Реферат энергосбережение и утилизация теплоты

Обновлено: 05.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

1. Классификация вторичных энергоресурсов

2. Виды ВЭР и способы их использования

3.Экономия топлива при использовании теплоты отходящих газов

4. Вторичные энергетические ресурсы топливно-энергетического комплекса

Введение

В настоящее время в использовании вторичных энергетических ресурсов имеются значительные резервы.

Задача максимального использования ВЭР имеет не только экономическое, но и социальное значение, поскольку снижение расходов топлива, обеспечиваемое использованием ВЭР, уменьшает вредные выбросы и снижает загрязнение окружающей среды.

ВЭР нельзя рассматривать как даровые дополнительные источники энергии. Они являются результатом энергетического несовершенства технологических производств, поэтому необходимо стремиться к снижению их выхода за счет более полного использования топлива в самом технологическом агрегате. В этом состоит основная задача повышения эффективности теплотехнических производств, наиболее полного использования ВЭР, как неизбежного спутника этих процессов.

Пределом идеальной организации производств является создание безотходная по материалам и энергии технологии.

1. Классификация вторичных энергоресурсов

Предприятие черной металлургии потребляет большое количество топлива, тепловой и электрической энергии. Наряду с этими технологиями металлургического производства характеризуется значительным выходом вторичных энергетических ресурсов (ВЭР).

По виду энергии ВЭР делятся на горючие (топливные), тепловые и избыточного давления.

Горючие ВЭР - побочные газообразные продукты технологических процессов, которые могут быть использованы в качестве энергетического или технологического топлива.

Тепловые ВЭР - физическая теплота основных и побочных продуктов, отходящих газов технологических агрегатов, а так же систем охлаждения их элементов.

ВЭР избыточного давления - потенциальная энергия газов, выходящих из технологических агрегатов с избыточным давлением, которое может быть использовано других видов энергии.

2. Виды ВЭР и способы их использования

Низкая теплота сгорания

Сжигание в топливо использующих установках

отходящие газы, готовая продукция и отходы производства, теплоносители охлаждения

отработанный и попутный пар

выработка в теплоутилизиционных установках водяного пара, горячей воды

покрытие тепло потребности, выработка электроэнергии в конденсоционном или теплофикационном турбоагрегате

газы с избыточным давлением

работа изоэнтропного расширения

выработка электроэнергии в газовом утилизационном турбоагрегате

Выход ВЭР - количество ВЭР, образующиеся в технологическом агрегате.

Выход ВЭР для горючих: q гор = m Q р ;

для тепловых: q т =mі;

для ВЭР избыточного давления: q и = ml;

где q - выход соответствующих ВЭР, m - удельное или часовое количество энергоносителя, Q р - низшая теплота сгорания, і -

энтальпия энергоносителя, l - работа изоэнтропийного расширения газов.

Характеристика горючих ВЭР черной металлургии:

Доменный газ образуется при выплавке чугуна в доменных печах. Его выход и химический состав зависят от свойств шихты и топлива, режима работы печи, способов интенсификации процесса. Доля негорючих компонентов азота и углекислого газа в доменном газе составляет 70%. При сжигании доменного газа максимальная температура продуктов сгорания равна 1487 С. На выходе из печи газ загрязнен колошниковой пылью. Использовать доменный газ в качестве топлива можно только после его очистки.

Ферросплавный газ - образуется при выплавке ферросплавов в рудовосстановительных печах. Суммарное содержание сероводорода и оксида серы (4) в пересчете на оксид серы (4) не должно превышать 1 г\м 3 .

Конвертерный газ - образуется при выплавке стали в кислородных конвертерах. Газ в основном состоит из оксида углерода. В качестве топливных ВЭР конвертерный газ используется при отводе без дожигания.

Ценное технологическое и энергетическое топливо.

Коксовый газ - образуется при коксовании угольной шихты. В черной металлургии в качестве топлива используется после извлечения химических продуктов. Компоненты коксового газа: водород, кислород, метан, азот, углекислый и угарный газы.

Характеристика тепловых ВЭР.

Физическая теплота готового продукта из шлаков.

Из печей и агрегатов металлургического производства готовый продукт и шлак выходят с высокой температурой. В некоторых случаях эта теплота ВЭР. Теплота жидкого чугуна используется в последующих переделах (мартеновские печи, кислородные конвертеры).

Теплота жидкой стали используется в прокатном производстве за счет горячего посада слитков. Физическая теплота вторичных газов.

Использование физической теплоты коксового газа возможна после сухой очистки. Наибольшую температуру имеют конверторные газы.

Отходящие газы мартеновских печей состоят из продуктов сгорания топлива и газообразных компонентов химических реакций, протекающих в технологическом процессе. К тепловым ВЭР относятся энергоносители в виде водяного пара, горячей воды и вентиляционных выбросов.

3.Экономия топлива при использовании теплоты отходящих газов

Использование физической теплоты отходящих газов осуществляется по трем схемам: технологической (замкнутой и разомкнутой), энергетической и комбинированной.

Технологическая схема предусматривает использование этой теплоты для технологических процессов, как правило, в той же теплотехнологической установке. По такой схеме нагревают воздух, а также в некоторых случаях и газообразные топлива, предварительно подогревают обрабатываемый в печи материал или производят химико-термическую переработку некоторых шихтовых материалов, используемых в данном процессе. При отоплении печей природным газом к технологической схеме относится также термохимическая регенерация теплоты отходящих газов, используемая для конверсии метана. Описанные схемы являются замкнутыми, они обеспечивают экономию топлива в самом технологическом агрегате (рис.1). Теплоту отходящих газов можно использовать и в другой печной установке с меньшим температурным уровнем процесса. Такая схема является разомкнутой (рис.2). В этом случае экономится топливо в установке, использующей теплоту отходящих газов. Возможно также последовательное использование теплоты в основном и в низкотемпературных агрегатах.

Рис.1. Замкнутые технологические схемы использования теплоты отходящих газов: а - для подогрева воздуха; б - для предварительного нагрева материала; 1 - печь; 2 - отвод газов из печи; 3 - рекуператор; 4 - подвод воздуха в рекуператор; 5 - отвод дыма: 6 - подвод воздуха в печь; 7 - подвод топлива в печь; 8 - выдача материала; 9 - подача подогретого материала в печь; 10 - подача холодного материала.

Рис.2. Разомкнутая технологическая схема использования теплоты отходящих газов: 1 - печь; 2 - подвод топлива; 3 - подвод воздуха; 4 - подача материала; 5 - отвод газов из печи: 6 - технологическая установка второй ступени; 7 - отвод газов установки второй ступени; 8 - выдача материала.

Применение замкнутой технологической схемы повышает эффективность использования топлива в технологическом агрегате, т.е. снижает выход ВЭР.

Энергетическая схема предусматривает использование теплоты отходящих газов в энергетических установках для производства каких-либо энергоносителей (теплоты, электроэнергии, холода и др.). Возможно последовательное размещение нескольких теплоиспользующих установок, например, котлов-утилизаторов и экономайзеров для подогрева сетевой воды. Таким образом, энергетическая схема является разомкнутой и позволяет сэкономить топливо, расходуемое на производство соответствующих видов и количеств энергоносителей за счет использования ВЭР технологического агрегата (рис.3).

Комбинированная схема сочетает технологическую и энергетическую схемы и обеспечивает как уменьшение выхода ВЭР, так и более эффективное их использование (рис.4).

Каждая из схем имеет достоинства и недостатки. Основным критерием для их сравнения является достигаемая экономия топлива. Однако этот критерий еще не дает основания для окончательной оценки схем. Здесь необходим технико-экономический расчет, учитывающий капитальные и эксплуатационные затраты, устойчивость потребления энергоносителей, полученных за счет теплоты отходящих газов, и др.

Рис.3. Энергетические схемы использования теплоты отходящих газов: а - для получения пара; б - для получения пара и горячей воды; 1 - печь; 2 - подвод воздуха; 3 - подвод топлива; 4 - отвод газов из печи; 5 – КУ; 6 - отвод пара из КУ; 7 - отвод дыма из КУ; 8 - подвод питательной воды в КУ; 9 - подогреватель сетевой воды; 10 - подвод воды в подогреватель; 11 - отвод горячей воды.

Рис.4. Комбинированная схема использования теплоты отходящих газов: 1 - печь; 2 - отвод газов из печи; 3 - рекуператор; 4 - подвод воздуха в рекуператор; 5 - отвод дыма из рекуператора; 6 - отвод пара из КУ; 7 - КУ; 8 - подвод питательной воды в КУ; S - подвод воздуха в печь; 10 - подвод топлива в печь.

4. Вторичные энергетические ресурсы топливно-энергетического комплекса

Мировая добыча угля составляет 2025 млн. т в год (4033 шахты). При этом образуется около 6 млрд. т твердых, жидких и газообразных отходов, что составляет около 3 т отходов на 1 т угля (из них отвальной породы 2,5 т). При подземной добыче угля удельный выход породы, выдаваемой из шахт на поверхность составляет около 0,3 т на 1т добываемого угля. Собственно горючая масса в угольной промышленности составляет всего 20% горной массы. Доля угля в производстве электроэнергии составляет 37% (1980 г).

Сланец имеет не меньшее значение, чем уголь. Около 40% сланца добывается открытым способом и 60% из шахт.

Отходы добычи и обогащения сланцев состоят из вскрышных пород, отходов обогащения.

Разработан проект переработки сланцев (Швеция), предусматривающий добычу открытым способом и в шахтах 6 млн. т сланца в год и производство 1300 т урана ежегодно. Схема переработки сланца предусматривает первичное дробление, обогащение в тяжелых средах для удаления известняка, обработку сланца серной кислотой в барабанных аппаратах, выдержку обработанного материала в штабелях, противоточное выщелачивание серной кислотой методом просачивания (удаление урана 79%), фильтрирование раствора, экстракцию из него урана органическим растворителем, реэкстрацию раствором карбоната натрия или аммония и осаждение уранового концентрата. Осадок выщелачивания смешивают с известняком и направляют в отвал.

Дальнейшие этапы усовершенствования технологии переработки сланцев:

энергетическое использование органического материала путем сжигания или газификации;

разработка технологии получения алюминия из сланца;

полное комплексное извлечение цветных металлов.

Газовые выбросы промышленных предприятий как ВЭР.

Развитие энергетики, металлургии, транспорта, химии и нефтехимии приводит к быстро возрастающему потреблению воздуха, используемого в качестве сырья в процессе окисления. Предприятия химической, нефтехимической, пищевой, фармацевтической и ряда других отраслей промышленности потребляют большие количества чистого воздуха и выбрасывают огромные объемы отработанных кислородосодержащих газов и загрязненного вентиляционного воздуха.

Перспективным является метод очистки воздуха от микропримесей - объединение энергетических и химических комплексов. Рассмотрим возможности объединения этих процессов путем использования отработанного воздуха промышленных предприятий в качестве окислителя, например дутьевого воздуха в топках котлов. В этом случае обеспечивается дешевая очистка загрязненного воздуха от токсичных примесей и отпадает необходимость в потреблении чистого воздуха для окисления топлива.

Литература

Ласкорин Б.Н. Безотходная технология минерального сырья. - М.: " Недра", 2004г. - 334с.

Розенгарт Ю.И. Вторичные энергетические ресурсы черной металлургии и их использование. - К.: " Высшая школа", 2008г. - 328с.

Рихтер Л.А. Охрана водного и воздушного бассейнов от выбросов ТЭС. Под редакцией Непорожного. - М.: " Энергоиздат", 2001г. - 296с.

Сигал И.Я. Защита воздушного бассейна при сжигании топлива. - Л.: " Недра", 1987г. - 294с.

Толочко А.И. Защита окружающей среды от выбросов предприятий черной металлургии. - М.: " Металлургия" 2001г. - 95с.

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

В современном мире сложилось состояние сохранения и развития цивилизации на Земле для обеспечения человечества достаточным количеством топлива и энергии. Ограниченные запасы традиционных топливно-энергетических ресурсов заставили обратиться к энергосбережению как к одному из основных элементов современной концепции мирового энергетического развития.

Невозобновляемые источники энергии: Торф, уголь, нефть, природный газ.

Возобновляемые источники энергии: Твердая биомасса и продукты животного происхождения, промышленные отходы, гидроэнергетика, геотермальная энергия, солнечная энергия, энергия ветра, океанские волны и приливы.

Экономия энергии

Энергосбережение означает эффективное использование энергии на всех этапах преобразования энергии — от добычи первичных источников энергии до потребления всех видов энергии конечными потребителями.

Меры по энергосбережению могут быть разными. Одним из наиболее эффективных способов повышения эффективности использования энергии является использование современных энергосберегающих технологий.

Энергосберегающие технологии не только значительно снижают затраты на энергию, но и имеют очевидные экологические преимущества.

Основные направления эффективного энергопотребления

Энергосбережение в компании: Технологии и новые возможности.

К сожалению, энергосбережение в компаниях, как правило, оставляет желать лучшего. Большинство заводов и фабрик имеют высокопроизводительные двигатели, которые потребляют до 60% больше энергии, чем необходимо. Для оптимизации процессов используются электрические приводы со встроенными энергосберегающими функциями. Гибко варьируя скорость в зависимости от нагрузки, можно достичь экономии энергии в 30-50%.

Сокращение теплопотерь и энергосбережение в зданиях различного назначения.

Более 30% всех энергоресурсов используется для отопления жилых, офисных и промышленных зданий. Поэтому энергосберегающие технологии в зданиях неэффективны для различных целей без снижения непроизводительных потерь тепла.

Важнейшей мерой по экономии энергии в зданиях будет также установка отопительных батарей с автоматическим управлением. Использование вентиляционных систем с функцией рекуперации тепла позволит сэкономить еще больше энергии.

Экономия энергии в школе: долгосрочный вклад в будущее.

Успех мер по энергосбережению невозможен без массового распространения информации об энергосбережении среди населения. В настоящее время в нашей стране начинаются кампании по внедрению энергосберегающих технологий в зданиях различного назначения: не только на предприятиях, но и, например, в школах. Энергосбережение в школах имеет огромный потенциал. С детства, привыкнув к бережному использованию электричества, сегодняшние школьники в будущем смогут добиться прорыва в энергосбережении по всей стране. В современных школах активно внедряются экологические программы, издаются учебники, проводятся тренинги, внеклассные мероприятия, конкурсы на лучшие проекты по энергосбережению и др. Все эти меры позволяют нам с уверенностью смотреть в будущее процветания нашей планеты.

Большинство современных энергосберегающих технологий

Ротационные пульсационные установки для отопления и горячего водоснабжения.

Такие генераторы позволяют нагревать воду, инициируя физические и химические процессы в этой воде за счет высокой частоты вращения ротора (5 000 об/мин), сопровождающиеся высоким выбросом тепловой энергии. Ротор машины приводится в действие электродвигателем. Эти теплогенераторы отличаются высокой эффективностью и коэффициентом преобразования энергии, составляющим около 100%. Чем выше мощность агрегата, тем выше его КПД за счет увеличения удельной поверхности ротора-статора.

Минимальная мощность теплогенератора — 5 кВт.

Макс — ограничивается только доступной мощностью двигателя и назначенной мощностью потребителя.

Такие теплогенераторы используются для горячего водоснабжения, автономного отопления зданий и сооружений.

Преимущества вращающегося, пульсирующего нагревателя:

Относительно дешево по сравнению с котельными.

Небольшие монтажные размеры и простота установки в существующую отопительную систему.

Автоматическая система управления позволяет эксплуатировать систему без присутствия персонала.

Специальная обработка воды не требуется.

По сравнению с газовым котлом предельные значения по газу не требуются.

Отсутствуют выбросы продуктов сгорания, т.е. генератор является экологически чистым.

Значительная экономия затрат и быстрая окупаемость в случае замены центрального отопления (от отопительных систем) и горячего водоснабжения гидротермальным генератором

Принцип работы датчика.

Принцип работы роторного пульсационного генератора заключается в перекачивании жидкости через роторно-статорную систему, где линейная скорость потока жидкости достигает 50-100 м/с и, благодаря высоким растягивающим напряжениям, приводит к образованию кавитационных процессов в жидкости, обеспечивая ее нагрев.

Заключение

Суть процессов заключается в образовании и распаде пузырьков пара или газа при адиабатическом нагревании до 10000 С. Тепло вырабатывается самой жидкостью, без поверхностей теплообмена обеспечивает очень эффективный процесс нагрева. КПД гидротермального генератора (отношение полученной тепловой энергии к потребленной электроэнергии) близок к единице.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

ЭНЕРГЕТИКА. ЭНЕРГОСБЕРЕЖЕНИЕ. ГОСУДАРСТВЕННАЯ ПОЛИТИКА В ОБЛАСТИ ЭНЕРГОСБЕРЕЖЕНИЯ.

Важную роль в развитии промышленности и энергоснабжения предприятий сыграли труды отечественных учёных и изобретателей: Б.С. Якоби, А.Н. Лодыгина, П.Н. Яблочкова, Ф.А. Пироцкого, Д.А. Лачинова, М.О. Доливо-Добровольского. В 1834 году был изобретён электродвигатель постоянного тока. Затем угольная лампа, применённая впервые для освещения в 1879 году. Т. Эдисон продолжил эти работы. Дуговая лампа без регулятора – начало практического применения электроламп. Был изобретён трансформатор электрической энергии. Передача электрогнергии на расстояние начиналось с расстояния в 1 км в 1880на железной дороге в Петербурге. Затем – трёхфазный ток, давший начало применению тока в промышленности. Первый генератор тока – 1888 год. С тех пор электроэнергия применялась постоянно. Она стала отраслью экономики под названием энергетика. Энергетика совершенствовалась и продолжает совершенствоваться по настоящее время. В 1920 году Всероссийский съезд Советов утвердил план ГОЭЛРО. Этот план был выполнен за 10 лет против 15-и. Важным его принципом стал план развития производства электроэнергии на крупных электростанциях, объединённых в систему с помощью высоковольтных электролиний. С 1930 года введением ГРЭС появились первые зачатки энергосистемы. И всё это время - работают электродвигатели, изобретённые Доливо-Добровольским. До 1960 года генераторы самых мощных ТЭС имели мощность 100 МВт. После освоения энергоблоков – мощность электростанций повысилась с 800 МВт до 1200 МВт. И далее – более: мощность Пермской ГРЭС – 48700 МВт. Сети Российского государства - 50 кВ*А.

Система электроснабжения – совокупность устройств для производства, передачи и электроэнергии. Их создают для обеспечения питания приёмников, к которым относятся электродвигатели, электрические печи, электролизные установки, аппараты и машины для сварки и другое. Энергетической системой называют совокупность электростанций, подстанций, связанных между собой, и приёмников, связанных между собой линиями электрической сети. Электрической системой называют часть энергетических устройств, повысительных и понизительных, а также распределительных устройств системы , состоящих из генераторной сети и приёмников электроэнергии.

Различие между энергетической и электрической системами – в том, что в электрическая часть обеспечивает питание первичных двигателей.

Электрическими сетями называют части электрической системы, состоящие из подстанций и линий различных напряжений. Их разделяют по напряжениям. Электрические сети служат для передачи энергии электросистемой, которая обеспечивает работу различных потребителей. От мест производства к потребителям протянуты линии, снабжённые приборами трансформации и регулирования, релейными устройствами для переключения, проводами с изоляцией и защитой.

Линии, связывающие электростанцию с понизительной подстанцией, называют линией электропередачи. Промышленные потребители: базы, типографии, предприятия железнодорожного, городского, подземного и водного транспорта. К гражданским зданиям относят жильё, общественные объекты. Внутреннее электроснабжение – комплекс сетей от подстанций, расположенных на территории промышленного комплекса. Внешнее энергоснабжение – комплекс сетей и подстанций, расположенных вне предприятия. К промышленным предприятиям относят заводы, комбинаты, фабрики, шахты, карьеры, производственные и ремонтные.

Реферат - Способы утилизации теплоты удаляемого воздуха в системах вентиляции и кондиционирования

Приведен литературный обзор существующих способ утилизации теплоты удаляемого воздуха в системах вентиляции и кондиционирования.
Установлено, что универсальным способом является схема утилизации теплоты с промежуточным теплоносителем.
В качестве базовой схемы утилизации теплоты принят способ рекуперации теплоты удаляемого воздуха на основе адсорбции водяных паров силикагелем. Способ позволяет осуществлять полный отбор скрытой теплоты водяных паров, содержащихся в воздухе, что недостижимо для существующих методов утилизации.
Пензенский государственный университет архетектуры и строительства. Институт Инженерной Экологии. Специальность Тгв.

Вишневский Е.П. Рекуперация тепловой энергии в системах вентиляции и кондиционирования воздуха

  • формат doc
  • размер 312.02 КБ
  • добавлен 22 января 2010 г.

Вишневский Е. П. Рекуперация тепловой энергии в системах вентиляции и кондиционирования воздуха C.O.K. N 11 | 2004г. Рубрика: КОНДИЦИОНИРОВАНИЕ И ВЕНТИЛЯЦИЯ В современных зданиях в зимний период как минимум 25–50% тепла расходуется на нагрев приточного воздуха. В летний период в зданиях, оборудованных системами центрального кондиционирования, имеющие место теплоизбытки снимаются за счет охлаждения приточного воздуха. Рост цен на энергоносители с.

Журавлев Б.А., Загальский Г.Я., Овчинников П.А. и др. Наладка и регулирование систем вентиляции и кондиционирования воздуха

  • формат djvu
  • размер 16.2 МБ
  • добавлен 16 ноября 2009 г.

М.: Стройиздат, 1980Г. — 448 с. Б. А. Журавлев, Г. Я. Загальский, П. А. Овчинников и др.: Под ред. Б. А. Журавлева. Справочное пособие. Наладка и регулирование систем вентиляции и кондиционирования воздуха. Изложены основные вопросы испытания, регулирования и наладки систем вентиляции и кондиционирования воздуха как действующих, так и подготавливаемых к сдаче в эксплуатацию зданий и сооружений. Описаны измерительные приборы и методика измерения.

Карпис Е.Е. Энергосбережение в системах кондиционирования воздуха

  • формат djvu
  • размер 2.88 МБ
  • добавлен 03 октября 2010 г.

М.: Стройиздат, 1986г. -с. Рассмотрены проблемы энергосбережения в системах кондиционирования воздуха (СКВ), изложены энергосберегающие решения, принимаемые при проектировании зданий, выборе принципиальных схем и режимов работы СКВ, методы теплового расчета утилизаторов сбросной теплоты. Приведены основные характеристики тепловых насосов. Рассмотрены схемы использования солнечной энергии и пути совершенствования оборудования и систем кондиционир.

Минин В.Е. Воздухонагреватели для систем вентиляции и кондиционирования воздуха

  • формат djvu
  • размер 2.59 МБ
  • добавлен 22 марта 2010 г.

М., Стройиздат, 1976, - 199 с. Приведены данные об устройстве, работе, поверочном расчете, монтаже, наладке и эксплуатации поверхностных теплообменников для нагревания воздуха в системах вентиляции, возд. отопления и кондиционирования. Представлены сведения о теплопередаче, аэродинимич. и гидравлич. сопротивлениях поверхностных воздухонагревателей. Для инж. -тех. работников проектных, монтажных, наладочных и эксплуатац-х организаций.

Нефелов С. Техника автоматического регулирования в системах вентиляции и кондиционирования воздуха

  • формат djvu
  • размер 4.18 МБ
  • добавлен 28 февраля 2010 г.

Нефелов С. В. Техника автоматического регулирования в системах вентиляции и кондиционирования воздуха. 2-е изд., перараб. и доп. — М.: Стройиздат, 1984. 328 с. , Изложены теоретические и инженерные основы техники автоматического управления системами вентиляции и кондиционирования воздуха. Приведены результаты исследований по созданию систем с переменной структурой и взаимосвязанным регулированием и схем каскадного регулирования. Для инженерно-тех.

Павлов Н.Н., Шиллер Ю.И. (ред.) Справочник проектировщика. Внутренние санитарно - технические устройства. Часть 3. Вентиляция и кондиционирование воздуха

  • формат pdf
  • размер 16.24 МБ
  • добавлен 23 декабря 2010 г.

М.: Стройиздат, 1992г. -с. Изд. 4-е. Предисловие. Основные положения. Тепловой режим здания. Поступление в помещение теплоты и влаги. Особенности вентиляции жилых и общественных зданий, вспомогательных зданий и помещений промышленных предприятий. Очистка вентиляционного воздуха. Расчет аэрации промышленных зданий. Воздушные души. Воздушные завесы. Местные отсосы. Аспирация и пневмотранспорт в деревообрабатывающем производстве. Эжекторные установ.

Реферат - Системы вентиляции и кондиционирования воздуха

  • формат doc
  • размер 64.8 КБ
  • добавлен 07 мая 2011 г.

Содержание: Введение, Система вентиляции, Системы кондиционирования воздуха жилой части, Сравнение местных и центральных систем, Примеры реализации местной (квартирной) системы кондиционирования, Системы кондиционирования воздуха общественной части зданий, 14 стр.

Смирнова А. Подбор теплоизвлекающего теплоотдающего теплообменников

  • формат djvu
  • размер 451.26 КБ
  • добавлен 27 декабря 2010 г.

Методические указания для студентов специальности 290700 "теплогазоснабжение и вентиляция" Московский государственный строительный университет Кафедра отопления, вентиляции и кондиционирования воздуха Москва 1997г. -с. Оглавление Общие положения; Методика инженерного расчета теплоизвлекающего и теплоотдающего теплообменников и режимов их работы в системе утилизации теплоты вытяжного выбросного воздуха с насосной циркуляцией промежуточного теплоно.

Харланов С.А., Степанов В.А. Монтаж систем вентиляции и кондиционирования воздуха

  • формат djv
  • размер 3.61 МБ
  • добавлен 25 декабря 2009 г.

Учеб. для ПТУ. 4-е изд., перераб. и доп. М.: "Высшая школа", 1991. - 262 с. Приведены сведения об устройстве систем вентиляции и кондиционирования воздуха. Описаны принципы работы естественной и механической вентиляции, а также индустриальные методы монтажа воздуховодов и оборудования, включая конвейерный метод. Приведены инструменты, приспособления. такелажные устройства, применяемые при монтаже вентиляции и кондиционирования воздуха. Учебник мо.

Чупалов В.С. Воздушные фильтры

  • формат djvu
  • размер 3.03 МБ
  • добавлен 23 апреля 2010 г.

СПб. : СПГУТД, 2005. -167. Книга посвящена технике и технологии очистки атмосферного воздуха от пыли в системах приточной вентиляции и кондиционирования воздуха.

Читайте также: