Реферат датчики и преобразователи

Обновлено: 19.05.2024

______________________________ ______________________________ ______________________________ ______________________________ ______________________________ ______________________________ __________________

Автоматизация различных технологических процессов, эффективное

управление различными агрегатами, машинами, механизмами требуют

многочисленных измерений разнообразных физических величин.

Датчики (в литературе часто называемые также измерительными преобразователями), или по-другому, сенсоры являются элементами многих систем автоматики - с их помощью получают информацию о параметрах контролируемой системы или устройства.

Датчик – это элемент измерительного, сигнального, регулирующего или управляющего устройства, преобразующий контролируемую величину (температуру, давление, частоту, силу света, электрическое напряжение, ток и т.д.) в сигнал, удобный для измерения, передачи, хранения, обработки, регистрации, а иногда и для воздействия им на управляемые процессы. Или проще, датчик – это устройство, преобразующее входное воздействие любой физической величины в сигнал, удобный для дальнейшего использования.

Используемые датчики весьма разнообразны и могут быть классифицированы по различным признакам:

В зависимости от вида входной (измеряемой) величины различают: датчики механических перемещений (линейных и угловых), пневматические, электрические, расходомеры, датчики скорости, ускорения, усилия, температуры, давления и др.

В настоящее время существует приблизительно следующее распределение доли измерений различных физических величин в промышленности: температура – 50%, расход (массовый и объемный) – 15%, давление – 10%, уровень – 5%, количество (масса, объем) – 5%, время – 4%, электрические и магнитные величины – менее 4%.

По виду выходной величины, в которую преобразуется входная величина, различают неэлектрические и электрические: датчики постоянного тока (ЭДС или напряжения), датчики амплитуды переменного тока (ЭДС или напряжения), датчики частоты переменного тока (ЭДС или напряжения), датчики сопротивления (активного, индуктивного или емкостного) и др.

Большинство датчиков являются электрическими. Это обусловлено следующими достоинствами электрических измерений:

- электрические величины удобно передавать на расстояние, причем передача осуществляется с высокой скоростью;

- электрические величины универсальны в том смысле, что любые другие величины могут быть преобразованы в электрические и наоборот;

- они точно преобразуются в цифровой код и позволяют достигнуть высокой точности, чувствительности и быстродействия средств измерений.

По принципу действия датчики можно разделить на два класса: генераторные и параметрические (датчики-модуляторы). Генераторные датчики осуществляют непосредственное преобразование входной величины в электрический сигнал.

Параметрические датчики входную величину преобразуют в изменение какого-либо электрического параметра (R, L или C) датчика.

По принципу действия датчики также можно разделить на омические, реостатные, фотоэлектрические (оптико-электронные), индуктивные, емкостные и д.р.

Различают три класса датчиков:

- аналоговые датчики, т. е. датчики, вырабатывающие аналоговый сигнал, пропорционально изменению входной величины;

- цифровые датчики, генерирующие последовательность импульсов или двоичное слово;

- бинарные (двоичные) датчики, которые вырабатывают сигнал только двух уровней: "включено/выключено" (иначе говоря, 0 или 1); получили широкое распространение благодаря своей простоте.

3.Требования, предъявляемые к датчикам

- однозначная зависимость выходной величины от входной;

- стабильность характеристик во времени;

- малые размеры и масса;

- отсутствие обратного воздействия на контролируемый процесс и на контролируемый параметр;

- работа при различных условиях эксплуатации;

- различные варианты монтажа.

Параметрические датчики (датчики-модуляторы) входную величину X преобразуют в изменение какого-либо электрического параметра (R, L или C) датчика. Передать на расстояние изменение перечисленных параметров датчика без энергонесущего сигнала (напряжения или тока) невозможно. Выявить изменение соответствующего параметра датчика только и можно по реакции датчика на ток или напряжение, поскольку перечисленные параметры и характеризуют эту реакцию. Поэтому параметрические датчики требуют применения специальных измерительных цепей с питанием постоянным или переменным током.

Омические (резистивные) датчики – принцип действия основан на изменении их активного сопротивления при изменении длины l, площади сечения S или удельного сопротивления p:

Кроме того, используется зависимость величины активного сопротивления от контактного давления и освещённости фотоэлементов. В соответствии с этим омические датчики делят на: контактные, потенциометрические (реостатные), тензорезисторные, терморезисторные, фоторезисторные.

Контактные датчики — это простейший вид резисторных датчиков, которые преобразуют перемещение первичного элемента в скачкообразное изменение сопротивления электрической цепи. С помощью контактных датчиков измеряют и контролируют усилия, перемещения, температуру, размеры объектов, контролируют их форму и т. д. К контактным датчикам относятся путевые и концевые выключатели, контактные термометры и так называемые электродные датчики, используемые в основном для измерения предельных уровней электропроводных жидкостей.

Контактные датчики могут работать как на постоянном, так и на переменном токе. В зависимости от пределов измерения контактные датчики могут быть одно предельными и многопредельными. Последние используют для измерения величин, изменяющихся в значительных пределах, при этом части резистора R, включенного в электрическую цепь, последовательно закорачиваются.

Недостаток контактных датчиков — сложность осуществления непрерывного контроля и ограниченный срок службы контактной системы. Но благодаря предельной простоте этих датчиков их широко применяют в системах автоматики.

Наибольшее распространение получила потенциометрическая схема включения реостатного датчика, в которой реостат включают по схеме делителя напряжения. Напомним, что делителем напряжения называют электротехническое устройство для деления постоянного или переменного напряжения на части; делитель напряжения позволяет снимать (использовать) только часть имеющегося напряжения посредством элементов электрической цепи, состоящей из резисторов, конденсаторов или катушек индуктивности. Переменный резистор, включаемый по схеме делителя напряжения, называют потенциометром.

Обычно реостатные датчики применяют в механических измерительных приборах для преобразования их показаний в электрические величины (ток или напряжение), например, в поплавковых измерителях уровня жидкостей, различных манометрах и т. п.

Датчик в виде простого реостата почти не используется вследствие значительной нелинейности его статической характеристики Iн = f(х), где Iн - ток в нагрузке.

Выходной величиной такого датчика является падение напряжения Uвых между подвижным и одним из неподвижных контактов. Зависимость выходного напряжения от перемещения х контакта Uвых = f(х) соответствует закону изменения сопротивления вдоль потенциометра. Закон распределения сопротивления по длине потенциометра, определяемый его конструкцией, может быть линейным или нелинейным.

Потенциометрические датчики, конструктивно представляющие собой переменные резисторы, выполняют из различных материлов — обмоточного провода, металлических пленок, полупроводников и т. д.

Тензорезисторы (тензометрические датчики) служат для измерения механических напряжений, небольших деформаций, вибрации. Действие тензорезисторов основано на тензоэффекте, заключающемся в изменении активного сопротивления проводниковых и полупроводниковых материалов под воздействием приложенных к ним усилий.

Термометрические датчики (терморезисторы) - сопротивление зависит от температуры. Терморезисторы в качестве датчиков используют двумя способами:

2) Температура терморезистора определяется степенью нагрева постоянным по величине током и условиями охлаждения. В этом случае установившаяся температура определяется условиями теплоотдачи поверхности терморезистора (скоростью движения окружающей среды – газа или жидкости – относительно терморезистора, ее плотностью, вязкостью и температурой), поэтому терморезистор может быть использован как датчик скорости потока, теплопроводности окружающей среды, плотности газов и т. п. В датчиках такого рода происходит как бы двухступенчатое преобразование: измеряемая величина сначала преобразуется в изменение температуры терморезистора, которое затем преобразуется в изменение сопротивления.

Терморезисторы изготовляют как из чистых металлов, так и из полупроводников. Материал, из которого изготавливается такие датчики, должен обладать высоким температурным коэффициентом сопротивления, по возможности линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств и инертностью к воздействиям окружающей среды. В наибольшей степени всем указанным свойствам удовлетворяет платина; в чуть меньшей – медь и никель.

По сравнению с металлическими терморезисторами более высокой чувствительностью обладают полупроводниковые терморезисторы (термисторы).

Индуктивные датчики служат для бесконтактного получения информации о перемещениях рабочих органов машин, механизмов, роботов и т.п. и преобразования этой информации в электрический сигнал.

Принцип действия индуктивного датчика основан на изменении индуктивности обмотки на магнитопроводе в зависимости от положения отдельных элементов магнитопровода (якоря, сердечника и др.). В таких датчиках линейное или угловое перемещение X (входная величина) преобразуется в изменение индуктивности (L) датчика. Применяются для измерения угловых и линейных перемещений, деформаций, контроля размеров и т.д.

В простейшем случае индуктивный датчик представляет собой катушку индуктивности с магнитопроводом, подвижный элемент которого (якорь) перемещается под действием измеряемой величины.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Человек глазами воспринимает форму, размеры и цвет окружающих предметов, ушами слышит звуки, носом чувствует запахи. Обычно говорят о пяти видах ощущений, связанных со зрением, слухом, обонянием, вкусом и осязанием. Для формирования ощущений человеку необходимо внешнее раздражение определенных органов - "датчиков чувств". Для различных видов ощущений роль датчиков играют определенные органы чувств:

Однако для получения ощущения одних только органов чувств недостаточно. Например, при зрительном ощущении совсем не значит, что человек видит только благодаря глазам. Общеизвестно, что через глаза раздражения от внешней среды в виде сигналов по нервным волокнам передаются в головной мозг и уже в нем формируется ощущение большого и малого, черного и белого и т.д. Эта общая схема возникновения ощущения относится также к слуху, обонянию и другим видам ощущения, т.е. фактически внешние раздражения как нечто сладкое или горькое, тихое или громкое оцениваются головным мозгом, которому необходимы датчики, реагирующие на эти раздражения.

Аналогичная система формируется и в автоматике. Процесс управления заключается в приеме информации о состоянии объекта управления, ее контроле и обработке центральным устройством и выдачи им управляющих сигналов на исполнительные устройства. Для приема информации служат датчики неэлектрических величин. Таким образом, контролируется температура, механические перемещения, наличие или отсутствие предметов, давление, расходы жидкостей и газов, скорость вращения и т.п..

Датчики информируют о состоянии внешней среды путем взаимодействия с ней и преобразования реакции на это взаимодействие в электрические сигналы. Существует множество явлений и эффектов, видов преобразования свойств и энергии, которые можно использовать для создания датчиков. При классификации датчиков в качестве основы часто используется принцип их действия, который, в свою очередь, может базироваться на физических или химических явлениях и свойствах.

С температурой мы сталкиваемся ежедневно, и это наиболее знакомая нам физическая величина. Среди прочих датчиков температурные отличаются особенно большим разнообразием типов и являются одним из самых распространенных.

Стеклянный термометр со столбиком ртути известен с давних времен и широко используется в наши дни. Терморезисторы сопротивления, которых изменяется под влиянием температуры, используются довольно часто в разнообразных устройствах благодаря сравнительно малой стоимости датчиков данного типа. Существует три вида терморезисторов: с отрицательной характеристикой (их сопротивление уменьшается с повышением температуры), С положительной характеристикой (с повышением температуры сопротивление увеличивается) и с критичной характеристикой (сопротивление увеличивается при пороговом значении температуры). Обычно сопротивление под влиянием температуры изменяется довольно резко. Для расширения линейного участка этого изменения параллельно и последовательно терморезистору присоединяются резисторы.

Термопары особенно широко применяются в области измерений. В них используется эффект Зеебека: в спае из разнородных металлов возникает ЭДС, приблизительно пропорциональная разности температур между самим спаем и его выводами. Диапазон измеряемых термопарой температур зависит от применяемых металлов. В термочувствительных ферритах и конденсаторах используется влияние температуры соответственно на магнитную и диэлектрическую проницаемость, начиная с некоторого значения, которое называется температурой Кюри и для конкретного датчика зависит от применяемых в нем материалов. Термочувствительные диоды и тиристоры относятся к полупроводниковым датчикам, в которых используется температурная зависимость проводимости p-n-перехода (обычно на кристалле кремния). В последнее время практическое применение нашли так называемые интегральные температурные датчики, представляющие собой термочувствительный диод на одном кристалле с периферийными схемами, например усилителем и др.

Подобно температурным оптические датчики отличаются большим разнообразием и массовостью применения по принципу оптико-электрического преобразования эти датчики можно разделить на четыре типа: на основе эффектов фотоэлектронной эмиссии, фотопроводимости, фотогальванического и пироэлектрических. Фотогальваническая эмиссия, или внешний фотоэффект,0 - это испускание электронов при падении света физическое тело. Для вылета электронов из физического тела им необходимо преодолеть энергетический барьер. Поскольку энергия фотоэлектронов пропорциональна1hc/л0 (где1h0 - постоянная Планка,1с0 - скорость света,1л0 - длина волны света), то, чем короче длина волны облучающего света, тем больше энергия электронов и легче преодоление ими указанного барьера.

Эффект фотопроводимости, или внутренний фотоэффект,0 - это изменение электрического сопротивления физического тела при облучении его светом. Среди материалов, обладающих эффектом фотопроводимости,- ZnS, CdS, GaAs, Ge, PbS и др. Максимум спектральной чувствительности CdS приходится приблизительно на свет с длиной волны 500-550 нм, что соответствует приблизительно середине зоны чувствительности человеческого зрения. Оптические датчики, работающие на эффекте фотопроводимости, рекомендуется использовать в экспонометрах фото и кинокамер, в автоматических выключателях и регуляторах света, обнаружителях пламени и др. Недостаток этих датчиков - замедленная реакция (50 мс и более).

Фотогальванический эффект 0 заключается в возникновении ЭДС на выводах p-n-перехода в облучаемом светом полупроводнике. Под воздействием света внутри p-n-перехода появляются свободные электроны и дырки и генерируется ЭДС. Типичные датчики, работающие по этому принципу, - фотодиоды, фототранзисторы. Такой же принцип действия имеет оптико-электрическая часть двухмерных твердотельных датчиков изображения, например датчиков на приборах с зарядовой связью (ПЗС-датчиков). В качестве материала подложки для фотогальванических датчиков чаще всего используется кремний. Сравнительно высокая скорость отклика и большая чувствительность в диапазоне от ближней инфракрасной (ИК) зоны до видимого света обеспечивает этим датчикам широкую сферу применения. Пироэлектрические эффекты 0 - это явления, при которых на поверхности физического тела вследствие изменений поверхностного температурного "рельефа" возникают электрические заряды, соответствующие этим изменениям. Среди материалов, обладающих подобными свойствами и множество других так называемых пироэлектрических материалов. В корпус датчика встроен полевой транзистор, позволяющий преобразовывать высокое полное сопротивление пиротехнического элемента с его оптимальными электрическими зарядами в более низкое и оптимальное выходное сопротивление датчика. Из датчиков этого типа наиболее часто используются ИК-датчики. Среди оптических датчиков мало найдется таких, которые обладали бы достаточной чувствительностью во всем световом диапазоне.

Большинство датчиков имеет оптимальную чувствительность в довольно узкой зоне ультрафиолетовой, или видимой, или инфракрасной части спектра. Основные преимущества перед датчиками других типов:

2. Возможность (при соответствующей оптике) измерения объектов как с чрезвычайно большими, так и с необычайно малыми размерами.

4. Удобство применения интегральной технологии (оптические датчики, как правило, твердотельные и полупроводниковые), обеспечивающей малые размеры и большой срок службы.

5. Обширная сфера использования: измерение различных физических величин, определение формы, распознавания объектов и т.д. Наряду с преимуществами оптические датчики обладают и некоторыми недостатками, а именно чувствительны к загрязнению, подвержены влиянию постороннего света, светового фона, а также температуры(при полупроводниковой основе).

В датчиках давления всегда испытывается большая потребность, и они находят весьма широкое применение.

Принцип регистрации давления служит основой для многих других типов датчиков, например датчиков массы, положения, уровня и расхода жидкости и др. В подавляющем большинстве случаев индикация давления осуществляется благодаря деформации упругих тел, например диафрагмы, трубки Прудона, гофрированной мембраны. Такие датчики имеют достаточную прочность, малую стоимость, но в них затруднено получение электрических сигналов. Потенциалометрические (реостатные), емкостные, индукционные, магнитнострикционные, ультразвуковые датчики давления имеют на выходе электрический сигнал, но сравнительно сложны в изготовлении.

В настоящее время в качестве датчиков давления все шире используются тензометры. Особенно перспективными представляются полкпроводниковые тензометры диффузионного типа. Диффузионные тензометры на кремниевой подложке обладают высокой чувствительностью, малыми размерами и легко интегрируются с периферийными схемами. Путем травления по тонкопленочной технологии на поверхности кристалла кремния с 1 n 0-продимостью формируется круглая диафрагма. На краях диафрагмы методом диффузии наносятся пленочные резисторы, имеющие 1p 0-проводимость. Если к диафрагме прикладывается давление, то сопротивление одних резисторов увеличивается, а других - уменьшается.

Выходной сигнал датчика формируется с помощью мостовой схемы, в которою входят эти резисторы. Полупроводниковые датчики давления диффузионного типа, подобные вышеописанному, широко используются в автомобильной электронике, во всевозможных компрессорах. Основные проблемы - это температурная зависимость, неустойчивость к внешней среде и срок службы.

Влажность - физический параметр, с которым, как и с температурой, человек сталкивается с самых древних времен; однако надежных датчиков не было в течение длительного периода. Чаще всего для подобных датчиков использовались человеческий или конский волос, удлиняющиеся или укорачивающиеся при изменении влажности. В настоящее время для определения влажности используется полимерная пленка, покрытая хлористым литием, набухающим от влаги. Однако датчики на этой основе обладают гистерезисом, нестабильностью характеристик во времени и узким диапазоном измерения. Более современными являются датчики, в которых используются керамика и твердые электролиты. В них устранены вышеперечисленные недостатки. Одна из сфер применения датчиков влажности - разнообразные регуляторы атмосферы. Газовые датчики широко используются на производственных предприятиях для обнаружения разного рода вредных газов, а в домашних помещениях - для обнаружения утечки горючего газа. Во многих случаях требуется обнаруживать определенные виды газа и желательно иметь газовые датчики, обладающие избирательной характеристикой относительно газовой среды. Однако реакция на другие газовые компоненты затрудняет создание избирательных газовых датчиков, обладающих высокой чувствительностью и надежностью. Газовые датчики могут быть выполнены на основе МОП-транзисторов, гальванических элементов, твердых электролитов с использованием явлений катализа, интерференции, поглощения инфракрасных лучей и т.д. Для регистрации утечки бытового газа, например сжиженного природного или горючего газа типа пропан, используется главным образом полупроводниковая керамика, в частности , или устройства, работающие по принципу каталитического горения. При использовании датчиков газа и влажности для регистрации состояния различных сред, в том числе и агрессивных, часто возникает проблема долговечности.

Главной особенностью магнитных датчиков, как и оптических, является быстродействие и возможность обнаружения и измерения бесконтактным способом, но в отличие от оптических этот вид датчиков не чувствителен к загрязнению. Однако в силу характера магнитных явлений эффективная работа этих датчиков в значительной мере зависит от такого параметра, как расстояние, и обычно для магнитных датчиков необходима достаточная близость к воздействующему магнитному полю.

Среди магнитных датчиков хорошо известны датчики Холла. В настоящее время они применяются в качестве дискретных элементов, но быстро расширяется применение элементов Холла в виде ИС, выполненных на кремниевой подложке. Подобные ИС наилучшим образом отвечают современным требованиям к датчикам. Магниторезистивные полупроводниковые элементы имеют давнюю историю развития. Сейчас снова оживились исследования и разработки магниторезистивных датчиков, в которых используется ферромагнетики. Недостатком этих датчиков является узкий динамический диапазон обнаруживаемых изменений магнитного поля. Однако высокая чувствительность, а также возможность создания многоэлементных датчиков в виде ИС путем напыления, т. е. технологичность их производства, составляют несомненные преимущества.


удовлетворяется условие f і gm, где g - ускорение силы тяжести.

К емкостным преобразователям близки по своим характеристикам

полупроводниковые диоды, в которых используется зависимость так

называемой барьерной емкости от обратного напряжения. Такие

преобразователи применяются в качестве элементов с электрически

Другая группа ЭС преобразователей основана на использовании

сегнетоэлектриков, т. е. кристаллических диэлектриков, которые при

определенных температурных условиях (при температуре ниже точки Кюри)

обладают самопроизвольной поляризацией при отсутствии внешних

Состояние кристаллических диэлектриков характеризуется

электрической индукцией D (или зарядом q), деформацией c и энтропией Э.

Эти величины зависят от напряженности электрического поля Е (или

напряжения U), механического напряжения s (или силы F) и температуры Т.

На рис. 4 схематически показаны связи между указанными величинами.

Жирными стрелками показаны связи Е®D, s®c, T®Э, а тонкими

стрелками изображены физические эффекты, свойственные

1 - прямой пьезоэлектрический эффект s®D (или q), проявляющийся в

изменении поляризации кристалла действием механических напряжений;

характеризующийся деформацией кристалла под действием электрического

3 - пироэлектрический эффект T®D (или q), сводящийся к изменению

заряда на поверхности кристалла при изменении температуры;

4 - пьезокалорический эффект s®Э, проявляющийся в изменении

Помимо указанных эффектов при изменении Е, s, Т в кристаллах

возникают побочные явления, например, изменяются диэлектрическая

проницаемость, проводимость, оптические свойства и т.д.

Из указанных эффектов рассмотрим прямой и обратный пьезоэффекты, а

также эффект изменения емкостной проводимости при изменении

напряжения U. Преобразователи, в которых используются прямой или

обратный пьезоэффекты, называются пьезоэлектрическими

Использование эффекта изменения емкостной проводимости в

кристаллических полупроводниках обусловлено нелинейной зависимостью

заряда q от приложенного напряжения U. Если зависимость q(U) линейна, то

в выражении Dq=(q/U) величина C=q/U постоянна и представляет собой

емкость. В случае нелинейной зависимости q(U) величина C=q/U также

является емкостью, но не постоянной, а зависящей от напряжения U, т. е.

C(U). Преобразователи, основанные на использовании нелинейной

зависимости емкости от напряжения в сегнетоэлектриках, называются

Емкостные датчики можно разделить на две основные группы - датчики

параметрические (недифференциальные) и датчики дифференциальные.

В схемах с параметрическими датчиками происходит преобразование

входной неэлектрической величины (угла поворота оси ротора датчика) в

электрическую выходную величину (частоту, ток, напряжение),


В схемах с дифференциальными датчиками, включенными в следящие

системы, с датчика снимается лишь сигнал рассогласования, который

становится равным нулю в установившемся состоянии следящей системы.

Примером параметрического емкостного датчика может служить

переменная емкость, включенная в контур лампового генератора (рис. 5) .

Здесь при изменении угла поворота оси ротора изменяется емкость датчика и

меняется частота генератора, являющаяся выходной величиной.

Рис. 5 Емкостной датчик, включенный в контур с генератором

Рис. 6 Емкостной датчик, включенный в цепь переменного тока

На рис. 6 приведен другой пример использования параметрического

датчика. В этом случае с изменением значения емкости С меняется ток через

нее, а следовательно, и напряжение на выходе системы, падающее на

сопротивлении нагрузки R , которое и является выходной величиной.

Подобные системы являются разомкнутыми системами регулирования.

Основным недостатком этих схем является зависимость значения выходной

величины от параметров источника питания датчика, усилителя и других

элементов схемы, а также от внешних условий. В самом деле, стоит


измениться напряжению или частоте генератора, питающего датчик (рис. 6),

как напряжение, частота и фаза, являющиеся выходными величинами и

Этих недостатков нет у схем с дифференциальными емкостными

датчиками, включенными в замкнутую систему автоматического

регулирования. В этих схемах выходной величиной является угол поворота

оси отрабатывающего двигателя или другой оси, связанной с нею через

редуктор. Одной из основных характеристик такой системы является

чувствительность, показывающая, при каком минимальном отклонении

чувствительного элемента система отработки приходит в действие. Внешние

факторы - напряжение питания, температура окружающей среды и т. п. -

влияют лишь на чувствительность системы; на точность системы они могут

влиять лишь в той мере, в какой она связана с чувствительностью.

Это значит, что схемы с емкостными дифференциальными датчиками,

так же как и любые мостовые нулевые схемы с линейными относительно

частоты и напряжения сопротивлениями в плечах, предъявляют значительно

меньшие требования к стабильности источника питания.

Рис. 7 Мостовая схема с емкостным дифференциальным датчиком

В простейшем случае дифференциальный емкостный датчик

представляет собой две последовательно включенные емкости, построенные

конструктивно таким образом, что при увеличении одной из них другая

уменьшается. Эти две емкости могут быть включены в мостовую схему


(рис. 7), где два других плеча - реостатные. Если при этом напряжение,

снимаемое с диагонали моста, использовать в качестве сигнала для следящей

системы, перемещающей щетку потенциометра R в сторону уменьшения

рассогласования, то всегда в установившемся состоянии следящей системы

это напряжение u=0 в этом случае справедливо соотношение

Отсюда следует, что в схемах с дифференциальными емкостными

датчиками с воздушным диэлектриком показания отрабатывающего органа

(например, положение стрелки указателя) не зависят ни от состава газа, ни от

наличия в нем влаги (не выпадающей в виде капель), так как для обеих

емкостей, составляющих дифференциальный датчик, меняется одинаково.

Для недифференциальных же схем такое влияние может наблюдаться, хотя и

в небольших пределах, так как для воздуха с влажностью 0% = l.0006, а для

воздуха с влажностью 100% при t=+20°С =l.0008. В этих схемах эта

величина составит соответственно погрешность примерно 0,02%, в то время

как от некоторых систем с емкостными дифференциальными датчиками

В емкостных преобразователях емкость С может меняться или за счет

изменения параметров конденсатора Dd, Ds, De. При этом выполняются

функции преобразования неэлектрических величин в изменение емкости или

производится модуляция емкости, что имеет место в емкостных

При работе преобразователя последовательно с его емкостью С

включается сопротивление R (см. рис. 3), специально предусмотренное или

представляющее собой сопротивление подводящих проводов. В зависимости

от соотношения сопротивлений R и 1/jWC преобразователь будет работать в

разных режимах. Если R >> 1/WC или RWC >> 1, то U Ur и заряд

конденсатора q CU = const, т. е. преобразователь работает в режиме

заданного заряда. В этом случае U =q/C=C U/(C + Csin t) U[l-( C/C )sin t] и

В контактных датчиках механическое перемещение преобразуется в замкнутое или разомкнутое состояние контактов, управляющих электрическими цепями. При замыкании контактов активное сопротивление между ними изменяется от °° до небольшого значения. Контакты являются самой важной частью этих датчиков. Чем меньше мощность, разрываемая этими контактами, тем меньше обгорает контакт. Эти датчики широко… Читать ещё >

Измерительные преобразователи (датчики) ( реферат , курсовая , диплом , контрольная )

Преобразователи активного сопротивления

В контактных датчиках механическое перемещение преобразуется в замкнутое или разомкнутое состояние контактов, управляющих электрическими цепями. При замыкании контактов активное сопротивление между ними изменяется от °° до небольшого значения. Контакты являются самой важной частью этих датчиков. Чем меньше мощность, разрываемая этими контактами, тем меньше обгорает контакт. Эти датчики широко применяются при автоматическом контроле и сортировке по линейным размерам изделий с точностью до 1 мм [4, 8, 21].

Реостатные и потенциометрические датчики служат для преобразования углового или линейного перемещения в электрический сигнал [4, 8, 21]. Конструктивно они состоят из изоляционного каркаса, намотанной на него плотно тонкой проволоки и ползунка. Каркас изготовляют из текстолита, пластмассы или алюминиевых сплавов, покрытых изоляционным лаком или оксидной пленкой. Проволока должна иметь большое удельное сопротивление, малый температурный коэффициент и диаметр порядка сотых долей мм. Используют проволоку из константана, манганина, нихрома.

На рис. 2.1 представлен реостатный датчик, приводимый в движение осью манометра или другого первичного измерителя. Реостатные датчики могут соединяться с прибором, имеющим сравнительно большой.

Реостатный датчик вращающий момент.

Рис. 2.1. Реостатный датчик вращающий момент (манометры, поплавковые уровнемеры и т. п. ). Как видно из рис. 2.1, датчик состоит из проволоки (обычно манганиновой или константановой), намотанной на текстолитовое или пластмассовое основание 1. Подвижный контакт 2 приводится в действие от первичного измерителя 4. Электрическое соединение подвижного контакта с сетью производится через спиральную пружинку 3.

Датчики на рис. 2.2, а, б измеряют угловые перемещения, на рис. 2.2, в — линейные перемещения. На рис. 2.2, г представлен датчик силы. Он представляет собой набор графитовых дисков, собранных в столбик, к которым через контактные диски и упоры приложены силы. Под воздействием приложенной силы диски плотнее прижимаются друг к другу. Сопротивление датчика уменьшается. На рис. 2.2, д представлена характеристика действия этого датчика. На рис 2.2, е показан датчик уровня электропроводной жидкости. Он представляет собой набор активных сопротивлений. Контакты от них размещаются внутри трубки с жидкостью. Чем больше сопротивлений включится параллельно столбу жидкости, тем меньше сопротивление датчика (6, "https://referat.bookap.info").

Тензодатчики (рис. 2.2, ж) предназначены для измерения статических или динамических деформаций в деталях оборудования, станках, мостах и т. д. В основу работы положено свойство металла изменять свое электрическое сопротивление под действием приложенных сил. Широко применяются проволочные, фольговые, полупроводниковые тензодатчики. Рассмотрим принцип действия металлического тензодатчика. Внутри слюдяной пластинки заделывается тонкая проволока диаметром от 0,02 до 0,05 мм. Слюдяная пластинка специальным клеем плотно наклеивается на испытуемый объект. Основными характеристиками датчика являются номинальное сопротивление (R = 5(Н400 Ом), длина базы 1б (15-^45 мм), коэффициент тензочувствительности.

Омические преобразователи.

Рис. 2.2. Омические преобразователи:

о — с бесступенчатой многооборотной намоткой; 6 — с секционированной намоткой; г — угольный датчик усилия; д — характеристика последнего; е — датчик уровня электропроводных жидкостей; ж, з — проволочные тензопробразователи; и — фольговый тензопреобразователь.

К = -. Для большинства металлических тензодатчиков К = 1,8+2,5.

Важной характеристикой также является номинальный ток/ном (~ 30 мА). К достоинствам проволочных тензодатчиков относятся: линейность характеристики, низкая стоимость. В фольговых датчиках используется решетка из тонких полосок металлической фольги толщиной в несколько мкм. В полупроводниковых тензодатчиках используются германий, кремний, арсенид галлия. У таких датчиков К ~ 200,1б ~ 310 мм, RH0M ~ ~ 1000 Ом. К достоинствам таких датчиков относится большой коэффициент тензочувствительности. К недостаткам относятся: малые гибкость, механическая прочность, большой разброс характеристик, нелинейность.

Ни одна система управления не может работать без информации о состоянии объекта управления и его реакции на управляющее воздействие. Элементом систем, обеспечивающим получение такой информации, является измерительный преобразователь-датчик.

Число типов датчиков значительно превосходит число измеряемых величин, так как одну и ту же физическую величину можно измерять различными методами и датчиками разных конструкций.

Для большинства датчиков характерно измерение электрическими методами не только электрических и магнитных, но и других физических величин. Такой подход обусловлен достоинствами электрических измерений, в виду того, что электрические сигналы можно просто и быстро передавать на большие расстояния, электрические величины легко, быстро и точно преобразуются в цифровой код, позволяют обеспечить высокую точность и чувствительность.

В качестве классификационных признаков датчиков можно принять многие характеристики: вид функции преобразования; род входной и выходной величины; принцип действия; конструктивное исполнение.

По виду используемой энергии датчики можно подразделить на электрические, механические, пневматические и гидравлические. В зависимости от вида выходного сигнала: аналоговые, дискретные, релейные, с естественным или унифицированным выходным сигналом.

По характеру преобразования входной величины в выходную: параметрические, генераторные, частотные, фазовые.

По виду измеряемой физической величины: линейных и угловых перемещениях, давления, температуры, концентрации веществ и т.д.

Принцип действия параметрических преобразователей заключается в преобразовании неэлектрических входных величин в параметры электрических цепей: сопротивление R, индуктивность L, емкость С, взаимоиндуктивность М. Для питания этих преобразователей требуются внешние источники. К таким датчикам относятся: резистивные, индуктивные, трансформаторные, емкостные преобразователи.

Генераторные преобразователи преобразуют входные величины в ЭДС. Они не требуют энергии дополнительных источников питания.

Это индукционные, термоэлектрические, пьезоэлектрические, фотоэлектрические преобразователи.

Фазовые и частотные преобразователи могут быть как параметрическими, так и генераторными.

Резистивные измерительные преобразователи

Реостатные — выполнены в виде реостата, подвижной контакт которого перемещается под воздействием входной измеряемой величины. Чаще всего реостатный датчик включается в измерительную систему по схеме потенциометра, их иногда называют потенциометрическими датчиками.

Емкостные преобразователи

. Емкостные датчики можно разделить на две основные группы - датчики параметрические (недифференциальные) и датчики дифференциальные. В схемах с параметрическими датчиками происходит преобразование входной неэлектрической величины (угла поворота оси ротора датчика) в электрическую выходную величину .

Выходной величиной датчика является электрическое сопротивление функционально связанное с положением подвижного контакта. Такие датчики служат для преобразования угловых или нелинейных перемещений в соответствующее изменение сопротивления, тока, напряжения.

Они также могут быть использованы для измерения давления, расхода, уровня. Их часто используют также в качестве промежуточных преобразователей неэлектрических величин в электрические.

В устройствах автоматики широко применяются проволочные реостатные преобразователи, которые отличаются высокой точностью и стабильностью функции преобразования, имеют малый температурный коэффициент сопротивления (ТКС).

К недостаткам относятся низкая разрешающая способность, сравнительно невысокое сопротивление (до десятков кОм), ограниченная возможность применения на переменном токе, обусловленная остаточными индуктивностью и емкостью намотки.

Обмотку выполняют изолированным проводом виток к витку или с заданным шагом. В качестве провода применяют константан, манганин.

Датчик данного типа не реагируют на знак входного сигнала, работают как на постоянном, так и на переменном токе.

Тензорезисторы. В основе их работы лежит тензоэффект, заключающийся в изменении активного сопротивления проводниковых и полупроводниковых материалов при их механической деформации.

Характеристикой тензоэффекта материала служит коэффициент тензочувствительности Кт, определяемый как отношение изменения сопротивления к изменению длины проводника

Константан — Кт = 2

Тензорезисторы используют для измерения давления жидкости и газов, при измерении упругих деформаций материалов: давлений изгибов, скручивания.

В качестве тензорезистивного материала можно использовать металлы с малым ТКС: манганин, константан, нихром, ртуть, высокотемпературные сплавы, полупроводниковые материалы: германий, кремний. Наибольшее распространение получили тензорезисторы из металла. Они разделяются на проволочные и фольговые, последние более совершенны.

Угольные преобразователи. Их принцип действия основан на изменении контактного сопротивления между частицами угля при изменении давления. Их применяют для измерения усилий, давлений, малых перемещений. Различают угольные столбики и тензолиты.

Первые представляют собой набор из 10-15 отшлифованных шайб, изготовленных из электродных углей.

Характеристика угольного преобразователя не линейна, он имеет переменную чувствительность. Нестабильны в работе, характеристики зависят от температуры и влажности окружающей среды, качества подготовки поверхностей.

Вторые имеют малые размеры и массу. Их применяют для измерения быстроменяющихся и ударных напряжений в движущихся деталях небольшого размера, при этом они работают как на растяжение, так и на сжатие. Коэффициент чувствительности тензолитовых преобразователей больше, чем у тензорезисторов, и составляет К = 15 20.

Она выполняется в виде полосок, состоящих из смеси графита, сажи, бакелитового лака и других компонентов. Эти полоски наклеиваются на испытуемую деталь.

Резистивные преобразователи несмотря на присущие им недостатки до настоящего времени находят широкое применение.

Достоинство: независимость его точности от питающего напряжения

Для повышения чувствительности желательно увеличивать напряжение питания U0. Однако при этом растет мощность рассеяние датчика.

Емкостные преобразователи. Принцип действия основан на изменении емкости конденсатора под воздействием входной преобразуемой величины

где — относительная диэлектрическая проницаемость диэлектрика;

0 — диэлектрическая проницаемость вакуума;

  • S — площадь пластины;
  • толщина диэлектрика или расстояния между пластинами.

Емкостные датчики используют для измерения угловых и линейных перемещений, линейных размеров, уровня, усилий, влажности концентрации и др.

В емкостных плоскопараллельных датчиках изменяется плоскость перекрытия S (перемененная площадь перекрытия) статическая характеристика линейна.

В емкостных преобразователях с переменным воздушным зазором характеристика не линейна.

Преобразователи и изменением диэлектрической проводимости среды между электродами широко используются для измерения уровня жидких и сыпучих веществ, анализа состава и концентрации веществ в химической, нефтеперерабатывающей промышленности, для счета изделий, охранной сигнализации. Они имеют линейную статическую характеристику.

Емкость измерительных преобразователей в зависимости от конструктивных особенностей колеблется от десятых долей до нескольких тысяч пикофарад, что приводит к необходимости использовать для питания датчиков напряжения повышений частоты Гц.

Это существенный недостаток подобных преобразователей.

Диэлектрические свойства среды иногда изменяются под воздействием температуры или механических усилий. Эти эффекты также используются для создания соответствующих измерительных преобразователей.

Изменение проницаемости под действием температуры описывается выражением

где т — диэлектрическая проницаемость материала при температуре Т; 0 — диэлектрическая проницаемость при температуре Т0;

Аналогичный вид имеет и зависимость от приложенного к нему усилия Р

где — чувствительность материала к относительному изменению диэлектрической проницаемости

Начальная емкость преобразователей тем больше, чем меньше зазор между электродами. Однако уменьшение зазора ограничивается диэлектрической прочностью межэлектродной среды и наличием силы электростатического притяжения пластин.

Погрешности емкостных преобразователей в основном определяются влиянием температуры и влажности на геометрические размеры и диэлектрическую проницаемость среды. Они являются практически безинерционными элементами.

К достоинствам относятся: простота конструкции, малые размеры и масса, высокая чувствительность, большая разрешающая способность при малом уровне входного сигнала, отсутствие подвижных токосъемных контактов, высокое быстродействие, возможность получения необходимого закона преобразования за счет выбора соответствующих конструктивных параметров, отсутствие влияния входной цепи на измерительную.

Недостатки: низкий уровень выходной мощности сигнала, нестабильность характеристик при изменении параметров окружающей среды, влияние паразитных, емкостей. Для уменьшения потери мощности выходного сигнала согласную нагрузку с внутренним сопротивлением измерительной системы, т.е. схему настраивают на резонанс.

Реактивное сопротивление нагрузки выбирают равным по значению и обратным по знаку внутреннему сопротивлению датчика.

Такие преобразователи составляют большую группу преобразователей для измерения различных физических величин и в зависимости от принципа действия бывают параметрическими и генераторными.

К параметрическим относятся те, в которых преобразуется выходное механическое воздействие в изменение параметров магнитной цепи — магнитной проницаемости , магнитного сопротивления RМ, индуктивность обмотки L.

К генераторным — преобразователи индукционного типа, использующие закон электромагнитной индукции для получения выходного сигнала. Они могут быть выполнены на базе трансформаторов и электрических машин. Последняя группа — это тахогенераторы, сельсины, поворотные трансформаторы.

Значения L и М можно изменять, уменьшая или увеличивая зазор , изменяя положение якоря, изменяя сечение S магнитного потока, поворачивая якорь относительно неподвижной части магнитной цепи, вводя в воздушный зазор пластину из ферромагнитного материала, соответственно уменьшая 0 и магнитное сопротивление зазора.

Измерительные преобразователи, преобразующие естественную входную величину в виде перемещения в изменение индуктивности называют индуктивными.

Преобразователи, преобразующие перемещение в изменение взаимоиндуктивности М, принято называть трансформаторными.

  • В трансформаторных преобразователях изменение взаимоиндуктивности М можно получить не только при изменении магнитного сопротивления, но и при перемещении одной из обмоток вдоль или поперек магнитной цепи.

Если к замкнутой магнитной цепи преобразователя приложить сжимающие, растягивающие или скручивающие усилия, то под их воздействием изменится магнитная проницаемость 0 сердечника, что приведет к изменению магнитного сопротивления сердечника

и соответственно к изменению L или М.

Преобразователи, основанные на изменении магнитного сопротивления, обусловленного изменением магнитной проницаемости ферромагнитного сердечника под воздействием механической деформации, называются магнитоупругими. Их широко применяют для измерения сил, давлений, моментов.

Если в зазоре постоянного магнита, или электромагнита, через обмотку которого пропускается постоянный ток, перемещать обмотку, то согласно закону электромагнитной индукции в обмотке появляется ЭДС, равная

где — скорость изменения магнитного потока, сцепляющегося с витками обмотки W.

Поскольку скорость изменения магнитного потока определяется скоростью перемещения обмотки в воздушном зазоре, то преобразователь имеет естественную входную величину в виде скорости линейных или угловых перемещений, а выходная в виде индуктируемой ЭДС. Такие преобразователи называют индукционными.

электрический датчик преобразователь измерение

Выходной сигнал получается в виде переменного напряжения, снимаемого с Rн. Питание от сети. Зазор меняется под воздействием перемещения якоря. Индуктивность обмотки L является функцией размера зазора.

Индуктивность обмотки и ток в ней могут изменяться за счет изменения зазора или его площади.

Погрешность определяется стабиль-ностью напряжения и частоты источника питания, влиянием температуры на актив-ное сопротивление обмотки и размеры рабочего зазора.

Чувствительность является нелинейной функцией

Анализ принципа действия и рассмотрения статической характеристики однотактного измерительного индуктивного преобразователя позволяет выявить его следующие недостатки:

  • фаза выходного сигнала не зависит от направления перемещения якоря;
  • для измерения перемещения в обоих направлениях необходим начальный зазор 0, что приводит к наличию остаточного (начального значения) напряжения Uвых.о;

— на якорь постоянно действует электромагнитная сила, стремящая притянуть якорь. При большой мощности выходного сигнала она может принимать существенные значения, что требует введение компенсирующих сил, создаваемых противодействующими пружинами, что усложняет устройство.

Из-за указанных недостатков однотактные индуктивные датчики используют только в качестве вспомогательных элементов.

Непосредственно для измерений применяют двухтактные датчики, которые включают по дифференциальной или мостовой схемам.

Дифференциальная схема включения индуктивного преобразователя требует использование трансформатора TV со средней точкой.

Оба сердечника идентичны по конструктивным и магнитным характеристикам. Расположенные на них обмотки W1 и W2 имеют также одинаковые параметры и включены последовательно — встречно.

В такой схеме ток нагрузки равен разности токов

При отсутствии входного сигнала зазоры 1 = 2. Равны и индуктивности L1 = L2, определяемые размерами зазоров. Выходное напряжение равно нулю.

При перемещении якоря на расстояние Х 1 и 2 становятся неравными, что приводит к изменению индуктивностей, а, следовательно, к дисбалансу токов I1 и I2, в результате через Rн течет ток Iн и появляется выходное напряжение.

Если изменяется направление перемещения якоря, фаза выходного напряжения сдвигается на 1800 относительно напряжение питания, являющегося опорным.

Читайте также: