Реферат двигатель постоянного тока последовательного возбуждения

Обновлено: 28.06.2024

Введение.
1. Назначение и область применения двигателя.
2. Технические данные.
3. Схема внутренних соединений.
4. Конструкция двигателя.
5. Электромагнитный расчет.
6.1. Расчет главных размеров.
6.2.Расчет обмотки якоря.
6.3. Расчет размеров сердечника якоря.
6.4. Расчет размеров магнитопровода.
6.5. Расчет магнитной цепи.
6.6. Расчет обмотки возбуждения.
6.7. Расчет коллектора и щеток.
6.8. Потери и КПД.
Заключение.
Спецификация.

Введение.
Электродвигатель в своем развитии прошел сложный путь от игрушки до современных конструкций, выпускаемых всерийное производство. Электродвигатель в широких масштабах начал применяться только с 70-х годов XIX века. Первые электродвигатели были, естественно, электродвигателями постоянного тока. Одновременно с разработками первых электромоторов начались попытки конструирования генераторов постоянного тока. Этот долгий и сложный процесс можно условно разбить на три основных этапа.
Первая половина XIX векахарактеризуется созданием физических приборов, демонстрирующих непрерывное преобразование электрической энергии в механическую. В частности, исследуя взаимодействие проводников с током и магнитов, известный ученый Фарадей в 1821 году установил, что электрический ток, проходящий по проводнику, может заставить этот проводник совершать вращение вокруг магнита или вызывать вращение магнита вокруг проводника.Таким образом, практические опыты наглядно доказали возможность построения электродвигателя. Американский физик Дж. Генри в 1831 году сделал попытку сконструировать устройство, в котором осуществлялось притяжение разноименных и отталкивание одноименных магнитных полюсов для получения непрерывного движения. Этот своеобразный электродвигатель обладал очень небольшой мощностью.
Второй этап вразвитии электромоторов приходится на середину XIX века и характеризуется преобладанием конструкций с вращательным движением явнополюсного якоря. В 1834 году петербургский академик Б.С. Якоби построил и описал первый электродвигатель, который действовал на принципе притяжения и отталкивания между электромагнитами и имевший несомненное практическое применение. Электродвигатель Якоби мог поднимать груз весомпримерно 4-5 кг на высоту около 30 см в секунду, то есть его мощность составляла около 16 Вт.
Наконец, во второй половине XIX века были разработаны конструкции электромоторов с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом. Дальнейшие исследования позволили увеличить не только мощность электродвигателя, но и показали возможность обращения двигателя в генератор постоянноготока. Таким образом, в результате работ целого ряда ученых и изобретателей появился электродвигатель, который вскоре начал широко применяться в технике и повседневной жизни человека.

1 Назначение и область применения двигателя.
Двигатели постоянного тока используются в прецизионных приводах, требующих плавного регулирования частоты вращения в широком диапазоне.
Свойства двигателя постоянноготока, так же как и генераторов, определяются способом возбуждения и схемой включения обмоток возбуждения. По способу возбуждения можно разделить двигатели постоянного тока на двигатели с электромагнитным и магнитоэлектрическим возбуждением.
Двигатели с электромагнитным возбуждением подразделяются на двигатели с параллельным, последовательным, смешанным и независимым возбуждением.
Электрические машиныпостоянного тока обратимы, то есть, возможна их работа в качестве двигателей или
Например, если в системе управления с использованием генератора в обратной связи отсоединить генератор от первичного двигателя и подвести напряжение к обмоткам якоря и возбуждения, то якорь начнет вращаться, и машина будет работать как двигатель постоянного тока, преобразуя электрическую.

Изучение особенностей двигателя постоянного тока последовательного возбуждения, который представляет собой электрическую машину, преобразующую электрическую энергию постоянного тока в механическую энергию. Ознакомление со схемой внутренних соединений.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 13.05.2016
Размер файла 822,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ДЕПАРТАМЕНТ образования КИРОВСКОЙ ОБЛАСТИ

Кировское областное государственное

Образовательное бюджетное учреждение

Среднего профессионального образования

Автор: Студент 3 курса группы Э-31

Специальность 140446 Электрические машины и аппараты

Двигатель постоянного тока последовательного возбуждения представляет собой электрическую машину, преобразующую электрическую энергию постоянного тока в механическую энергию, в которой обмотка возбуждения подключена последов а тельно с обмоткой якоря. Для данного типа двигателей справедливо равенство: ток, протекающий в якорной обмотке, равен т о ку в обмотке возбуждения, что является его главной отличител ь ной особенностью от остальных типов двигателей.

1. Назчение и область применения

Электродвигатель постоянного тока вращающего движения с ограниченным углом поворота вала 90 О .

Предназначен для привода кранов топливных, гидравлических, пневматических систем на летательных аппаратах.

2. Технические данные

Номинальная мощность- 8 Вт

Номинальное напряжение-27 В

Частота вращения-18000 об./мин

Режим работы-S3 (Периодический повторно-кратковременный режим работы)

Степень защиты IP44 ( 4- Защита от твердых тел размером >=1,0 мм; 4- Защита от брызг, падающих под любым углом)

Способ монтажа- IM9001 (9-машина на лапах с подшипниковыми щитами; 00-машина устанавливается выходным концом вала влево; 1-имеет один цилиндрический конец вала)

Способ охлаждения-IC0041 (Отсутствует внешний вентилятор)

Условия эксплуатации-УХЛ3 (эксплуатация в помещениях, где к о лебания температуры и влажности воздуха существенно меньше, чем на открытом воздухе, рабочая температура окружающей с реды от минус 45 оС до плюс 40 С.)

3. Схема внутренних соединений

4. Конструкция двигателя

Электродвигатель состоит из следующих основных узлов: кор пуса, подшипниковых щитов, якоря и электромагнитной муфты торможения.

Внутри корпуса размещены два кованых полюса с катуш ками возбуждения, обмотка которых изготовлена из ме д ного провода круглого сечения. Для повышения сопроти в ления изоляции и обеспечения влагостойкости катушки пропитаны лаком, а доступные части промазаны эмалью. Корпус и полюса, совместно с якорем, образуют совм е щенную магнитную систему электродвигателя.

Якорь состоит из сердечника, набранного из листов элек тротехнической стали и напрессованного на стальной вал. В пазах якоря размещена петлевая обмотка, концы секций которой впаяны в петушки коллектора. Коллектор состоит из 14 коллекторных пластин (ламелей) специального профиля, изолированных друг от друга прокладками из мик а нита. Ламели имеют форму ласточкиного хвоста и опрессованы пластмассой. Для защиты от распушения на лобовую часть обмотки со стороны коллектора наложен ба н даж из стеклянной нити. Электроизоляционный свойства обмотки якоря, а также ее монолитность достигается пропиткой якоря лаком. Вал якоря вращается в двух шарик о подшипниках. Подшипник со стороны привода является коренным, он насажен на вал, а в корпусе двигателя з а креплен фланец, препятствующий осевому перемещению подшипника. Второй подшипник- плавающий, и имеет возможность перемещаться в осевом направлении при температурных изменениях ротора. Чтобы магнитный п о ток не замыкался на валу, вал выполнен из немагнитной стали 36НХТЮ. Со стороны привода на валу насажен то р мозной диск, который жестко закреплен при помощи шпонки и гайки. двигатель ток электрический

Для создания тормозного момента, в тормозной диск упирается подпружиненный четырьмя пружинами якорь муфты торможения, который насажен на три стальных ролика; они удерживают якорь муфты от вращения и позв о ляют перемещаться под воздействием магнитного потока. Величина воздушного зазора между якорем муфты и корпусом регулируется путем подбора шайб, которые уст а навливают между тормозным диском и подшипником.

Электрические машины постоянного тока широко применяются в различных отраслях промышленности.

Значительное распространение электродвигателей постоянного тока объясняется их ценными качествами: высокими пусковым, тормозным и перегрузочным моментами, сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения.

Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов. Мощности этих электродвигателей достигают сотен киловатт. В связи с автоматизацией управления производственными процессами и механизмами расширяется область применения маломощных двигателей постоянного тока общего применения мощностью от единиц до сотен ватт.

В зависимости от схемы питания, обмотки возбуждения машины постоянного тока разделяются на несколько типов (с независимым, параллельным, последовательным и смешанным возбуждением).

Ежегодный выпуск машин постоянного тока в РФ значительно меньше выпуска машин переменного тока, что обусловлено дороговизной двигателей постоянного тока.

Вначале создавались машины постоянного тока. В дальнейшем они в значительной степени были вытеснены машинами переменного тока. Благодаря возможности плавного и экономичного регулирования скорости вращения двигатели постоянного тока сохраняют свое доминирующее значение на транспорте, для привода металлургических станков, в крановых и подъемно-транспортных механизмах. В системах автоматики машины постоянного тока широко используются в качестве исполнительных двигателей, двигателей для привода лентопротяжных самозаписывающих механизмов, в качестве тахогенераторов и электромашинных усилителей.

2. Устройство и принцип действия двигателей постоянного тока

Устройство машин постоянного тока (генераторов и двигателей) в упрощенном виде показано на рис.1. К стальному корпусу 1 статора машины прикреплены главные 2 и дополнительные 4 полюса. На главных полюсах расположена обмотка возбуждения 3, на дополнительных - обмотка дополнительных полюсов 5. Обмотка возбуждения создает магнитный поток Ф машины.


На валу 10 двигателя закреплен цилиндрический магнитопровод 6, в пазах которого расположена обмотка якоря 7. Секции обмотки якоря присоединены к коллектору 9. К нему же прижимаются пружинами неподвижные щетки 8. Закрепленный на валу двигателя коллектор состоит из ряда изолированных от него и друг от друга медных пластин. С помощью коллектора, и щеток осуществляется соединение обмотки якоря с внешней электрической цепью. У двигателей они, кроме того, служат для преобразования постоянного по направлению тока внешней цепи в изменяющийся по направлению ток в проводниках обмотки якоря.

Дополнительные полюса с расположенной на них обмоткой уменьшают искрение между щетками и коллектором машины. Обмотку дополнительных полюсов соединяют последовательно с обмоткой якоря и на электрических схемах часто не изображают.

Для уменьшения потерь мощности магнитопровод якоря выполнен из отдельных стальных листов. Все обмотки изготовлены из изолированного провода. Кроме двигателей, имеющих два главных полюса, существуют машины постоянного тока с четырьмя и бόльшим количеством главных полюсов. При этом соответственно увеличивается количество дополнительных полюсов и комплектов щеток.

Если двигатель включен в сеть постоянного напряжения, то при взаимодействии магнитного поля, созданного обмоткой возбуждения, и тока в проводниках якоря возникает вращающий момент, действующий на якорь:


(1)


(2)

где КМ - коэффициент, зависящий от конструктивных параметров машины; Ф - магнитный поток одного полюса; IЯ - ток якоря.

Если момент двигателя при n = 0 превышает тормозящий момент, которым нагружен двигатель, то якорь начнет вращаться. При увеличении частоты вращения n возрастает индуцируемая в якоре ЭДС. Это приводит к уменьшению тока якоря:


(3)

где rЯ - сопротивление якоря.

Следствием уменьшения тока IЯ является уменьшение момента двигателя. При равенстве моментов двигателя и нагрузки частота вращения перестает изменяться.

Направление момента двигателя и, следовательно, направление вращения якоря зависят от направления магнитного потока и тока в проводниках обмотки якоря. Чтобы изменить направление вращения двигателя, следует изменить направление тока якоря либо тока возбуждения.

3. Пуск двигателей

Из формулы (3) следует, что в первое мгновение после включения двигателя в сеть постоянного напряжения, т.е. когда и ,


Так как сопротивление rЯ невелико, то ток якоря может в 10…30 раз превышать номинальный ток двигателя, что недопустимо, поскольку приведет к сильному искрению и разрушению коллектора. Кроме того, при таком токе возникает недопустимо большой момент двигателя, а при частых пусках возможен перегрев обмотки якоря.

Чтобы уменьшить пусковой ток в цепи якоря, включают пусковой резистор, сопротивление которого по мере увеличения частоты вращения двигателя уменьшают до нуля. Если пуск двигателя автоматизирован, то пусковой резистор выполняют из нескольких ступеней, которые выключают последовательно по мере увеличения частоты вращения.

Пусковой ток якоря


По мере разгона двигателя в обмотке якоря возрастает ЭДС, а как следует из формулы (3), это приводит к уменьшению тока якоря IЯ . Поэтому по мере увеличения частоты вращения двигателя сопротивление в цепи якоря уменьшают. Чтобы при сравнительно небольшом пусковом токе получить большой пусковой момент, пуск двигателя осуществляют с наибольшим магнитным потоком. Следовательно, ток возбуждения при пуске должен быть максимально допустимым, т.е. номинальным.

4.Технические данные двигателей

В паспорте двигателя и справочной литературе на двигатели постоянного тока указаны следующие технические данные: номинальные напряжение Uи , мощность Pн , частота вращения nн, ток Iн , КПД.

Под номинальным Uн понимают напряжение, на которое рассчитаны обмотка якоря и коллектор, а также в большинстве случаев и параллельная обмотка возбуждения. С учетом номинального напряжения выбирают электроизоляционные материалы двигателя.

Номинальный ток Iн – максимально допустимый ток (потребляемый из сети), при котором двигатель нагревается до наибольшей допустимой температуры, работая в том режиме (длительном, повторно-кратковременном, кратковременном), на который рассчитан:


где Iян — ток якоря при номинальной нагрузке; Iвн – ток обмотки возбуждения при номинальном напряжении.

Следует отметить, что ток возбуждения Iвн двигателя параллельного возбуждения сравнительно мал, поэтому при номинальной нагрузке обычно принимают


Номинальная мощность Рн - это мощность, развиваемая двигателем на валу при работе с номинальной нагрузкой (моментом) и при номинальной частоте вращения nн .

Частота вращения nн, и КПД соответствуют работе двигателя с током Iн , напряжением Uн без дополнительных резисторов в цепях двигателя.

В общем случае мощность на валу P2 , момент М и частота вращения n связаны соотношением:


Потребляемая двигателем из сети мощность Р1 , величины P2, КПД, U, I связаны соотношениями:




где

Очевидно, что эти соотношения справедливы также и для номинального режима работы двигателя.

5. КПД двигателей постоянного тока


Коэффициент полезного действия является важнейшим показателем двигателей постоянного тока. Чем он больше, тем меньше мощность Р и ток I, потребляемые двигателем из сети при одной и той же механической мощности. В общем виде зависимостьть такова:


(9)

где - потери в обмотке якоря; - потери в обмотке возбуждения; - потери в магнитопроводе якоря; - механические потери.

Потери мощности не зависят, и мало зависят от нагрузки двигателя.

Двигатели рассчитываются таким образом, чтобы максимальное значение КПД было в области, близкой к номинальной мощности. Эксплуатация двигателей при малых нагрузках нежелательна вследствие малых значений rя . Значения КПД двигателей с различными способами возбуждения и мощностью от 1 до 100 кВт при номинальной нагрузке разные и составляют в среднем 0,8.

6.Характеристики двигателей постоянного тока

6.1. Рабочие характеристики

Рабочими называются регулировочная, скоростная, моментная и к.п.д. характеристики.

Регулировочная характеристика

Регулировочная характеристика представляет зависимость скорости вращения П от тока Iв возбуждения в случае, если ток Iа якоря и напряжение U сети остаются неизменными, т. е. n=f(Iв) при Ia=const и U=const.


Рис. 2. Регулировочная характеристика двигателя

В двигателях последовательного возбуждения Iв = Iа. При малых нагрузках ток якоря Iа мал и скорость вращения может быть слишком большой, поэтому пуск и работа при малых нагрузках недопустимы. Микродвигатели так же, как и. в предыдущем случае, могут составлять исключение.

Скоростные характеристики.

Скоростные характеристики дают зависимость скорости вращения п от полезной мощности Р2 на валу двигателя в случае, если напряжение U сети и сопротивление rв регулировочного реостата цепи возбуждения остаются неизменными, т. е. n=f(P2), при U=const и rв = const.


Рис. 3. Скоростные характеристики

С возрастанием тока якоря при увеличении механической нагрузки двигателя параллельного возбуждения одновременно увеличивается падения напряжения в якоре и появляется реакция якоря, которая обычно действует размагничивающим образом. Первая причина стремится уменьшить скорость вращения двигателя, вторая — увеличить. Действие падения напряжения в якоре обычно оказывает большее влияние. Поэтому скоростная характеристика двигателя параллельного возбуждения имеет слегка падающий характер (кривая 1, рис. 3).

В двигателе последовательного возбуждения ток якоря является током возбуждения. В результате скоростная характеристика двигателя с последовательным возбуждением имеет характер, близкий к гиперболическому. При увеличении нагрузки по мере насыщения магнитной цепи характеристика приобретает более прямолинейный характер (кривая 3 на рис. 3).

В компаундном двигателе при согласном включении обмоток скоростная характеристика занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения (кривая 2).

Моментные характеристики.

Моментные характеристики показывают, как изменяется момент М при изменении полезной мощности Р2 на валу двигателя, если напряжение U сети и сопротивление rв регулировочного реостата в цепи возбуждения остаются неизменными, т. е. М = f(P2), при U=const, rв=const.

Полезный момент на валу двигателя


Если скорость вращения двигателя параллельного возбуждения не изменялась бы с нагрузкой, то зависимость момента Ммех от полезной мощности графически представляла бы прямую линию, проходящую через начало координат. В действительности скорость вращения с увеличением нагрузки падает. Поэтому характеристика полезного момента несколько загибается кверху (кривая 2, рис. 4). При этом кривая электромагнитного момента М проходит выше кривой полезного момента Ммех на постоянную величину, равную моменту холостого хода М0 (кривая 1).


Рис. 4. Моментные характеристики

В двигателе последовательного возбуждения вид моментной характеристики приближается к параболическому, так как изменение момента от тока нагрузки происходит, по закону параболы, пока сталь не насыщена. По мере насыщения зависимость приобретает более прямолинейный характер (кривая 4). В компаундном двигателе моментная характеристика (кривая 3) занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения.

Характеристика изменения коэффициента полезного действия.

Кривая зависимости к. п. д. от нагрузки имеет характерный для всех двигателей вид (рис 5). Кривая проходит через начало координат и быстро растет при увеличении полезной мощности до 1/4 номинальной. При мощности Р2, равной примерно 2/3 номинальной, к. п. д. обычно достигает максимального значения. При увеличении нагрузки до номинальной к. п. д. остается постоянным или незначительно падает.

Отличительные характеристики двигателя постоянного тока последовательного возбуждения имеют решающее значение в выборе его установки на аппараты. Особенности подключения и механических характеристик определяют заключительное решение. Преимущества и область применения.


СОДЕРЖАНИЕ

1. Устройство двигателя постоянного тока

2. Особенности схемы подключения

3. График характеристик

4. Скоростное управление

5. Торможение двигателя

6. Причины поломок

7. Исследования и подбор ДПТ

8. Достоинства и недостатки

УСТРОЙСТВО ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА

Конструкция ДПТ одинакова независимо от схемы подключения обмоток возбуждения. Она лишь определяет тип двигателя: последовательного возбуждения и параллельного. В данной статье будет рассмотрен редуктор именно с последовательным соединением кабельных блоков. Подобный электромотор применяется в случае необходимости плавного пуска, устойчивого тягового функционирования аппарата при постоянных скоростях вращения вала. По своим показателям этот двигатель отличается от приводов смешанного и последовательного подключения. Особенности электрических процессов обуславливают их широкое применение.

Основными частями механизма являются движимый ротор (якорь) и неподвижный статор. Якорь состоит из стального сердечника и уложенного в пазы медного лакированного кабеля, который по виду образует закольцованный контур. Медный каркас выполнен большим числом витков проволоки. Концы обмотки припаяны к коллекторным кольцам. В якоре происходит преобразование энергии и наводится ЭДС. Через щетки из источника питания на ламели подается ток. Коллектор — обычный инвертор. Индуктор представлен постоянным магнитом. Создает магнитный поток для получения стабильного момента. В данной электрической машине роторная катушка и обмотка возбуждения соединены последовательно. Протекающие в них токи имеют равные значения, что и определяет особенность данного типа двигателей.

ОСОБЕННОСТИ СХЕМЫ ПОДКЛЮЧЕНИЯ

Принципиальная схема подключения дает возможность приводу работать в условиях значительных перегрузок и тяжелых пусковых условий. Момент вращения пропорционален квадратному значению силы тока. Мощные тяговые характеристики обеспечили область применение подобных двигателей в конструкции транспорта: поездов, электричек, трамваев, троллейбусов, подъемных кранов, канатных дорог, производственных станках, грузоподъемных кранах, тяговых агрегатов.

За счет последовательного соединения общий магнитный поток находится в зависимости от силы тока. При условии работы ДПТ ПС меньше 25% от номинального значения резко снижается магнитный поток. Это приводит к резкому ускорению машины. Скорость становится неконтролируемой и двигатель идёт в разнос. На этом основании работа двигателя на холостом ходу недопустима. Во избежание непоправимых ситуаций, для контроля работы в цепь якоря последовательно подключают реостат. Тепловые реле защищают устройство от перегрева.

Двигатели последовательного возбуждения запрещено соединять с устройством посредством ременной передачи. Ремень может порваться или соскочить, вызывая тем самым немедленное ускорение и последующую поломку машины.

Запуск агрегата производят на дополнительном сопротивлении, подсоединенным в цепь параллельно. С началом работы его отключают, и двигатель продолжает работу на номинальных показателях при естественной характеристике. Искусственные механические характеристики определяются принудительным изменением физических показателей системы.


ГРАФИК ХАРАКТЕРИСТИК

Механическая и естественная характеристики на графике зависимости имеют вид гиперболы. Обычно на чертеже выражают соотношение момента (ось Х) и частоты вращения якоря (ось Y).

Смещение графика механической характеристики параллельно к оси ординат объясняет плавное регулирование скорости (мягкая скоростная характеристика).


СКОРОСТНОЕ УПРАВЛЕНИЕ

Регулирование скорости ротора осуществляют несколькими методами в принудительном режиме:

-изменение показателей магнитного потока

-изменение напряжения сетевого источника питания.

Последний крайне неэкономичен, требует установки дополнительного пускового реле. Чаще производят смену магнитного потока. Параллельно обмотке возбуждения подключают реостат, введение сопротивления меняет ток, соответственно и скорость.

ТОРМОЖЕНИЕ ДВИГАТЕЛЯ

Остановка двигателя производится двумя способами. Механическим, характеризуется наложение тормозных колодок на шкив, и электрическим. Перевод привода в режим генератора для торможения в данном двигателе отсутствует. Используют шунтирование и противовключение якоря. Происходит реверс направления вращения. Динамический тормоз обусловлен отключением роторной обмотки и ее замыканием на многоступенчатый остановочный резистор. Управление производится контроллером оборотов или заданием времени. Процесс торможения происходит интенсивно.

ПРИЧИНЫ ПОЛОМОК

Если возникают внештатные ситуации, требуется немедленное реагирование. Несоблюдение правил безопасности при работе с электрооборудованием, необдуманные действия персонала, скачки напряжения в сети, механическое повреждение устройства, корочение и межвитковый обрыв в цепи якоря приводят к тяжелым последствиям и дорогостоящему ремонту. Экстренное отключение проводится автоматической аппаратурой. Устранение неполадок производится строго при отключенной нагрузке. Чаще всего двигатель идет вразнос по причине человеческого фактора. Недобросовестное обслуживание комплектующих, отсутствие своевременного ремонта, игнорирование предвестников поломки приводит к таким тяжелым последствиям. При межвитковых разрывах резко снижается магнитный поток, скорость возрастает и становится неуправляемой. Двигатель резко набирает обороты и выдает характерный свистящий шум. Агрегат не взрывается, но персоналу лучше отойти на безопасное расстояние во избежание травматизации. Поэтому необходимо совершать своевременную плановую профилактику аварий.

ИССЛЕДОВАНИЕ И ПОДБОР ДПТ

Двигатели постоянного тока последовательного соединения устанавливаются в соответствии с Правилами устройства электроустановок (ПУЭ). Это нормативный документ, в котором обозначены конструктивные принципы, требования к электросистемам, подводимой к ним коммуникации, условий окружающей среды и эксплуатации. Правила одинаковы для всех форм собственности. Переиздаются каждые два года.

ДОСТОИНСТВА И НЕДОСТАТКИ

В настоящее время ДПТ используют в тех случаях, где переменнотоковые редуктора не дают необходимых характеристик.

Достоинства электродвигателей постоянного тока с последовательным соединением обмоток обуславливают их широкое применение в промышленности и сфере электротранспорта. Таковыми являются:

-зависимость момента вращения от квадратного значения силы тока позволяет передвигать машины больших габаритов и значительного веса;

-плавный запуск аппарата при малой частоте вращения якоря;

-использование машины без перегрузки двигателя;

-высокие мощностные показатели;

-отсутствие перехода в режим генератора дает дополнительную кинетическую энергию;

-отсутствие перегрузки двигателя;

-экономичность и простота изготовления обмотки якоря;

-крупное сечение медной проволоки для армировки дает меньшее число витков не требует усиления изоляции;

-конструктивное решение клетени обеспечивает необходимый магнитный поток при малых значениях тока возбуждения.

-дорогостоящая концепция изготовления;

-износ графитовых щеток;

-постоянное обслуживание щеточно-коллекторного контакта;

износ коллектора ограничивает эксплуатационный срок.

Обслуживать и производить ремонт должен специально обученный персонал. Для работы с электрооборудованием сотрудники обязаны быть компетентными и иметь допуск к работе.

ads

В этом двигателе обмотка возбуждения включена последова­тельно в цепь якоря (рис. 29.9, а), поэтому магнитный поток Ф в нем зависит от тока нагрузки I = Ia = Iв. При небольших нагрузках магнитная система машины не насыщена и зависимость магнитно­го потока от тока нагрузки прямо пропорциональна, т. е. Ф = kф Ia (kф — коэффициент пропорциональности). В этом случае найдем электромагнитный момент:

Формула частоты вращения примет вид

На рис. 29.9, б представлены рабочие характеристики M = F(I) и n= (I) двигателя последовательного возбуждения. При больших нагрузках наступает насыщение магнитной системы двигателя. В этом случае магнитный поток при возрастании нагрузки практически не изменяется и характеристики двигате­ля приобретают почти прямолинейный характер. Характери­стика частоты вращения двигателя последовательного возбуж­дения показывает, что частота вращения двигателя значительно меняется при изменениях нагрузки. Такую характеристику принято называть мягкой.

Двигатель последовательного возбуждения

Рис. 29.9. Двигатель последовательного возбуждения:

а — принципиальная схема; б — рабочие характеристики; в — механические характеристики; 1 — естественная характеристика; 2 — искусственная характе­ристика

Механические характеристики двигателя последовательного возбуждения n=f(M) представлены на рис. 29.9, в. Резко падающие кривые механических характеристик (естественная 1 и искус­ственная 2) обеспечивают двигателю последовательного возбуж­дения устойчивую работу при любой механической нагрузке. Свойство этих двигателей развивать большой вращающий момент, пропорциональный квадрату тока нагрузки, имеет важное значе­ние, особенно в тяжелых условиях пуска и при перегрузках, так как с постепенным увеличением нагрузки двигателя мощность на его входе растет медленнее, чем вращающий момент. Эта особенность двигателей последовательного возбуждения является одной из причин их широкого применения в качестве тяговых двигателей на транспорте, а также в качестве крановых двигателей в подъем­ных установках, т. е. во всех случаях электропривода с тяжелыми условиями пуска и сочетания значительных нагрузок на вал двига­теля с малой частотой вращения.

Номинальное изменение частоты вращения двигателя после­довательного возбуждения

где n[0,25] — частота вращения при нагрузке двигателя, составляю­щей 25% от номинальной.

Частоту вращения двигателей последовательного возбуждения можно регулировать изменением либо напряжения U, либо маг­нитного потока обмотки возбуждения. В первом случае в цепь якоря последовательно включают регулировочный реостат Rрг (рис. 29.10, а). С увеличением сопротивления этого реостата уменьшаются напряжение на входе двигателя и частота его вра­щения. Этот метод регулирования применяют главным образом в двигателях небольшой мощности. В случае значительной мощно­сти двигателя этот способ неэкономичен из-за больших потерь энергии в Rрг . Кроме того, реостат Rрг , рассчитываемый на рабочий ток двигателя, получается громоздким и дорогостоящим.

При совместной работе нескольких однотипных двигателей частоту вращения регулируют изменением схемы их включения относительно друг друга (рис. 29.10, б). Так, при параллельном включении двигателей каждый из них оказывается под полным напряжением сети, а при последовательном включении двух дви­гателей на каждый двигатель приходится половина напряжения сети. При одновременной работе большего числа двигателей воз­можно большее количество вариантов включения. Этот способ регулирования частоты вращения применяют в электровозах, где установлено несколько одинаковых тяговых двигателей.

Изменение подводимого к двигателю напряжения возможно при питании двигателя от источника постоянного тока с регулируемым напряжением (например, по схеме, аналогичной рис. 29.6, а). При уменьшении подводимого к двигателю напряжения его механические характеристики смещаются вниз, практически не меняя своей кривизны (рис. 29.11).

clip_image002[1]

Рис. 29.11. Механические характеристики двигателя последовательного возбуждения при изменении подводимого напряжения

Регулировать частоту вращения двигателя изменением маг­нитного потока можно тремя способами: шунтированием обмотки возбуждения реостатом rрг, секционированием обмотки возбужде­ния и шунтированием обмотки якоря реостатом rш. Включение реостата rрг, шунтирующего обмотку возбуждения (рис. 29.10, в), а также уменьшение сопротивления этого реостата ведет к сниже­нию тока возбуждения Iв = Ia — Iрг, а следовательно, к росту частоты вращения. Этот способ экономичнее предыдущего (см. рис. 29.10, а), применяется чаще и оценива­ется коэффициентом регули­рования

Обычно сопротивление рео­стата rрг принимается таким, чтобы kрг >= 50%.

При секционировании об­мотки возбуждения (рис. 29.10, г) отключение части витков об­мотки сопровождается ростом частоты вращения. При шунти­ровании обмотки якоря реоста­том rш (см. рис. 29.10, в) увели­чивается ток возбуждения Iв = Ia+Iрг, что вызывает уменьшение частоты вращения. Этот способ регулирования, хотя и обеспечивает глубокую регулировку, неэкономичен и применяется очень редко.

clip_image002[3]

Рис. 29.10. Регулирование частоты вращения двигателей последователь­ного возбуждения.

Читайте также: