее между музыкой и
математикой?

Оценить 2467 0

Автор: Аниськина Ксения Игоревна

Уланова Татьяна Николаевна

1. Историческая справка и некоторые понятия теории музыки

1.1.Высказывания великих людей в области теории музыки

1. 2.Математический уровень музыкальных рассуждений

1. 3.Семёрка в музыке

1. 4.Чем полезна математика в музыке

1. 5.Законы пифагорейской музыки

2. Практическая часть.

2.1.Математическое описание построения музыкальной гаммы

2. 2.Как соотносятся объемы данных нотного текста и звучащего произведения

Целью моей работы было рассказать о тесной связи музыкального искусства и науки математики, есть ли что-нибудь общее между музыкой и математикой? Если музыка связана с окружающим миром, то, наверное, она как-то взаимодействует и с наукой? Мне стало интересно самой узнать, что же общего между таким прекрасным видом искусства как музыка и такой сложной, наукой, как математика.

Математика и музыка - два школьных предмета, два полюса человеческой культуры. Слушая музыку, мы попадаем в волшебный мир звуков. Решая задачи, погружаемся в строгое пространство чисел. И не задумываемся о том, что мир звуков и пространство чисел издавна соседствуют друг с другом.

Казалось бы, искусство - весьма отвлеченная от математики область. Однако связь математики и музыки обусловлена как исторически, так и внутренне, несмотря на то, что математика - самая абстрактная из наук, а музыка - наиболее отвлеченный вид искусства.

В музыке, что обычно забывается, немало математики. Мы используем западноевропейской нотную систему, основа которой – две вполне строгие шкалы частоты и времени.

"Раздумывая об искусстве и науке, об их взаимных связях и противоречиях, я пришел к выводу, что математика и музыка находятся на крайних полюсах человеческого духа, что этими двумя антиподами ограничивается и определяется вся творческая духовная деятельность человека и, что между ними размещается все, что человечество создало в области науки и искусства."

1. Историческая справка и некоторые понятия теории музыки

1.1.Высказывания великих людей в области теории музыки

Почтенный Пифагор отвергал оценку музыки, основанную на свидетельстве чувств. Он утверждал, что достоинства её должны восприниматься умом, и потому судил о музыке не по слуху, а на основании математической гармонии и находил достаточным ограничить изучение музыки пределами одной октавы. (Плутарх)

Настоящая наука и настоящая музыка требуют однородного мыслительного процесса.(Альберт Эйнштейн)

Музыка есть таинственная арифметика души; она вычисляет, сама того не сознавая.(Готфрид Лейбниц)

Пройдут миллионы лет, и если музыка в нашем смысле будет ещё существовать, то те же семь основных тонов нашей гаммы, в их мелодических и гармонических комбинациях, оживляемые ритмом, будут всё ещё служить источником новых музыкальных мыслей. (Пётр Чайковский)

Чрезвычайная бедность, шаткость и разрозненность существующих основ музыкальной эстетики побуждает нас пытливо всматриваться во всякое закономерное явление, относящееся к этой области, в надежде приподнять хотя бы уголок изидовой завесы, скрывающей от нашего умственного взора таинственные творческие законы природы. (Э.Розенов)

Раздумывая об искусстве и науке, об их взаимных связях и противоречиях, я пришёл к выводу, что математика и музыка находятся на крайних полюсах человеческого духа, что этими двумя антиподами ограничивается и определяется вся творческая духовная деятельность человека и что между ними размещается всё, что человечество создало в области науки и искусства. (Генрих Нейгауз)

Музыка - это математика интуиции. (Олег Гуцуляк)

1.2.Математический уровень музыкальных рассуждений

Математика является вполне подходящим средством для описания музыкальных моделей. Могут ли чисто математические результаты иметь интересную интерпретацию в музыке, является для автора спорным. Пифагор, по распространенной версии, пытался свести всеобщую гармонию к числам. Мы же будем к таким идеям подходить более осторожно.
Как обычно – четких границ между уровнями нет. Одно и то же явление может простираться через несколько уровней. Почему, например, интервал октава звучит для человека очень приятно? Можно представить это как аксиому биологического уровня, а можно свести к физическому: звуки, различающиеся по частоте вдвое, дают то же множество обертонов, что и нижний из них. Поэтому они практически сливаются. А математически октава описывается числом 2, которое является наименьшим простым числом. На любом уровне, однако, существуют явления, несводимые к предыдущему уровню.

1.3.Семёрка в музыке

Октава – расстояние между двумя звуками в семь ступеней. По-другому, ряд из семи звуков – называется звукоряд: до, ре, ми, фа, соль, ля, си. Звуков всего семь. При помощи повторений в разных регистрах и различных сочетаний между собой образуется множество прекрасных мелодий.

В древнем Вавилоне были известны 7 планет, к которым причисляли Солнце и Луну. Все непонятные явления природы приписывались богам, и постепенно представление о богах соединилось с 7 планетами. 7 священное число, т.к. человек воспринимает мир через 7 отверстий в голове: два глаза, два уха две ноздри и рот. Приписывая числу 7 таинственную силу, знахари вручали больному 7 разных лекарств, настоянных на 7 травах, и советовали пить их семь дней. Одиссей 7 лет был в плену у нимфы Калипсо. У вавилонян подземное царство окружено 7 стенами. У мусульман небесный свод состоит из 7 небес, и все угодные Богу попадают на седьмое небо блаженства. У индусов есть обычай дарить на счастье 7 слоников. В Библии – 7 ангелов.

В эпоху Средневековья (с конца XII – начала XIII века) вся совокупность знаний делилась на 7 основных наук: тривиум – начальный курс образования, включавший в себя грамматику, риторику и диалектику; квадриум – повышенный курс светского образования, куда музыка входила так же, как и у пифагорейцев вместе с арифметикой, геометрией и астрономией. Математика не включена в число смежных дисциплин и находится в стороне от музыкального искусства, скорее музыкальное искусство в некоторых своих проявлениях прибегает к использованию математического аппарата.

1.4.Чем полезна математика в музыке

1.5.Законы пифагорейской музыки

Еще в Древней Греции математика и музыка назывались родными сёстрами, а со времён Пифагора наука о музыке входила в пифагорейскую систему знаний, наряду с арифметикой (наукой о числах), геометрией (наукой о фигурах и их измерений) и астрономией (наукой о строении Вселенной).

В основе этой музыкальной системы были два закона, которые носят имена двух великих ученых - Пифагора и Архита. Вот эти законы:

1. Две звучащие струны определяют консонанс, если их длины относятся как целые числа, образующие треугольное число 10=1+2+3+4, т.е. как 1:2, 2:3, 3:4. Причем, чем меньше число n в отношении n:(n+1) (n=1,2,3), тем созвучнее получающийся интервал.

2. Частота колебания w звучащей струны обратно пропорциональна ее длине l .

где а - коэффициент, характеризующий физические свойства струны.

Математическая стройность музыкального искусства потрясала не только древних мыслителей. Многие великие умы более поздних эпох и современности обращали на это внимание и использовали близость музыки и математики.

2. Практическая часть.

2.1.Математическое описание построения музыкальной гаммы.

Основой музыкальной шкалы–гаммы пифагорейцев был интервал – октава. Она является консонансом, повторяющим верхний звук. Для построения музыкальной гаммы пифагорейцам требовалось разделить октаву на красиво звучащие части. Так как они верили в совершенные пропорции, то связали устройство гаммы со средними величинами: арифметическим, гармоническим.

Среднее арифметическое частот колебаний тоники (w1) и ее октавного повторения (w2) помогает найти совершенный консонанс квинту.

Длина струны l3, соответствующая квинте, по второму закону Пифагора-Архита будет средним гармоническим длин струн тоники l1 и ее октавного повторения l2.

Значит w4: w1 = 4 : 3. В результате находим еще один совершенный консонанс – кварту.

Определим, как связаны длины струн найденных частот (l4 и l1 ):

Это значит, что длины струн l1, l2 и l4 связаны между собой средним арифметическим.

Простой пример – небольшой менуэт Ф.Э.Баха включает 107 нот, помимо этого в нотном тексте содержится 38 специальных указаний. Не сложно подсчитать, что если на кодировку нот использовать по 3 байта (старт, стоп и номер ноты), по байту на специальные указания, то все произведение вполне можно закодировать в файле размером в 0,5 Кb.

Дважды два – четыре,
Дважды два – четыре,
А не три, а не пять – это надо знать!
Дважды два – четыре,
Дважды два – четыре,
А не шесть, а не семь – это ясно всем!
Трижды три навеки – девять,
Ничего тут не поделать!
И нетрудно сосчитать,
Сколько будет пятью пять!
Пятью пять – двадцать пять!
Пятью пять – двадцать пять!
Совершенно верно!

сл. М.Пляцковского, муз. В.Шаинского

Если вслушаться в эту песенку, то на её примере можно выдвинуть гипотезу, что занятия музыкой помогают изучению математики. С помощью этой песенки можно легко запомнить некоторую часть таблицы умножения. Мы думаем, что ни один человек в мире не может прожить без математики и без музыки.

На первых же уроках сольфеджио – так называются уроки музыкальной грамоты – ученики музыкальных школ сразу же сталкиваются с математикой. В музыке все считать надо. Как и в математике.7 нот, 5 линеек нотного стана, интервалы. Чтобы записать слова – мы используем буквы, числа – цифры, а музыку – ноты.

В этой нотной записи:

Целые ноты не используются.

Половинки используются 3 раза. Например, нота до.

Четверти используются 12 раз. Например, нота ре.

Восьмые используются 3 раза. Например, нота ми.

Не зная математических понятий, не умея различать дроби, не умея сравнивать их, невозможно было бы сыграть музыкальный фрагмент. Именно здесь мы сталкиваемся с математической операцией сравнения. В музыке, как и в математике, тоже есть понятие параллельности. Параллельные тональности, а ещё линии нотного стана всегда параллельны, то есть никогда не пересекаются. Кроме вышеупомянутых понятий, с понятием последовательность в математике мы встречаемся крайне часто. Обычно цель при встрече с ними – отгадать следующее число или символ. Все музыкальные произведения тоже записываются нотами в определенной музыкальной последовательности.

Мы знаем, что при записи мелодии, звуки имеют свою длину (длительность).Сопоставление целого числа и целой длительности.

Пушмина Татьяна Васильевна

Исследовательская работа ученицы 9 класса Шашковской Марии о гармонии математики с музыкой.

ВложениеРазмер
doklad_shashkovskaya.docx 34.6 КБ

Предварительный просмотр:

Муниципальное Казенное Образовательное Учреждение

средняя общеобразовательная школа

ученица 9 класса

Пушмина Татьяна Васильевна

Математика в музыке

  1. Математические и музыкальные понятия
  1. Счет
  2. Параллельности
  3. Последовательность
  4. Противоположность
  5. Симметрия
  1. Историческая справка
  2. Обзор экспериментальных результатов

Гипотеза: занятия музыкой помогают в изучении математики

Основными целями моей работы являются:

  • показать, что связь между музыкой и математикой существует;
  • показать, что занятия музыкой помогают изучению математики.

Для достижения поставленных целей мне потребовалось решить следующие задачи:

  • проанализировать литературу по теме исследования;
  • сравнить материал, изучаемый в музыкальной школе, с материалом который изучают ученики в школьном курсе математики;
  • через литературные источники проанализировать, как музыка влияет на математические способности.

На сегодняшний день значимость музыкального образования значительно снижается. Люди забывают о том, что музыка и математика – родные сёстры, что они просто созданы помогать друг другу. Родители, задумываясь, почему их ребёнок плохо успевает по математике, не принимают во внимание тот факт, что музыкальное образование значительно повышает способность к математике. Учитывая, что математика становится всё более популярным, но остаётся при этом не менее сложным предметом, ценность музыки и музыкального образования как вспомогательного должна повышаться, но это придёт только с пониманием способности музыки помогать в изучении математики.

«Раздумывая об искусстве и науке, об их взаимных связях и противоречиях, я пришел к выводу, что математика и музыка находятся на крайних полюсах человеческого духа, что этими двумя антиподами ограничивается и определяется вся творческая духовная деятельность человека и, что между ними размещается все, что человечество создало в области науки и искусства."

Математика-наука, которая встречается в нашей жизни очень часто. С самых первых дней в школе нас начинают знакомить с цифрами, далее числами и, позже, такими разделами математики как алгебра и геометрия; далее мы знакомимся с другими разделами этой науки, но, на самом деле, можно говорить о более широком понимании термина "математика". Мы встречаемся с математикой в нашей жизни не только, когда нам приходится проводить какие-то вычисления или рассматривать какие-либо фигуры, но даже когда мы слушаем музыку, мы соприкасаемся с математикой.

1. Математические и музыкальные понятия

Почему на протяжении многих веков музыка так привлекательна для большинства людей? Почему она пленяет умы, способна организовать, способна создать весёлое настроение или, наоборот, умиротворить?

Оказывается, музыкальные произведения соединяют, на первый взгляд, несовместимые вещи: высокие чувства и математический расчёт. Да, именно благодаря математике мы можем услышать высокий и низкий звук, протяжное и отрывистое звучание, мы можем двигаться вверх и спускаться вниз по ступенькам звукоряда, пропевая гамму. Звуки любят счет!

Сопоставление целого числа и целой длительности (наглядно показываем, как целое делят на части, например иллюстрация – торт)

Целое число (торт)

Делим пополам (половина торта)

Половина целой ноты - половинная

Делим торт на четыре части (получаем одну четвертую)

Делим целую ноту на 4 части – (четвертная)

На восемь (одна восьмая)

На восемь (восьмая, восьмушка)

На шестнадцать (одна шестнадцатая)

На шестнадцать (шестнадцатая)

Ноты записываются с помощью знаков, а их протяженность определяется длительностями, математическим счетом.

Математические истоки музыки очень хорошо ощущаются в танце. В

танце мы можем менять скорость – двигаться быстро и медленно, двигаться вперёд-назад, вправо-влево, по кругу, прыгать вверх-вниз. Если быть изобретательным, каждый танец можно использовать для изучения пространства – двигаться по прямоугольной, квадратной, овальной траектории, двигаться по прямой и по кривой линии.

В музыке, как и в математике, есть понятие параллельности. Параллельные тональности, а ещё линии нотного стана всегда параллельны, то есть никогда не пересекаются.

В древности музыканты записывали музыку по-разному: при помощи букв, графическими знаками. Они передавали общее направление интонации, но они не могли выразить длительность звучания, изменение по высоте вверх или вниз. Ведь музыканту надо знать, насколько одна выше или ниже другой. Измерить высоту нам как раз помогают параллельные линейки.

Параллели можно найти не только в нотной записи, но и в самом звучании музыки. Например, одну и ту же мелодию можно исполнить одновременно двумя голосами, т.е. в унисон (например, мужским и женским голосом). Женский будет звучать в верхнем регистре, а мужской голос - в нижнем, а звучать они будут параллельно. Параллельно могут звучать голос и фортепианное сопровождение со сдвигом на октаву.

Очень часто в математике мы встречаемся с понятием – последовательность. Все музыкальные произведения тоже записываются нотами в определенной музыкальной последовательности. На занятиях в музыкальной школе, ребята, в качестве распевок и для развития артикуляционного аппарата, разучивают скороговорки и считалки. Во многих из них перечисляется натуральный числовой ряд , а ритм, присутствующий в них, способствует их запоминанию. Происходит тренировка памяти и одновременно закрепление последовательности чисел.

В математике существуют противоположности:

  • Отрицательное число – положительное число,
  • Плюс – минус,
  • Деление – умножение,
  • Четное число – нечетное число,
  • Больше – меньше,
  • Простое число – составное число и т.д.

Есть в музыке еще одна противоположность – высокое и низкое. Это в большей степени относится к музыкальным инструментам. Высоким звучанием отличаются, например, флейта – пикколо, скрипка; низким – контрафагот, туба, контрабас. Противоположностей в музыке очень много: громкий – тихий, быстрый – медленный, длинный – короткий, многоголосие - соло, вокальное исполнение – инструментальное и т.д.

Очень часто в музыке используется симметрия. Ряд музыкальных форм строится симметрично. В этом отношении особо характерно рондо (рондо от фр. – круг). В рондо музыкальная тема многократно повторяется, чередуясь эпизодами различного содержания. Главная тема проводится не менее трех раз в основной тональности, а эпизоды – в других тональностях. Это напоминает зеркальную симметрию, основная тема служит плоскостью, от которой как бы отражаются эпизоды. Но тот эпизод, который раньше прозвучал в высокой тональности, повторяется в низкой, и наоборот.

2. Историческая справка.

Еще в Древней Греции математика и музыка назывались родными сёстрами, а со времён Пифагора наука о музыке входила в пифагорейскую систему знаний, наряду с арифметикой (наукой о числах), геометрией (наукой о фигурах и их измерений) и астрономией (наукой о строении Вселенной).

Математическая стройность музыкального искусства потрясала не только древних мыслителей. Многие великие умы более поздних эпох и современности обращали на это внимание и использовали близость музыки и математики.

В эпоху Средневековья (с конца XII – начала XIII века) вся совокупность знаний делилась на 7 основных наук: тривиум – начальный курс образования, включавший в себя грамматику, риторику и диалектику; квадриум – повышенный курс светского образования, куда музыка входила так же, как и у пифагорейцев вместе с арифметикой, геометрией и астрономией. Математика не включена в число смежных дисциплин и находится в стороне от музыкального искусства, скорее музыкальное искусство в некоторых своих проявлениях прибегает к использованию математического аппарата.

3. Музыка и способности к математике.

Как же музыка помогает развивать математические способности?

В грандиозном исследовании 25000 американских школьников, занимающихся по арт-программам, было особо отмечено, что дети, учившиеся музыке, с большей вероятностью показывали в математических тестах более высокие баллы, чем дети, музыке не учившиеся. Исследователь Стэнли Стейнберг из Йельского университета опубликовал аналогичные результаты: ученики восьмого класса, которые занимались игрой на музыкальных инструментах, показали себя гораздо лучшими математиками, чем остальные ученики. Особенно отличились пианисты, которые выиграли по тестовым баллам конкурс по математике. Ведь, тренируя свои пальчики, они одновременно тренируют и свой мозг!

Совпадение музыкальной и математической одаренности сделало эту тему предметом внимания психологов. Им хотелось понять психологические механизмы, стоящие у истоков музыкально-математической близости. Сущность психологических связей между музыкальными и математическими способностями стала яснее, когда ученые обратили внимание на повышенно абстрактный характер восприятия музыкантов. Привыкнув замечать пропорционально-симметричные отношения внутри музыкальной формы, привыкнув охватывать в своем сознании разнообразные структуры, не имеющие явных предметных аналогов, музыканты переносят навыки пространственно-геометрического восприятия на реальную действительность.

В исследовании 1992 года, в котором участвовали 117 взрослых музыкантов и 120 музыкантов-подростков, Марианна Хасслер отметила общее превосходство музыкантов по сравнению с немузыкантами в качестве пространственного мышления: пространственные тесты музыканты выполняли значительно лучше. Эти выводы были сделаны на основании восьмилетнего наблюдения над всеми испытуемыми.

Еще одним практическим доказательством близости музыкальных и математических склонностей является любопытный факт, который сообщает П. Вернон в диссертации на звание доктора философии Кембриджского университета: в 1927-28 году 60% профессоров-физиков и математиков Оксфордского университета были одновременно членами университетского музыкального клуба, и только 15% всех остальных профессоров посещали тот же самый клуб. Одаренным математикам музыка была нужна гораздо больше, чем всем остальным вместе взятым.

Наблюдения, взятые из опыта, наука полностью подтверждает: музыкальные и математические операции родственны и содержательно и психологически. Занимаясь музыкой, человек развивает и тренирует свои математические способности, значение которых в наш прагматический век оспаривать невозможно.

О взаимосвязях математики и музыки можно говорить бесконечно долго, открывая все новые и новые, неожиданные и часто странные, одинаковые определения, понятия и смыслы.

Музыкальные и математические операции родственны и содержательно и психологически. Между математикой и музыкой размещается вся творческая духовная деятельность человека. Музыкальная логика и математика развивают мышление, даже упражнение пальцев при игре на музыкальных инструментах укрепляет мозговые клетки.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Государственное автономное профессиональное образовательное учреждение

Министерства образования и молодежной политики Чувашской Республики

Математика в музыке

Студент 1 курса, группа №62

Яндакова Светлана Сергеевна

Николаева Людмила Николаевна

Введение 3-4

1. История исследования связи музыки с математикой 5-6

2. Связь между звуками и числами 7-8

3. Восприятие математики и музыки 9

4. Математическая чистота звука 10

5. Золотое сечение в музыкальных произведениях 11

6. Практическая часть 12-13

7. Музыкальные задачи 14

8. Заключение 15

9. Список использованной литературы 16

10. Приложение 1 17

Настоящая наука и настоящая музыка требуют однородного мыслительного процесса
( А. Эйнштейн )

Актуальность:

Математика и музыка - два предмета, два полюса человеческой культуры. Слушая музыку, мы попадаем в волшебный мир звуков. Решая задачи, погружаемся в строгое пространство чисел. И не задумываемся о том, что мир звуков и пространство чисел издавна соседствуют друг с другом.

Музыка ( от греч. - искусство муз) - вид искусства, художественным материалом которого является звук, особым образом организованный во времени. Математика ( от греч. – знание, наука) . — наука о величинах, их свойствах и законах их соединения.

Казалось бы, искусство - весьма отвлеченная от математики область. Однако связь математики и музыки обусловлена как исторически, так и внутренне, несмотря на то, что математика - самая абстрактная из наук, а музыка - наиболее отвлеченный вид искусства. Какова роль математики в музыке? Как тесно они связаны? Возможно, законы математики добавляют красоту в те звуки, что мы слышим? Человек, увлеченный музыкой, имеющий точный слух, способности к занятиям музыкой и разбирающийся в математике, имеет больше шансов сочинить красивое музыкальное произведение, или математические закономерности появляются в музыке благодаря внутренней интуиции гениального автора? В своей работе я предлагаю найти ответы на эти вопросы, и доказать, что связь между музыкой и математикой существует.

Целью моей исследовательской работы является проведение параллели между музыкой и математикой, на основе музыкальных произведений, для выявления взаимосвязи между ними.

Задачи исследования:

Выяснить, были ли в истории попытки связать музыку с математикой.

Выявить общие элементы между звуками и числами ;

Провести свои исследования по выявлению математических закономерностей .

Отыскать преимущество применения законов математики в написании музыки.

Объект исследования - математика и музыка.

Предмет исследования — элементы математики в музыке.

Гипотеза - любое музыкальное произведение можно представить, как некую математическую модель, которая будет иметь числовую закономерность.

Методы исследования:

Изучение , обработка и анализ документов и интернет - источников.

Исследование музыкального произведения .

Метод проблемно-поисковой ситуации.

1. История исследования связи музыки с математикой

Математика – царица наук, тесным образом перекликается с музыкой.

Музыка и ее первый звук родились одновременно с творением мира, как утверждали древние мудрецы.

В своих трудах ученые неоднократно делали попытки представить музыку как некую математическую модель. Приведем, к примеру, одну из цитат из работы Леонарда Эйлера “Диссертация о звуке”, написанная в 1727 году: “Моей конечной целью в этом труде было то, что я стремился представить музыку как часть математики и вывести в надлежащем порядке из правильных оснований все, что может сделать приятным объединение и смешивание звуков”.

Именно Пифагор был первым, кто попытался выразить красоту музыки с помощью чисел. Он создал свою школу мудрости, положив в ее основу два предмета – музыку и математику. Музыка, как одно из видов искусств, воспринималась наряду с арифметикой, геометрией и астрономией как научная дисциплина, а не как практическое занятие искусством.

Пифагор считал, что гармония чисел сродни гармонии звуков и что оба этих занятия упорядочивают хаотичность мышления и дополняют друг друга. Он был не только философом, но и математиком, и теоретиком музыки. Пифагор основал науку о гармонии сфер, утвердив ее, как точную науку. Известно, что пифагорейцы пользовались специальными мелодиями против ярости и гнева.

2. Связь между звуками и числами

С чего начинается знакомство с музыкой? Конечно, со звуков! Но чтобы их повторить, нам придётся окунуться в мир странных кружочков, палочек, крючочков и галочек, которые все вместе и будут составлять нотную грамоту. Оказывается, любую музыку можно записать с помощью семи нот, расставляя около них музыкальные знаки (аналогично в математике: десять цифр и знаки действия с ними). Ноты и паузы бывают целые, половинные, четвертные, восьмые, шестнадцатые и т.д., их связывает между собой математическая закономерность. Музыкальное произведение записывается при помощи нот не хаотично, а весь текст делится на такты, при этом все такты одного произведения имеют один размер, который и указывается в начале любого произведения. Например : ¾ будет означать, что в каждом такте должно быть ровно три четвертных ноты. При этом четвертные ноты могут разбиваться на восьмые, шестнадцатые или паузы того же размера. Расстояние между нотами (интервалы) также имеют свои названия и соответствуют определенному количеству тонов. Аккорды, которые сопровождают и украшают музыкальное произведение, высчитываются математическим путем и состоят из интервалов. Это относительно записи и чтения музыкальных произведений, но посмотрим на музыку с другой стороны.

Всякий звук - это воспринимаемые человеческим ухом колебания среды, обычно воздуха. Источником колебаний могут быть голосовые связки певца, струна музыкального инструмента, плохо смазанная дверь и т.п. Одна из основных характеристик колебательного процесса - частота колебаний. Особенность музыкальных звуков в определенной частоте колебаний. Когда говорят о частоте колебаний, определяющей ту или иную ноту, обычно употребляют термин высота звука. Ощущение высоты - это психологическая форма восприятия частоты колебаний звучащего тела, и чем больше частота колебаний, тем выше кажется звук и наоборот.

Человеческое ухо воспринимает звук, частота которого заключена приблизительно в интервале от 16 до 16000 Гц. В музыке используется диапазон от 16 до примерно 5000 Гц. Если считать только звуки с целым значением частоты, то получится около 5 тысяч. Между тем, концертный рояль - инструмент с огромным звуковым диапазоном - имеет всего 87 клавиш. Более того, через каждые двенадцать клавиш (семь белых и пять черных) повторяется их расположение и их названия. И очень высокие и очень низкие звуки носят одни и те же повторяющиеся имена: до, фа-диез, ля-бемоль и т.д. Постараемся понять, каким образом из всего многообразия звуков были отобраны именно те, к которым мы привыкли, и почему именно через каждые 12 клавиш повторяются названия нот. Для начала займемся измерениями. А где измерения, там вступает в свои права математика.
Каждая нота имеет определенную частоту и эту частоту можно вычислить с помощью формулы:

Интервалы имеют направление и могут определять движение как вверх, так и вниз (сравнимо с координатной прямой в математике). Переход от ноты с частотой ω к ноте с частотой 2 ω дает октаву вверх, к ноте с частотой 2 ω/3 - квинту вниз.

Чем же важен интервал октавы? Пусть наш исходный звук - нота до первой октавы. Возьмем от нее октаву вверх и октаву вниз. На слух эти три звука очень похожи, практически сливаются в одно целое. Поэтому обе получившиеся ноты также называются до , только расположены они в других октавах. Таким образом, частоты любых двух одноименных нот относятся друг к другу как некоторая степень числа 2.

Математическое описание этого явления было дано значительно позже усилиями д'Аламбера, Эйлера, Даниила Бернулли, Лагранжа. Такие выдающиеся имена не оставляют сомнений о важной роли математики в музыке, при этом не стоит забывать о важной особенности музыкально-математических исследований: результаты применения численных методов все время должны проверяться человеческим ухом.

Читайте также: