Реферат магнитное поле и его графическое изображение

Обновлено: 02.07.2024

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец — южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные — притягиваются ( рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса, т. е. будет постоянным магнитом ( рис. 2 ). Оба полюса — северный и южный, — неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются — у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты. Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему ( рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток ( рис. 5 ). Направление линий определяется правилом правого винта:

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид — катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита ( рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления — к наблюдателю — обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа ( рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта ( рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным — левый.

Магнитное поле внутри соленоида является однородным — вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B.

Направление силы определяется правилом левой руки:

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь — перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник ( рис. 9 ).

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

1. Магнетизм. Первое упоминание о явлении магнетизма.

2. Магнитное поле: графическое изображение, основные характеристики магнитного поля.

3. Ферромагнетизм, диамагнетизм, парамагнетизм.

4. Магниты: основные характеристики магнитов, виды магнитов.

5. Современные магнитные материалы и их свойства, защитные покрытия магнитов.

6. Способынамагничивания магнитов.

7. Применение магнитов. Эффект Холла, датчик Холла. Геркон.

Магнетизм – это физическое явление, при котором материалы оказывают притягивающую или отталкивающую силу на другие материалы на расстоянии. Некоторыми хорошо известными материалами, демонстрирующими магнитные свойства, являются железо, некоторые виды стали и природный минерал магнетит (магнитный железняк). В действительности, все материалы в большей или меньшей степени подвержены воздействию магнитного поля, хотя в большинстве случаев это воздействие слишком мало, чтобы быть обнаружено без специального оборудования

«Также бывает, что попеременно порода железа

Может от камня отскакивать или к нему привлекаться.

Также и то наблюдал я, как прыгают в медном сосуде

Самофракийские кольца железные или опилки

«Связь такова здесь, как будто крючки, зацепившись за петли.

Держатся между собой в сочетанье известном, какое

Одно из первых практических использований магнетизма – компас. Наши предки заметили: продолговатый кусочек магнитного железа, подвешенный на нитке или прикрепленный к пробке, плавающей в воде, всегда располагается так, что один его конец показывает на север, а другой – на юг. Компас был изобретен в Китае примерно за тысячу лет до нового летосчисления; в Европе он известен с XII века. Без этого простейшего навигационного прибора были бы невозможны Великие географические открытия XV. XVII веков.

Магнитное поле и его графическое изображение.

Основные свойства магнитного поля:

1. магнитное поле порождается электрическим током (движущимися зарядами).

2. магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).

Согласно гипотезе Ампера в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи. В магнитах эти элементарные кольцевые токи ориентированы одинаково. Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления. Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.

Для наглядного представления магнитного поля пользуются магнитными линиями (их называют также линиями магнитного поля). Напомним, что магнитные линии – это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. Магнитную линию можно провести через любую точку пространства, в котором существует магнитное поле. Магнитная линия (как прямолинейная, так и криволинейная) проводится так, чтобы в любой точке этой линии касательная к ней совпадала с осью магнитной стрелки, помещенной в эту точку.

Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Министерство образования и науки Республики Бурятия

Государственное бюджетное профессиональное

Выполнил: Туртуев Ринчин,

Проверил: Ламажапова А.Ш..

1. Магнитное поле

Мы привыкли к магниту и относимся к нему чуточку снисходительно как к устаревшему атрибуту школьных уроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В наших квартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах, в банках с гвоздями, наконец. Сами мы – тоже магниты: биотоки, текущие в нас, рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на которой мы живём, - гигантский голубой магнит. Солнце – жёлтый плазменный шар – магнит ещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическое генерирование электроэнергии, ускорение заряженных частиц в синхротронах, подъём затонувших судов – всё это области, где требуются грандиозные, невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных, ультрасильных и ещё более сильных магнитных полей стала одной из основных в современной физике и технике.

Вещества, притягивающие железо, были известны человечеству более 2000лет назад. Они получили название магнитов. Постоянный магнит в форме тонкой полоски, расположенный на плавающей в воде деревянной дощечке, поворачивается одним

После изобретения в 1800 г. источника постоянного тока возможности экспериментаторов значительно расширились. Первое фундаментальное открытие было сделано в 1820г. датским физиком Г.Х. Эрстедом (1777-1851).Убежденный в том, что электрические и магнитные явления взаимосвязаны, он хотел выяснить, не производит ли электричество каких-либо действий на магнит. В феврале 1820г. Эрстед показывал студентам тепловое действие тока. Рядом с проводником случайно оказался компас. При включении тока стрелка отклонилась от первоначального положения. В этом эффекте Эрстед увидел подтверждение своих идей. Описание опыта вышло в свет 21 июля 1820г. Этот простой опыт произвел сильное впечатление на современников и положил начало новой области физики – электродинамике.

Дальнейшие исследования развивались стремительно. 11 сентября 1820г. опыт был показан на заседании Французской академии наук. Академики спокойно разошлись, и только один из них – А.М. Ампер – поспешил заказывать приборы для проведения новых опытов. Он был уверен, что они должны были подтвердить его догадки, сводящие магнетизм к чисто электрическим явлениям. Все считали, что ток, проходя по проводник, превращает его в магнит, который и заставляет отклоняться стрелку компаса. Ампер высказал гениальную мысль: магнит представляет совокупность токов, движущихся по замкнутым контурам; отклонение стрелки вызвано взаимодействием токов. 25 сентября он демонстрирует новый эффект: два незаряженных параллельных провода, по которым текут одинаково направленные токи, притягиваются друг к другу. На каждый из проводников действует сила, зависящая от величины силы тока и расстояния между проводами. При перемене направления одного из токов силы притяжения сменяются силами отталкивания. В новой серии опытов спирали, по которым пропускали ток, вели себя подобно магнитам.

Новую область знаний о явлениях, обусловленных протеканием токов, Ампер назвал электродинамикой. Открытие явлений электромагнетизма оказало влияние не только на развитие науки, но и техники. В том же году Д. Арго изобрел электромагнит. В 1821г. Фарадею удалось осуществить вращение проводника с током в магнитном поле. Это был первый электродвигатель. Ампер предложил использовать отклонение электромагнитной стрелки для передачи сигналов в электромагнитном телеграфе.

Исследования природы подобных явлений проводились и в нашей стране. Так, например, исследования, проведенные русским физиком А.А. Эйхенвальдом в 1901г., показали, что если заряженное тело покоится относительно наблюдателя, то вокруг этого тела существует электрическое поле. Если же оно движется относительно наблюдателя, то возникает магнитное поле, которое вызывает отклонение легкоподвижной магнитной стрелки. Аналогичное действие на магнитную стрелку оказывает и проводник с током. Если по прямому проводнику, расположенному по магнитному меридиану а направлении к север-юг, пропустить ток, то расположенная под ним магнитная стрелка отклонится. Если поместить стрелку над проводником, то стрелка отклонится в другую сторону.

Согласно теории близкодействия , взаимодействие неподвижных электрических зарядов осуществляется посредством электрического поля. Проводники с током электрически нейтральны. Но, пропустив по двум параллельным проводникам ток, мы увидим, что проводники по которым токи текут в одном направлении, притягиваются, а проводники, по которым токи текут в противоположных направлениях, отталкиваются.

Взаимодействие между проводниками с током, т.е. взаимодействие между движущимися электрическими зарядами, называют магнитным. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами. Причиной возникновения сил магнитного взаимодействия является магнитное поле, которое появляется вокруг проводника с током.

Экспериментальным доказательством реальности магнитного и электрического полей является факт существования электромагнитных волн. Магнитное поле, как и электрическое, является частным проявлением единого электромагнитного поля.

Характерной отличительной особенностью электрического поля является способность действовать на неподвижные заряды.

Главное свойство магнитного поля заключается в том, что оно действует на движущиеся заряды (электрический ток).

Неподвижные заряды не создают магнитного поля. Только движущиеся заряды (электрический ток) и постоянные магниты создают магнитное поле.

При изучении взаимодействия постоянных магнитов было установлено:

постоянные магниты имеют два полюса: северный и южный; одноименные полюсы отталкиваются друг от друга, а разноименные притягиваются.

Если отдельные тела можно зарядить положительно или отрицательно, так как существует элементарный электрический заряд, то никогда нельзя отделить северный полюс магнита от южного. Таким образом, нет оснований считать, что в природе существуют отдельные магнитные заряды.

Эта мысль была высказана Ампером в гипотезе об элементарных электрических токах. Согласно гипотезе Ампера, внутри атомов и молекул вещества циркулируют элементарные электрические токи. Если эти токи расположены хаотически по отношению друг к другу, то их действие взаимно компенсируется и никакими магнитными свойствами тело не обладает. В намагниченном состоянии (например, в постоянных магнитах) элементарные токи ориентированы определенным образом. Следовательно, магнитные свойства любого тела объясняются замкнутыми электрическими токами внутри него, т.е. магнитное взаимодействие – это взаимодействие токов.

Результаты опытов Ампера и последующих многочисленных исследований можно сформулировать следующим образом. Способность магнитного поля вызывать появление механической силы, действующей на какой-либо элемент тока, можно количественно описать, задавая в каждой точке поля некоторый вектор В. Вектор В называется магнитной индукцией и является основной характеристикой магнитного поля.

2.Сила Ампера . На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sin(a) , (1)

где I - сила тока в проводнике;
B - модуль вектора индукции магнитного поля;
L - длина проводника, находящегося в магнитном поле;
a - угол между вектором магнитного поля и проводником.

Сила, действующая на проводник с током в магнитном поле, называют силой Ампера.

hello_html_15fd2d3f.jpg

Направление силы Ампера определяется по правилу левой руки (см. рис.1):

четыре пальца по току;

перпендикулярная проводнику составляющая вектора индукции В входит в ладонь;

отогнутый большой палец дает направление F .

Подобно тому, как электрические поля графически изображаются с помощью электрических силовых линий, магнитные поля изображаются с помощью линий магнитной индукции (или магнитных силовых линий).

Из опытов следует, что линии магнитной индукции прямого проводника с током представляют концентрические окружности, лежащие в плоскости, перпендикулярной току. Центр этих окружностей находится на оси проводника. С помощью железных опилок можно получить изображение линий магнитной индукции проводников с током любой формы. Линии магнитной индукции всегда замкнуты и охватывают проводники с токами. Это отличает их от линий напряженности электростатического поля. Такие поля называют вихревыми в отличие от потенциальных, примером которых является электростатическое поле.

Направление линий магнитной индукции связано с направлением тока в проводнике. Направление силовых линий магнитного поля, создаваемого проводником с током, определяется по правилу буравчика (если правовинтовой буравчик ввинчивать по направлению тока, то направление вращения рукоятки буравчика совпадет м направлением линий магнитной индукции).

Одним из проявлений магнитного поля является его силовое воздействие на движущиеся электрические заряды и проводники с током. В 1820г. А. Ампером был установлен закон, определяющий силу, действующую на элемент тока в магнитном поле. Так как создать обособленный элемент нельзя, то Ампер изучал поведение подвижных проволочных замкнутых контуров различной формы. Им было установлено, что на проводник с током помещенный в однородное магнитное поле индукции В, действует сила, пропорциональная длине отрезка проводника L ,силе тока I , протекающего по проводнику, и индукции магнитного поля В. Впоследствии этот вывод получил название закона Ампера. Используя закон Ампера, можно вычислить силу, действующую на проводник с током в магнитном поле.

Движущиеся электрические заряды создают вокруг себя магнитные поля, которые распространяются в вакууме со скоростью света с. Если же заряд движется во внешнем магнитном поле, то происходит силовое взаимодействие магнитных полей, определяемое по закону Ампера. Процесс взаимодействия магнитных полей исследовался Лоренцем, который вывел формулу для расчета силы действующей со стороны магнитного поля на движущуюся заряженную частицу. Данная сила получила название силы Лоренца.

3. Сила Лоренца. Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.

Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.

Из закона Ампера (1) следует, что сила Лоренца определяется соотношением:

F л = q · V · B · sin(  

где q - величина движущегося заряда;
V - модуль его скорости;
B - модуль вектора индукции магнитного поля;
 - угол между вектором скорости заряда и вектором магнитной индукции.

hello_html_d8051fa.jpg

Направление вектора F л определяется по правилу левой руки:

четыре пальца по направлению скорости движения положительного заряда V ;

перпендикулярная скорости составляющая вектора индукции входит в ладонь;

отогнутый большой палец дает направление силы Лоренца F л (см. рис. 2).

Магнитное поле графически изображается с помощью силовых линий или линий магнитной индукции. Силовая линия магнитного поля – это линия, касательная к которой в каждой точке поля совпадает с направлением вектора магнитной индукции B.


Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии,

http://annamain.org/images/uploads/!-2015/04-2015/magnit-1.jpg

принято считать северным полюсом, а противоположный конец, в который входят силовые линии,— южным полюсом. Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы. Для магнитного поля


в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий .

В случае проводника с током магнитные линии образуют замкнутые концентрические окружности вокруг проводника. Если

посмотреть на проводник с током и образованное им магнитное поле в разрезе, то мы увидим набор кругов различного диаметра. На рисунке слева изображен как раз проводник с током.

Читайте также: