Реферат иммунологическая память и толерантность

Обновлено: 05.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

ЛЕКЦИЯ 12

Механизм иммунного ответа. Виды антител. Иммунологическая толерантность.

Иммунный статус.

Виды антител.

Иммунный ответ.

Динамика антителообразования.

Механизм иммунологической памяти.

Специфическая иммунопрофилактика.

Иммунный статус.

Состояние функциональной активности иммунной системы человека в целом имеет жизненно важное для организма и обозначается понятием "иммунный статус".

Иммунный статус - это количественная и качественная характеристика состояния функциональной активности органов иммунной системы и некоторых неспецифических механизмов противомикробной защиты.

Виды антител.

Одной из основных форм иммунного ответа на внедрение в организм антигена является синтез АТ.

Антитела - это белки γ-глобулиновой фракции в плазме крови, способные специфически связываться с АГ.

Вся совокупность B-лимфоцитов организма способна синтезировать огромное разнообразие антител - около 10 6 -10 9 . Однако точно установить, сколько разных антигенов потенциально способно связать одно антитело, принципиально невозможно.

Иммуноглобулины - класс структурно связанных белков, содержащих 2 вида парных полипептидных цепей: лёгкие (L, от англ. Light - лёгкий), с низкой молекулярной массой, и тяжёлые (H, от англ. Heavy - тяжёлый), с высокой молекулярной массой. Все 4 цепи соединены вместе дисульфидными связями.

Принципиальная схема строения молекулы иммуноглобулина (мономер) приведена на рисунке 1.

hello_html_4c013b0f.jpg

Обозначения: L - лёгкие цепи;

H - тяжёлые цепи;

V - вариабельная область;

С - константная область.

N-концевые области L- и Н-цепей (V-область) образуют 2 антигенсвязывающих центра - (Fab)2-фрагмент.

Fc-фрагмент молекулы взаимодействует со своим рецептором на мембране различных типов клеток (макрофаги, нейтрофилы, тучные клетки).

На основании структурных и антигенных признаков Н-цепей иммуноглобулины подразделяют (в порядке относительного содержания в сыворотке крови) на 5 классов:

Молекулы IgG, IgD и IgE - мономеры, IgM - пентамер; молекулы IgA в сыворотке крови - мономеры, а в экскретируемых жидкостях (слёзная, слюна, секреты слизистых оболочек) – димеры (рисунок 2).

hello_html_m6a58bd65.jpg

hello_html_51bce792.jpg

Рисунок 2. Мономеры и полимеры иммуноглобулинов. J-цепь (от англ. joining - связывающая) связывает остатки цистеина на C-концах тяжёлых цепей IgM и IgA

hello_html_m66ce5e3e.jpg

Иммуноглобулины класса G (IgG)

Составляют основную массу Ig в сыворотке крови - на их долю приходится 70-80% всех сывороточных Ig. IgG - мономер, имеет два антигенсвязывающих центра (может связать две молекулы АГ), активирует комплемент, легко проходит через плацентарный барьер и обеспечивает гуморальный иммунитет новорожденного в первые 3-4 мес после рождения.

Иммуноглобулины класса М (IgМ)

Наиболее крупные молекулы из всех Ig, пентамер имеет 10 антигенсвязывающих центров, и дополнительную J-цепь, соединяющую субъединицы.

На их долю приходится около 5-10% всех сывороточных Ig. является филогенетически наиболее древним, синтезируется предшественниками и зрелыми В-лимфоцитами, образуется в начале первичного иммунного ответа, являясь показателем острой инфекции первым начинает синтезироваться в организме новорожденного (определяется уже на 20-й неделе внутриутробного развития), не проходит через плаценту, активирует комплемент.

Обнаружение специфических АТ изотипа М в сыворотке крови новорожденного указывает на бывшую внутриутробную инфекцию или дефект плаценты.

Иммуноглобулины класса А (IgА)

Существуют в сывороточной и секреторной формах. На долю сывороточного IgА приходится около 10-15% всех сывороточных Ig.

Около 60% всех IgА содержится в секретах слизистых оболочек, они активируют комплемент.

Секреторный IgА - основной фактор местного иммунитета слизистых оболочек ЖКТ, мочеполовой системы и дыхательных путей. Обладает дополнительным секреторным пептидом (S-цепь). Переносится в просвет органа эпителиальными клетками. Препятствует адгезии микроорганизмов на эпителиальных клетках слизистых оболочек.

Иммуноглобулины класса Е (IgE)

Составляют около 0,002% всех циркулирующих Ig. Синтезируются зрелыми B-лимфоцитами и плазматическими клетками преимущественно в лимфоидной ткани бронхолегочного дерева и ЖКТ, не проходят через плаценту.

Обладают выраженной цитофильностью - сродством к тучным клеткам и базофилам, участвуют в развитии аллергической реакции I типа.

Иммуноглобулины класса D (IgD)

Практически полностью содержатся в сыворотке крови и составляют около 0,2% общего количества циркулирующих Ig.

Не проходят через плацентарный барьер, являются рецепторами предшественников В-лимфоцитов.

3. Иммунный ответ .

Изучите схемы иммунного ответа по ссылке,

Выберите для себя схему

Вырежьте из цветной бумаги компоненты схемы

Иммунный ответ – это цепь последовательных сложных кооперативных процессов, идущих в иммунной системе в ответ на действие антигена в организме.

hello_html_376e3741.jpg

1) первичный иммунный ответ (возникает при первой встрече с антигеном);

2) вторичный иммунный ответ (возникает при повторной встрече с антигеном).

Любой иммунный ответ состоит из двух фаз:

1) индуктивной; представление и распознавание антигена. Возникает сложная кооперация клеток с последующей пролиферацией и дифференцировкой;

2) продуктивной; обнаруживаются продукты иммунного ответа.

При первичном иммунном ответе индуктивная фаза может длиться неделю, при вторичном – до 3 дней за счет клеток памяти.

В иммунном ответе антигены, попавшие в организм, взаимодействуют с антигенпредставляющими клетками (макрофагами), которые экспрессируют антигенные детерминанты на поверхности клетки и доставляют информацию об антигене в периферические органы иммунной системы, где происходит стимуляция Т-хелперов.

Далее иммунный ответ возможен в виде по одного из трех вариантов:

1) клеточный иммунный ответ;

2) гуморальный иммунный ответ;

3) иммунологическая толерантность.

Клеточный иммунный ответ – это функция T-лимфоцитов.

Происходит образование эффекторных клеток – T-киллеров, способных уничтожать клетки, имеющие антигенную структуру путем прямой цитотоксичности и путем синтеза лимфокинов, которые участвуют в процессах взаимодействия клеток (макрофагов, T-клеток, B-клеток) при иммунном ответе.

В регуляции иммунного ответа участвуют два подтипа T-клеток: T-хелперы усиливают иммунный ответ, T-супрессоры оказывают противоположное влияние.

Гуморальный иммунитет – это функция B-клеток. Т-хелперы, получившие антигенную информацию, передают ее В-лимфоцитам.

В-лимфоциты формируют клон антителопродуцирующих клеток.

При этом происходит преобразование B-клеток в плазматические клетки, секретирующие иммуноглобулины (антитела), которые имеют специфическую активность против внедрившегося антигена.

Образующиеся антитела вступают во взаимодействие с антигеном с образованием комплекса АГ – АТ, который запускает в действие неспецифические механизмы защитной реакции.

Эти комплексы активируют систему комплемента.

Взаимодействие комплекса АГ – АТ с тучными клетками приводит к дегрануляции и выделению медиаторов воспаления – гистамина и серотонина.

При низкой дозе антигена развивается иммунологическая толерантность. При этом антиген распознается, но в результате этого не происходит ни продукции клеток, ни развития гуморального иммунного ответа.

Иммунный ответ характеризуется:

1) специфичностью (реактивность направлена только на определенный агент, который называется антигеном);

2) потенцированием (способностью производить усиленный ответ при постоянном поступлении в организм одного и того же антигена);

3) иммунологической памятью (способностью распознавать и производить усиленный ответ против того же самого антигена при повторном его попадании в организм, даже если первое и последующие попадания происходят через большие промежутки времени).

hello_html_4395462a.jpg

4. Динамика антителообразования.

Динамика образования антител имеет различный характер в зависимости от силы и частоты антигенного воздействия, состояния иммунной системы организм

При первичном и повторном введении антигена динамика антителообразования имеет различный характер и протекает в несколько стадий.

продуктивную стадии а нтителообразования .

Индуктивная стадия длится от момента антиген попадания антигена в организм до появления антител в крови. Продолжительность индуктивной стадии при первичном иммунном ответе составляет 3-5 суток.

Затем наступает продуктивная стадия, в которой различают:

- логарифмическая фаза – когда наблюдается интенсивное поступление синтезированных антител из плазмоцидов в крови и лимфу;

- в стационарной фазе количество специфических антител достигает максимума, продолжительность этой фазы 15-30 суток;

- фаза снижения, когда отмечается постепенное снижение титров антител.

Продолжительность этой фазы 1-6 месяцев и более.

Такая динамика антителообразования наблюдается при первичном контакте с антигеном и называется первичным иммунным ответом. Повторный контакт с тем же антигеном формирует вторичный иммунный ответ.

Кривая вторичного иммунного ответа характеризуется укорочением латентной фазы от нескольких часов до 1-2 суток. Логарифмическая фаза отличается более интенсивной динамикой прироста и более высоким титром антител. Стационарная фаза и фаза снижения характерна более затяжная динамика - несколько месяцев и даже лет. Динамику антителообразования при первичном и вторичном иммунном ответе можно изобразить в виде кривой:

5. Механизм иммунологической памяти.

Иммунологическая память – способность иммунной системы запоминать предшествовавший контакт с антигеном и в течение некоторого времени после снятия раздражения обеспечивать иммунный ответ к этому антигену.

Это свойство иммунитета определяет его продолжительность и напряжённость после перенесённых инфекций и введения вакцин, обеспечивается за счёт долгоживущих Т и В – лимфоцитов – клеток памяти.

Клетки памяти – это антигенстимулированные Т и В лимфоциты, которые после взаимодействия с антигеном, осуществляют 2-3 деления и переходят в покоящееся состояние, и длительно циркулируют в организме. При повторной встрече клеток – памяти с данным антигеном они быстро дают вторичный иммунный ответ.

Иммунологическая толерантность – отсутствие иммунного ответа организма на некоторые антигены.

Развивается в результате запрета, налагаемого Т и В супрессорами на образование клеток – эффекторов против данного антигена.

Иммунологическая толерантность может быть:

- искусственной – создаётся искусственно путём назначения иммуннодепрессантов и цитостатиков, используется в трансплантологии;

- естественной – между матерью и плодом, к собственным антигенам организма.

Специфическая иммунопрофилактика – эта введение иммунных препаратов с целью предупреждения инфекционных заболеваний.

Она подразделяется на вакцинопрофилактику (предупреждение инфекционных заболеваний с помощью вакцин) и серопрофилактику (предупреждение инфекционных заболеваний с помощью сывороток и иммуноглобулинов)

Иммунотерапия – введение иммунных препаратов с лечебной целью.

вакцинотерапию (лечение инфекционных заболеваний с помощью вакцин)

серотерапию (лечение инфекционных заболеваний с помощью сывороток и иммуноглобулинов).

К препаратам для создания искусственного активного приобретенного иммунитета относят вакцины.

Вакцины представляют собой антигены, которые, как и все другие, активируя иммунокомпетентные клетки организма, вызывают образование иммуноглобулинов и развитие многих других защитных иммунологических процессов, обеспечивающих невосприимчивость к инфекциям.

При этом создаваемый ими активный искусственный иммунитет, так же как постинфекционный, возникает через 10-14 дней и, в зависимости от качества вакцины и индивидуальных особенностей организма, сохраняется от нескольких месяцев до нескольких лет.

Вслед за праймированием антигеном и клональной экспансией лимфоцитов образуется популяция долгоживущих клеток иммунологической памяти, персистирующей неопределенно долго без деления до стимуляции последующей реинфекцией или реиммунизацией. Т-клетки памяти характеризуются особыми поверхностными маркерами (СД4/5RO) и хоминг-молекулами, связанными с определенным путем рециркуляции. При повторной встрече с тем же антигеном, даже много лет спустя, Т- и В-клетки отвечают более быстро и более интенсивно, чем при первичной встрече.
Клетки памяти на повторное введение того же антигена также реагируют анамнестическим (вторичным) ответом с продукцией большого количества специфических антител.

Немного известно о механизме продолжительной иммунологической памяти Т- и В-лимфоцитов в отсутствии выраженной хронической инфекции. Возможной причиной иммунологической памяти является продолжительная антигенная индукция, исходящая от фолликулярных дендритных клеток-ловушек в терминальных центрах лимфатических узлов, где происходит индукция В-клеток памяти. Опыты на кроликах, вакцинированных против бешенства, убеждают, что соматическая мутация В-клеток является результатом антигенспецифического иммунного ответа.

Так как соматические мутации не происходят в генах, кодирующих Т-клеточные рецепторы, а роль персистенции вирусного антигена не подтверждена, развитие иммунологической памяти Т-клеток зависит от размера клональной экспансии на первую встречу с антигеном. В этой связи при разработке новых, более эффективных вакцин следует обращать внимание на длительное поддержание Т-клеточной памяти.

Важно знать возникновение памяти у различных компонентов иммунной системы, а также ее персистенцию после иммунизации инактивированными и живыми вирусными вакцинами при различных путях введения.

иммунная память и вирусы

Известны примеры, когда Тц-клетки памяти способны длительно персистировать в организме иммунизированных животных. После энтеральной иммунизации мышей реовирусом Тц-лимфоциты и клетки памяти, продуцирующие IgA, способны длительное время персистировать в лимфоидной ткани, особенно в пейеровых бляшках. В легких мышей, инфицированных вирусом гриппа, клетки, секретирующие специфические IgG и IgA, сохранялись в течение 11 мес, а время полужизни Тц клеток иммунологической памяти при гриппе человека составляет 2—3 года. Введение повышенной дозы вирусных антигенов способствовало ранней индукции Тц-клеток, оказывающих протективный эффект in vivo при бешенстве и ускоренному наступлению иммунитета при гепатите В.

Клон Тц-клеток памяти, способных реагировать на повторную иммунизацию, формируется к 30-му дню после введения антигена вируса бешенства. У мышей-реконвалесцентов Тц-клетки могут сохраняться в течение года, а у человека—в течение нескольких лет. Антитела к вирусу гепатита В после буферизации сохраняются в течение трех лет, а после иммунизации вакциной 17D против желтой лихорадки нейтрализующие антитела сохранялись 30—35 лет.

Существует мнение, что живые и инактивированные вакцины индуцируют В- и Тц-лимфоциты и клетки иммунологической памяти не столь эффективно, как естественное инфицирование. Так, иммунитет у переболевших корью людей сохраняется пожизненно, а после первичной иммунизации живой вакциной — около 15 лет.

Хотя инактивированные вирусные вакцины обычно индуцируют выработку антител и В-клеток памяти, тем не менее, они по-разному влияют на индукцию двух типов эффекторных клеток. Препараты инактивированного вируса гриппа вызывали у мышей длительную память Т-хелперов, но слабовыраженную память цитотоксических клеток. В то же время инактивированные препараты вируса парагриппа-1 типа Сендай, антигены которого эффективно включаются в структуру клеточных мембран, индуцируют образование Тц-клеток.

При одних заболеваниях (оспа человека, оспа животных, полиомиелит, чума крупного рогатого скота, классическая чума свиней) имеются живые вакцины, создающие длительный или пожизненный иммунитет, при других — разработаны высокоэффективные инактивированные или компонентные вакцины (ящур, болезнь Ауески, гепатит В и др.). Вакцинальный иммунитет во многих случаях по всем или основным компонентам иммунного ответа практически не уступает или немногим уступает состоянию реконвалесценции.

Таким образом, можно констатировать, что время появления, интенсивность образования антиген-стимулированных В- и Тц-клеток и персистенция клеток иммунологической памяти при прочих равных условиях зависит не столько от вида примененной вакцины (живой или инактивированной), сколько от ее антигенного воздействия на различные компоненты иммунной системы привитого организма. Реализация потенциальной антигенной активности вакцинных препаратов в значительной мере может зависеть от способа их введения, схемы применения, а в случае использования инактивированных вакцин также и от качества иммунологических адъювантов.

В зависимости от степени устойчивости вакцинированных особей к заражению вирулентным штаммом соответствующего возбудителя, следует различать клинический и биологический иммунитет. В первом случае, вирус проникает и размножается в организме без манифестации признаков болезни. Во втором -организм противостоит инфицированию, то есть способен остановить размножение вируса в воротах инфекции.

Характерным примером, демонстрирующим индукцию клинического иммунитета, могут служить вакцинные препараты против простого герпеса, предотвращающие заболевание, но не персистентную вирусную инфекцию. Указанная особенность присуща вакцинальному иммунитету при ряде других инфекций и, прежде всего, вызванных герпесвирусами.

Трехкратная парентеральная иммунизация обезьян инактивированной вакциной против полиомиелита предотвращала заболевание и экскрецию вируса с фекалиями после контрольного заражения. Однако у таких обезьян в ответ на введение вируса наблюдали бустерный антительный ответ, свидетельствующий о приживляемости вируса на вакцинальном фоне. У поросят с материнским иммунитетом ротавирус размножался в кишечнике и выделялся с фекалиями при отсутствии клинических признаков болезни. Подобные явления имеют место в случаях, когда переболевание, а тем более вакцинация, сопровождаются развитием относительно слабовыраженного иммунитета. Инфекции, при которых ре-конвалесценция сопровождается напряженным и длительным иммунитетом, теоретически могут контролироваться биологическим вакцинальным иммунитетом.

К ним, прежде всего, относятся остропротекающие инфекции, с выраженным системным иммунитетом, такие как корь, классическая чума свиней, чума крупного рогатого скота и др. Поросята, вакцинированные живой культуральной вакциной против классической чумы свиней, вскоре после парентерального контрольного заражения были свободны от вирулентного штамма вируса. При контакте с больными у вакцинированных животных не отмечали появления вторичных антител.

В заключение следует сказать, что эффективный гуморальный или клеточный иммунитет имеет поликлональную природу. В подтверждение сказанного можно привести два примера. Адоптивный перенос 4х107 Т-лимфоцитов двух субпопуляций (CD4 и CD8) от иммунизированных вирусом Раушера мышей полностью защищал реципиентов от виремии и спленомегалии после заражения вирусом. Перенос клеток одной из этих субпопуляций обеспечивал лишь частичную защиту мышей. Протективный иммунитет к вирусу японского энцефалита у мышей, коз и обезьян значительно усиливался после смешивания различных моноклональных вируснейтрализующих антител.

Существуют тесные взаимоотношения между резистентностью, клеточным и гуморальным иммунитетом. В реакциях клеточного иммунитета принимают участие как Тц-лимфоциты, так и антитела (например, в зависимой от антител клеточной цитотоксичности). Главные эффекторы резистентности — макрофаги — также играют важную роль эффекторов клеточного иммунитета. Активность их в известной мере зависит от комплемента, антител и лимфокинов.

Следует отметить, что иммунокомпетентные клетки не всегда играют положительную роль. Способность цитотоксических лимфоцитов разрушать зараженные вирусом клетки также может быть причиной развития иммунопатологических поражений органов и тканей. Кроме того, дендритные и макрофагальные клетки способны захватывать иммунные комплексы и сохранять их длительное время, что способствует развитию персистентной инфекции, обусловленной лентивирусами и вирусом алеутской болезни норок. А лимфоциты, являясь местом первичной латентной инфекции вирусом Эпштейн-Барр, способствуют распространению его в организме.

- Вернуться в оглавление раздела "Микробиология."

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.


Иммунологическая память. При повторной встрече с антигеном организм формирует более активную и быструю иммунную реакцию — вторичный иммунный ответ. Этот феномен получил название иммунологической памяти.

Иммунологическая память имеет высокую специфичность к конкретному антигену, распространяется как на гуморальное, так и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Она образуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.

На сегодняшний день рассматривают два наиболее вероятных механизма формирования иммунологической памяти. Один из них предполагает длительное сохранение антигена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, поддерживая в напряжении иммунную систему. Вероятно также наличие долгоживущих дендритных АПК, способных длительно сохранять и презентировать антиген.

Другой механизм предусматривает, что в процессе развития в организме продуктивного иммунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего происхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне. Осуществляют это 2—3-кратными прививками при первичной вакцинации и периодическими повторными введениями вакцинного препарата — ревакцинациями.

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию — криз отторжения.

Иммунологическая толерантность — явление, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.

Иммунологическую толерантность вызывают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность бывает врожденной и приобретенной. Примером врожденной толерантности является отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толерантность можно создать, вводя в

организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассивной. Активная толерантность создается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличается специфичностью — она направлена к строго определенным антигенам. По степени распространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толерантности существенно зависит от ряда свойств макроорганизма и толерогена. Важное значение в индукции иммунологической толерантности имеют доза антигена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств высококонцентрированного антигена. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы-сокогомогенного молекулярного антигена.

Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития иммунологической толерантности:

Элиминация из организма антигенспецифических клонов лимфоцитов.

Блокада биологической активности им-мунокомпетентных клеток.

Быстрая нейтрализация антигена антителами.

Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения

многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы.

№ 64 Классификация гиперчувствительности по Джейлу и Кумбсу.


Изучение молекулярных механизмов аллергии привело к созданию Джеллом и Кумбсом в 1968 г. новой классификации. В соответствии с ней различают четыре основных типа аллергии: анафилактический (I тип), цитотоксический (IIтип), иммунокомплексный (IIIтип) и опосредованный клетками (IV тип). Первые три типа относятся к ГНТ, четвертый — к ГЗТ. Ведущая роль в запуске ГНТ играют антитела (IgE, G и М), а ГЗТ — лимфоидно-макрофагальная реакция.

Аллергическая реакция I типа связана с биологическими эффектами IgE и G4, названных реагинами, которые обладают цитофильностью — сродством к тучным клеткам и базофилам. Эти клетки несут на поверхности высокоаффинный FcR, связывающий IgE и G4 и использующий их как ко-рецепторный фактор специфического взаимодействия с эпитопом аллергена. Связывание аллергена с рецепторным комплексом вызывает дегрануляцию базофила и тучной клетки — залповый выброс биологически активных соединений (гистамин, гепарин и др.), содержащихся в гранулах, в межклеточное пространство. В

результате развиваются бронхоспазм, вазодилатация, отек и прочие симптомы, характерные для анафилаксии. Вырабатываемые цитокины стимулируют клеточное звено иммунитета: образование Т2-хелпера и эозинофилогенез.

Цитотоксические антитела (IgG, IgM), направленные против поверхностных структур (антигенов) соматических клеток макроорганизма, связываются с клеточными мембранами клеток-мишеней и запускают различные механизмы антителозависимой цитотоксичности (аллергическая реакция II типа). Массивный цитолиз сопровождается соот-ветствующими клиническими проявлениями. Классическим примером является гемолитическая болезнь в результате резус-конфликта или переливания иногруппной крови.

Лабораторная диагностика аллергии при аллергических реакциях I типа основана на выявлении суммарных и специфических реагинов (IgE, IgG4) в сыворотке крови пациента. При аллергических реакциях II типа в сыворотке крови определяют цитотоксические антитела (антиэритроцитарные, антилейкоцитарные, антитромбоцитарные и др.). При аллергических реакциях III типа в сыворотке крови выявляют иммунные комплексы. Для обнаружения аллергических реакций IV типа применяют кожно-аллергические пробы, которые широко используют в диагностике некоторых инфекционных и паразитарных заболеваний и микозов (туберкулез, лепра, бруцеллез, туляремия и др.).

Иммунологической толерантностью называют отсутствие специфического иммунного ответа на собственные антигены организма (аутоантигены).

Иммунологическая толерантность. Механизмы, контролирующие иммунную систему. Гормональный контроль имунной системы.

Механизмы, контролирующие иммунную систему

Количественные характеристики популяций и субпопуляций клеток иммунной системы и их функциональная активность находятся под гормональным и цитокиновым контролем.

Гормональный контроль

Влияние нейроэндокринной системы на иммунную систему может быть прямым или опосредованным. Прямой контроль осуществляется путем связывания нейромедиаторов или гормонов с соответствующими рецепторами на клетках иммунной системы. Контроль может быть опосредован влиянием нейромедиаторов и гормонов на стромальные клетки органов иммунной системы. Клетки иммунной системы имеют рецепторы, позволяющие им получать сигналы от многих гормонов и нейромедиаторов: кортикосте-роидов, инсулина, гормона роста (соматотропин), эстрадиола, тестостерона, b-адренергических агентов, ацетилхолина, эндорфинов и энкефалинов.

Секреция глюкокортикоидов в ответ на стресс, который нередко сопутствует иммунному ответу, играет роль регуляции по механизму обратной связи. Провоспалительные цитокины ИЛ-1, ИЛ-6, ТНФ-альфа, секреция которых сопутствует клеточному иммунному ответу, стимулируют продукцию глюкокортикоидов через гипоталамус-гипофизарно-надпочечниковую систему. Это ведет к подавлению активности клеточного иммунного ответа.

Глюкокортикоиды, являющиеся физиологическими регуляторами иммунного ответа, влияют на разные функции лимфоцитов и антигенпрезен-тирующих клеток: на рециркуляцию лимфоцитов, на адгезию лейкоцитов к эндотелиальным клеткам, на продукцию цитокинов и количество цито-киновых рецепторов на клетках.

Глюкокортикоиды действуют на клетки, формируя комплексы с соответствующими внутриклеточными рецепторами, которые препятствуют транскрипции отдельных генов, в том числе генов, ответственных за продукцию цитокинов. В концентрациях, превосходящих физиологический уровень, глюкокортикоиды блокируют транскрипцию многих цитокинов: туморнекротизирующего фактора, гамма-интерферона, интерлейкинов-1, -2, -5, -6, -12. В то же время глюкокортикоиды индуцируют продукцию Т-лимфоцитами ингибирующих цитокинов: трансформирующего ростового фактора-бета и интерлейкина-10. С нарушениями продукции и рецепции цитокинов связаны противовоспалительные и иммуномодулирующие эффекты глюкокортикоидов.

Глюкокортикоиды способны влиять на характер иммунного ответа: усиливать синтез цитокинов, характерных для Th2, потенцировать эффекты интерлейкина-4. Разная чувствительность субпопуляций Thl и Th2 к глю-кокортикоидам связана с различиями количества гормональных рецепторов у этих клеток. Под влиянием ИЛ-4 в сочетании с ИЛ-2 у лимфоцитов повышается количество рецепторов для глюкокортикоидов, а под влиянием гамма-интерферона количество рецепторов для глюкокортикоидов снижается. Так, дифференцировка лимфоцитов в отсутствие ИЛ-4, в присутствии высокой концентрации гамма-интерферона приводит к созреванию Thl, резистентных к глюкокортикоидам.

Иммунологическая толерантность. Механизмы, контролирующие иммунную систему. Гормональный контроль имунной системы.

У отдельных индивидуумов генетически детерминирован высокий уровень стресс-индуцированной продукции глюкокортикостероидов. Повышенная чувствительность этих индивидуумов к внутриклеточно паразитирующим патогенным агентам объясняется низким уровнем клеточного иммунного ответа, подавленного в присутствии повышенного уровня глюкокортикостероидов .

Стимулирующим действием эстрогенов на иммунную систему объясняют более высокую устойчивость женщин к инфекциям и более высокую частоту аутоиммунных заболеваний среди женщин по сравнению с мужчинами. С возрастным снижением продукции андрогенного гормона дегид-роэпиандростерона, сопряженным с повышением продукции цитокина ИЛ-6, связывают состояние возрастного иммунодефицита у людей старше 60 лет.

Тироксин стимулирует процессы пролиферации и дифференцировки иммунокомпетентных клеток. Соматотропин оказывает прямое митогенное действие на Т-лимфоциты.

Эффекты многих гормонов опосредованы их влиянием на секрецию гормонов тимуса: глюкокортикоиды, андрогены и эстрогены подавляют ее, а пролактин, СТГ и прогестерон — стимулируют (табл. 8.6).

Лимфоциты имеют В-адренергические рецепторы и получают сигналы от соответствующих медиаторов: норадреналина и неироксина, которые угнетают пролиферацию лимфоцитов, стимулируя их дифференцировку. Ацетилхолин и холинергические стимулы, напротив, усиливают пролиферацию лимфоцитов. Холинергические влияния в тимусе способствуют накоплению и эмиграции тимоцитов. Таким образом, проявляется альтернативный характер адренергических и холинергических эффектов нервной системы в отношении иммунной системы.

Свидетельствами нейроэндокринной регуляции иммунной системы могут служить: зависимость иммунологических функций от циркадных ритмов, иммуномодулирующие эффекты гипноза, возможность условно-рефлекторной стимуляции или угнетения иммунного ответа.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Читайте также: