Рецепция пахучих веществ реферат

Обновлено: 02.07.2024

Сигнализация у насекомых, основанная на обонятельной ре­цепции, установлена однозначно; фигурирующие иногда в лите­ратуре утверждения об электромагнитной сигнализации у насе­комых [44] ошибочны. Ряд феромонов удалось выделить в чис­том виде, в частности, половой аттрактант самки тутового шелкопряда (Bombyx mori), названный бомбиколом. Бутенандт выделил 4 мг бомбикола из 313 000 бабочек и определил его строение [45—48]. Он нашел формулу бомбикола

Причем группировка атомных групп относительно сопряженных двойных связей имеет вид

Что же воспринимается при взаимодействии молекул паху­чего вещества с обонятельными рецепторами? Ответ на этот вопрос можно получить, не входя в рассмотрение устройства самих рецепторов, различных, скажем, для насекомых и млеко­питающих.

Высокая чувствительность обонятельных рецепторов свиде­тельствует о том, что запах переносится молекулами. Пороговые концентрации пахучих веществ, воспринимаемых человеком, со­ставляют 4-Ю-7 мг/л для скатола, 4,4-Ю-8 мг/л для этилмер - каптана и 5-Ю-9 мг/л для тринитробутилтолуола [50]. Для того чтобы обладать запахом, вещество должно быть достаточно летучим и растворяться в воде и в липидах — окончания нерв­ных волокон покрыты водяной пленкой, и для проникновения в нервные клетки вещество должно пройти сквозь клеточные мембраны (см. гл. 3).

Было выдвинуто предположение, что рецепция основана на резонансе атомных колебаний молекул пахучего вещества и ка­ких-то молекулярных структур рецептора. Эта, так называемая вибрационная, или квантовая, теория запаха [43, 51—53, 146] исходит из аналогии рецепции запаха со зрительной и слуховой рецепцией. При зрительной рецепции воспринимаются электро­магнитные колебания в видимой области спектра (см. гл. 7), при слуховой — механические, акустические, колебания. Почему бы обонятельным рецепторам не реагировать на колебания мо­лекул, частоты которых лежат в инфракрасной-области спектра?

Несмотря на тщательные изыскания, эту теорию нельзя счи­тать аргументированной. Характер запаха и его интенсивность плохо коррелируют с колебательным спектром вещества. Веще­ства, содержащие различные атомные группы и поэтому обла­дающие сильно разнящимися наборами колебательных частот, зачастую имеют сходные запахи. С другой стороны, запах и по­роговая концентрация вещества могут меняться при сохранении одних и тех же атомных групп в молекулах, но при изменении их положения (например, ОН-группы [54]). Оптические анти­поды имеют тождественные спектры, но в ряде случаев различ­ные запахи.

Мембраны обонятельной слизистой носа человека окрашены в желтый или коричневый цвет обонятельным пигментом. Райт предположил, что обонятельный пигмент относится к кароти - ноидам и ответствен за резонансные колебательные взаимодей­ствия. Эти утверждения также ничем не доказаны.

Колебательная теория противоречит элементарным термоди­намическим соображениям. Носовая полость практически замк­нута, это своего рода черное тело, и если в него попадают моле­кулы, то их излучение должно находиться в термодинамическом равновесии со стенками полости. Следовательно, колебания в такой системе не могут восприниматься.

Монкрифф предположил, что рецепция запаха основана на узнавании формы молекулы, на стерическом соответствии между структурой молекулы пахучего вещества и структурой некоторой полости в рецепторной клетке [55]. Руководствуясь этой идеей, Эймур провел исследования запахов множества ор­ганических соединений. Восприятие запаха человеком субъек­тивно в смысле его оценки как приятного или неприятного, в смысле установления сходства между запахами. Тем не менее, Эймуру удалось систематизировать запахи [56, 57]. Согласно Эймуру, имеется семь первичных запахов, а именно (в скобках приведены примеры веществ):

Едкий, острый (муравьиная кислота),

Сопоставление структур веществ, обладающих этими запа­хами, показало, что запах определяется не химическим соста­вом, а формой и размерами молекул. Так, вещества, характери­зуемые камфорным запахом, имеют форму, близкую к сфериче­ской с диаметром порядка 7 А. В эту группу попадают моле­кулы с сильно разнящимся химическим строением, например, камфора СюН160, гексахлорэтан С2СІ6, дихлоридэтиламид тио - фосфорной кислоты C2H6NC12SP, циклооктан СзНю. Вещества с мускусным запахом имеют форму диска с диаметром около 10 А. Для веществ с мятным запахом помимо специфической формы необходимо наличие группы атомов, способной образо­вать водородную связь в определенном положении.

На рис. 1.8 показаны структуры молекул и формы полостей, которые этим структурам соответствуют. Едкий и гнилостный запахи определяются, по-видимому, не столько структурой, сколько способностью соответствующих молекул приобретать заряд — электрофильные вещества с малыми размерами моле­кул имеют едкий запах (НСООН, S02, С12 и т. д.), нуклеофиль - ные — гнилостный (H2S). Сложные запахи возникают в тех слу­чаях, когда разные группы одного и того же вещества попадают в несколько различных полостей. Одно и то же вещество может иметь различные первичные запахи, если его молекулы могут разместиться в полостях различных типод^ Эти положения сте - реохимической теории Эймура установлены на основании ряда фактов, прямо или косвенно свидетельствующих в ее пользу. Наличие различных рецепторных клеток доказано с помощью микроэлектродной техники. Исходя из теории Эймура, удалось провести направленный синтез пахучего вещества путем соеди­нения нескольких веществ, обладавших первичными запахами, соответствующими структуре их молекул. Убедительные аргу­менты в пользу теории дают опыты, в которых изменение запаха

РЕЦЕПЦИЯ ЗАПАХА

Рис, 1,8, Структуры молекул и ячеек в рецепторних клетках для семи основ* ных запахов по Эймуру.

Достигалось изменением формы молекулы в результате замены водорода на метильную группу.

Лафор и Дравниекс предложили эмпирическую формулу, связывающую порог восприятия запаха с физико-химическими параметрами, характеризующими растворимость вещества в воде [58]. Эти параметры в свою очередь связаны с молярным объемом вещества, с его способностью образовывать водород­ные связи и с поляризуемостью молекул. Специфичность про­странственной структуры в этих параметрах не проявляется. Непосредственного физического смысла предложенная формула не имеет, и полученные корреляции оставляют желать лучшего. Можно думать, что найденные совпадения определяются зави­симостью выбранных параметров от пространственного строения молекул и их способности вступать в слабые взаимодействия с молекулярной структурой рецепторных клеток (см. также стр. 150).

Таким образом, сейчас можно считать, что обонятельная ре­цепция основана на прямом узнавании молекулярной структуры, реализуемом посредством слабых взаимодействий. Детальный механизм процесса остается пока неизвестным (см. также [145]).

Конечно, существенна не только пространственная структура, но и физические характеристики молекул, ответственные за ее слабые взаимодействия с рецепторными полостями. Несомненно, что важную роль должны играть поляризуемость и дипольный момент молекулы. Так, пиридин C5H5N, имеющий острый не­приятный запах, сходен по пространственной структуре со слабо пахнущим бензолом С6Н6. Но пиридин — полярное, а бен­зол — неполярное вещество.

Классификация пахучих веществ и запахов. Структурно-функциональная характеристика обонятельного анализатора. Особенности кодирования обонятельной информации. Положение о многоточечных взаимодействиях молекул пахучих веществ и рецептивных участков.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 29.04.2017
Размер файла 96,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Карагандинский Государственный Медицинский Университет

На тему: "Структурно-функциональная характеристика обонятельного анализатора"

Выполнил: студент 2 курса, гр. 2-036 ОМ

Проверил: преподаватель Утибаева Р.А.

1. Обонятельный анализатор

2. Классификация пахучих веществ и запахов

3. Структурно-функциональная характеристика обонятельного анализатора

4. Восприятие запахов

5. Особенности кодирования обонятельной информации

6. Особенности адаптации обонятельного анализатора

1. Обонятельный анализатор

С участием обонятельного анализатора осуществляется ориентация в окружающем пространстве и происходит процесс познания внешнего мира. Он оказывает влияние на пищевое поведение, принимает участие в апробации пищи на съедобность, в настройке пищеварительного аппарата на обработку пищи (по механизму условного рефлекса), а также - на оборонительное поведение, помогая избежать опасности благодаря способности различать вредные для организма вещества.

2. Классификация пахучих веществ и запахов

Первая группа пахучих веществ - это ольфактивные вещества, которые раздражают только обонятельные клетки. К ним относятся запах гвоздики, лаванды, аниса, бензола, ксилола и др. Вторая группа - это такие вещества, которые одновременно с обонятельными клетками раздражают свободные окончания тройничных нервов в слизистой оболочке носа. К этой группе относятся запах камфары, эфира, хлороформа и др. Единой и общепринятой классификации запахов не существует. Мы не можем охарактеризовать запах, не называя вещества или предмета, которому они свойственны. Так, мы говорим о запахе камфары, запахе роз, лука, в некоторых случаях обобщаем запахи родственных веществ или предметов, например цветочный запах, фруктовый и т.п. Считают, что возникающее многообразие различных запахов является результатом смешения "первичных запахов". На остроту обоняния влияют многие факторы, в частности голод, который повышает остроту обоняния; беременность, когда возможно не только обострение обонятельной чувствительности, но и ее извращение.

обонятельный анализатор пахучий рецептивный

3. Структурно-функциональная характеристика обонятельного анализатора

Периферический отдел обонятельного анализатора - это первично-чувствующие рецепторы, которые являются окончаниями дендрита так называемой нейросекреторной клетки. Верхняя часть дендрита каждой клетки несет 6 - 12 ресничек, а от основания клетки отходит аксон (рис. 2.13).

Рис. Обонятельный рецептор

Реснички, или обонятельные волоски, погружены в жидкую среду - слой слизи, вырабатываемой боуменовыми железами. Наличие обонятельных волосков значительно увеличивает площадь контакта рецептора с молекулами пахучих веществ. Движение волосков обеспечивает активный процесс захвата молекул пахучего вещества и контакта с ним, что лежит в основе целенаправленного восприятия запахов. Рецепторные клетки обонятельного анализатора погружены в обонятельный эпителий, выстилающий полость носа, в котором кроме них имеются опорные клетки, выполняющие механическую функцию и активно участвующие в метаболизме обонятельного эпителия. Часть опорных клеток, располагающихся вблизи базальной мембраны, носит название базальных.

Проводниковый отдел. Первым нейроном обонятельного анализатора следует считать нейросенсорную или нейрорецепторную клетку. Аксон этой клетки образует синапсы, называемые гломерулами, с главным дендритом митральных клеток обонятельной луковицы, которые представляют второй нейрон. Аксоны митральных клеток обонятельных луковиц образуют обонятельный тракт, который имеет треугольное расширение (обонятельный треугольник) и состоит из нескольких пучков. Волокна обонятельного тракта отдельными пучками идут в передние ядра зрительного бугра. Некоторые исследователи считают, что отростки второго нейрона идут прямо в кору большого мозга, минуя зрительные бугры.

Эфферентный контроль осуществляется с участием перигломерулярных клеток и клеток зернистого слоя, находящихся в обонятельной луковице, которые образуют эфферентные синапсы с первичными (Д1) и вторичными (Д2) дендритами митральных клеток. При этом может быть эффект возбуждения или торможения афферентной передачи.

Некоторые эфферентные волокна приходят из контралатеральной луковицы через переднюю комиссуру. Нейроны, отвечающие на обонятельные стимулы, обнаружены в ретикулярной формации, имеется связь с гиппокампом и вегетативными ядрами гипоталамуса. Связь с лимбической системой объясняет присутствие эмоционального компонента в обонятельном восприятии (гедонические компоненты ощущения.

Центральный, или корковый, отдел обонятельного анализатора локализуется в передней части грушевидной доли коры в области извилины морского коня.

4. Восприятие запахов

Молекулы пахучего вещества взаимодействуют со специализированными белками, встроенными в мембрану обонятельных волосковых нейросенсорных рецепторных клеток. При этом происходит адсорбция раздражителей на хеморецепторной мембране. Согласно стереохимической теории этот контакт возможен в том случае, если форма молекулы пахучего вещества соответствует форме рецепторного белка в мембране (как ключ и замок). Слизь, покрывающая поверхность хеморецептора, является структурированным матриксом. Она контролирует доступность рецепторной поверхности для молекул раздражителя и способна изменять условия рецепции.

Современная теория обонятельной рецепции предполагает, что начальным звеном этого процесса могут быть два вида взаимодействия: первое - это контактный перенос заряда при соударении молекул пахучего вещества с рецептивным участком и второе - образование молекулярных комплексов и комплексов с переносом заряда. Эти комплексы обязательно образуются с белковыми молекулами рецепторной мембраны, активные участки которых выполняют функции доноров и акцепторов электронов.

Существенным моментом этой теории является положение о многоточечных взаимодействиях молекул пахучих веществ и рецептивных участков. Вслед за этим взаимодействием происходит изменение формы белковой молекулы, активизируются натриевые каналы, происходит деполяризация мембраны и генерируется рецепторный потенциал в области микроворсинок. В обонятельной нейрорецепторной клетке при ее возбуждении образуется медиатор, который, выделяясь в синаптическую щель, ведет к возникновению возбуждающего постсинаптического потенциала и возникновению затем потенциала действия во внесинаптических отделах нервного волокна, в импульсной форме возбуждение передается в другие структуры обонятельного анализатора.

5. Особенности кодирования обонятельной информации

При действии пахучих веществ в очень малых концентрациях возникающее ощущение неспецифично, а в более высоких концентрациях выявляется запах и происходит его идентификация. Поэтому следует различать поры выявления запаха и поры его распознавания. В волокнах обонятельного нерва при электрофизиологическом исследовании обнаружена непрерывная импульсация, обусловленная подпороговым воздействием пахучих веществ. При пороговой и сверхпороговой концентрациях различных пахучих веществ возникают разные типы (паттерны) электрических импульсов, которые приходят одновременно в различные участки обонятельной луковицы. При этом в обонятельной луковице создается своеобразная мозаика из возбужденных и невозбужденных участков. Предполагают, что это лежит в основе кодирования информации о специфичности запахов.

6. Особенности адаптации обонятельного анализатора

Адаптация к действию пахучего вещества в обонятельном анализаторе зависит от скорости потока воздуха над обонятельным эпителием и концентрации пахучего вещества. Обычно адаптация проявляется по отношению к одному запаху и может не затрагивать другие запахи.

Различают следующие нарушения обоняния:

2) гипосмия - понижение;

3) гиперосмия - повышение обонятельной чувствительности;

4) паросмия - неправильное восприятие запахов;

5) нарушение дифференцировки;

6)обонятельные галлюцинации, когда возникают обонятельные ощущения при отсутствии пахучих веществ и обонятельная агнозия, когда человек ощущает запах, но его не узнает. С возрастом в связи с преобладанием инволютивных процессов наблюдаются в основном снижение обонятельной чувствительности, а также другие виды функциональных расстройств обоняния.

Подобные документы

Понятие, строение, функция сенсорной системы. Кодирование информации в ней. Строение и принцип работы вкусовой и обонятельной сенсорных систем. Опорная схема проводящих путей вкусового и обонятельного анализатора. Общий план строения сенсорных систем.

контрольная работа [348,8 K], добавлен 09.10.2014

Строение обонятельного анализатора. Обонятельный эпителий как особая эпителиальная ткань носовой полости, участвующая в восприятии запаха. Корковый обонятельный центр. Влияние запахов на человека. Феромоны, их место и важная роль в жизни человека.

реферат [212,9 K], добавлен 19.01.2012

Строение и основная функция обонятельного анализатора и вкусовая рецепция рыб. Состав желчи и её роль в пищеварении. Основные функции печени. Афферентные, эфферентные и вставочные нейроны. Основные признаки возбуждения, торможения и раздражения рыб.

контрольная работа [1,6 M], добавлен 16.01.2010

Классификация органов дыхательной системы, закономерности их строения. Функциональная классификация мышц гортани. Структурно-функциональная единица легкого. Строение бронхиального дерева. Аномалии развития органов дыхания. Трахейно-пищеводные фистулы.

презентация [8,9 M], добавлен 31.03.2012

Понятие, строение и функции сенсорной системы, кодирование информации. Структурно-функциональная организация анализаторов. Свойства и особенности рецепторного и генераторного потенциалов. Цветовое зрение, зрительные контрасты и последовательные образы.

контрольная работа [838,6 K], добавлен 05.01.2015

Открытие Линды Бак и Ричарда Акселя. План организации и общие принципы строения обонятельной системы, ее возрастные изменения и патологии. Структура лимбической системы. Обновление нервных клеток. Механизм работы рецепторов обонятельного эпителия.

курсовая работа [1,2 M], добавлен 16.01.2014

Биологическая роль вкусовых ощущений. Детальная характеристика вкусового анализатора. Этапы первичного преобразования химической энергии вкусовых веществ в энергию нервного возбуждения вкусовых рецепторов. Особенности адаптации вкусовой чувствительности.

С помощью обонятельного анализатора осуществляется восприятие и анализ пахучих веществ, химических раздражителей внешней среды, а также принимаемой пищи. Благодаря функциям обонятельного анализатора человек ориентируется в окружающем пространстве, апробирует пищу на съедобность, уходит от опасности, отвергает вредные для него вещества, животные обеспечивают половую ориентацию.

Периферический отдел обонятельного анализатора расположен в задней части верхнего носового хода и представлен обонятельным эпителием, в состав которого входят обонятельные рецепторные клетки, количество которых у человека достигает 10 млн (у собаки – овчарки – около 200 млн), опорные и базальные клетки. Обонятельный эпителий покрыт сверху слоем слизи. Обонятельные рецепторные клетки – первичночувствующие. От верхней части клетки отходит дендрит, снабженный ресничками, погруженными в слой слизи. Движения ресничек обеспечивают процесс захвата молекулы пахучего вещества и контакта с ним (стереохимия пахучих веществ). Механизм обонятельной рецепции заключается в том, что молекула пахучего вещества взаимодействует со специализированными белками, встроенными в мембрану рецептора. Если форма молекулы воспринимаемого вещества соответствует форме рецепторного белка в мембране (как ключ к замку), тогда возможен контакт с этим веществом. Затем изменяется конфигурация молекулы белка, открываются натриевые каналы и возникает деполяризация мембраны рецепторной клетки. В результате генерируется рецепторный потенциал микроворсипок, а затем потенциал действия нервного волокна.

Существует классификация (Ж. Эймур, 1962) запахов, служащая практическим целям.Она выделяет семь основных, или первичных, запахов:камфароподобный, цветочный, мускусный, мятный, эфирный,гнилостный,острый.

Ко второй группе относятся смешанные вещества, которые раздражают не только обонятельные клетки, но и окончания тройничного нерва. Это запах камфары, эфира, хлороформа и др.

Адаптация к действию пахучего вещества происходит довольно медленно в течение 10 секунд или минут и зависит от продолжительности действия вещества, его концентрации и скорости потока воздуха (принюхивание).

Острота обоняния определяется порогом обонятельной чувствительности – это минимальное количество пахучего вещества, которое ощущается как соответствующий запах. Определение порогов обонятельной чувствительности проводится с помощью ольфактометрии.

На остроту обоняния влияют влажность и температура воздуха, состояние периферического отдела анализатора. Набухлость слизистой носа при насморке вызывает понижение остроты обоняния – гипоосмию или полную потерю обонятельной чувствительности – аносмию, которая наблюдается или при атрофии рецепторного аппарата, или при нарушении коркового отдела анализатора, с которым может быть связана и гиперосмия – повышение чувства обоняния, а также паросмия – неправильное восприятие запахов, обонятельные галлюцинации при отсутствии пахучих веществ – обонятельная агнозия. С возрастом отмечено снижение обонятельной чувствительности.

Проводящие пути Аксоны рецепторных клеток, объединившись в пучок, идут к обонятельной луковице, где находятся вторые нейроны. Волокна клеток обонятельной луковицы образуют обонятельный тракт, имеющий треугольное расширение и состоящий из нескольких пучков. Обонятельная луковица генерирует ритмические импульсы, частота которых изменяется при вдувании в нос различных пахучих веществ. Пучки обонятельного тракта проходят в различные структуры мозга: миндалину, гипоталамус (отвечает за эмоциональный компонент обонятельных ощущений), ретикулярную формацию, орбито-фронтальную кору, препериформную кору и периформную долю, в обонятельную луковицу противоположной стороны. Центральный отдел обонятельного анализатора находится в передней части грушевидной доли в области извилины морского коня (гиппокампа). Пахучие вещества воспринимаются также свободными окончаниями волокон тройничного нерва (V пара черепно-мозговых нервов), расположенными в слизистой носа. Так, вещества с резким запахом (аммиак) воспринимаются окончаниями тройничного нерва и могут вызвать остановку дыхания или защитные рефлексы (чихание). Эти рефлексы замыкаются на уровне продолговатого мозга.

Ароматерапия учитывает свойства отдельных запахов (например, лимона, жасмина, лаванды, розмарина и т. п.) и вырабатывает рекомендации их использования для повышения чувствительности сенсорных систем и работоспособности.В зависимости от пути попадания ароматических веществ в организм существуют особенности лечебного эффекта.

Характеристика обонятельной (ольфакторной) сенсорной системы (анализатора), осуществляющей восприятие запаха.

Обонятельная сенсорная система (обонятельный анализатор)

Определение понятия

Обонятельная (ольфакторная) сенсорная система , или обонятельный анализатор, — это нейросистема для распознавания летучих и водорастворимых веществ по конфигурации их молекул, создающая субъективные сенсорные образы в виде запахов.

Так же, как и вкусовая сенсорная система, обонятельная является системой химической чувствительности.

Функции обонятельной сенсорной системы (ОСС)
1. Детекция пищи на привлекательность, съедобность и несъедобность.
2. Мотивация и модуляция пищевого поведения.
3. Настройка пищеварительной системы на обработку пищи по механизму безусловных и условных рефлексов.
4. Запуск оборонительного поведения за счёт детекции вредные для организма вещества или веществ, связанных с опасностью.
5. Мотивация и модуляция полового поведения за счёт детекции пахучих веществ и феромонов.

Характеристика адекватного раздражителя

Адекватным раздражителем для обонятельной сенсорной системы является запах, который издаётся пахучими веществами.

Все пахучие вещества, обладающие запахом, должны быть летучими, чтобы поступать в носовую полость с воздухом, и водорастворимыми, чтобы проникать к рецепторным клеткам через слой слизи, покрывающей весь эпителий носовых полостей. Таким требованиям удовлетворяет огромное количество веществ, и поэтому человек способен различать тысячи всевозможных запахов. Важно, что при этом отсутствует строгое соответствие между химической структурой "душистой" молекулы и её запахом.
Большинство имеющихся теорий запахов основано на субъективном выделении нескольких типичных запахов в качестве основных (по аналогии с четырьмя вкусовыми модальностями) и объяснении всех остальных запахов их различными комбинациями. И только стереохимическая теория запахов основана на выявлении объективного соответствия между геометрическим сходством молекул пахучих веществ и присущим им запахом.
Построение трёхмерных моделей пахучих молекул на основе их предварительного изучения с помощью дифракции рентгеновских лучей и инфракрасной стереоскопии показало, что не только природные, но и искусственно синтезированные молекулы обладают запахом, соответствующим определенной форме молекул и отличным от запаха, присущего другой форме молекул. В связи с этим существует гипотеза о наличии семи разновидностей обонятельных молекулярных хеморецепторов, способных присоединять вещества, которые стереохимически им соответствуют. Среди нескольких сотен экспериментально исследованных пахучих молекул удалось выявить семь классов, в которых расположились вещества со сходной стереохимической конфигурацией молекул и сходным запахом: 1) камфарный, 2) эфирный, 3) цветочный, 4) мускусный, 5) перечной мяты, 9) едкий, 7) гнилостный. Эти семь запахов считаются первичными, а все остальные запахи объясняются различными сочетаниями первичных запахов.

В широко применяемой по настоящее время системе классификации запахов, предложенной голландским отоларингологом Хендриком Цваардемакером в 1895 году, все запахи сгруппированы в 9 классов:

I. Эфирные запахи ( фруктовые и винные) . К ним относятся запахи фруктовых эссенций, употребляемых в парфюмерии: яблочная, грушевая и т. п., а также пчелиный воск и эфиры.
II. Ароматические запахи (пряности, камфара) — запах камфоры, горького миндаля, лимона.
III. Бальзамические запахи (цветочные запахи; ваниль) — запах цветов (жасмин, ландыш и др.), ванилин и др.
IV. Амбро-мускусные запахи (мускус, сандаловое дерево) — запах мускуса, амбры. Сюда же относятся многие запахи животных и некоторых грибов.
V. Чесночные запахи (чеснок, хлор) — запах ихтиола, вулканизированной резины, вонючей смолы, хлора, брома, иода и др.
VI. Запахи пригорелого (жареный кофе, креозот) — запах поджаренного кофе, табачный дым, пиридин, бензол, фенол (карболовая кислота), нафталин.
VII. Каприловые, или псиные (сыр, прогорклый жир) — з апах сыра, пота, прогорклого жира, кошачьей мочи, секрета влагалища, спермы.
VIII. Противные, или отталкивающие (клопы, белладонна) — запахи некоторых наркотических веществ, получаемых из пасленовых растений (запах белены): к этой же группе запахов относится запах клопов.
IX. Тошнотворные (фекалии, трупный запах) — трупный запах, запах кала.

Из данного перечня видно, что запахи могут быть растительного, животного и минерального происхождения. Для растительных характерно благовоние, для животных - стойкость.

Система Крокера - Хендерсона включает только четыре основных запаха: ароматный, кислый, горелый и каприловый (или козлиный).

В стереохимической модели Эймура 7 основных запахов: камфарный, эфирный, цветочный, мускусный, перечной мяты, едкий и гнилостный.

"Призма запахов" Хеннинга определяет шесть основных видов запахов: ароматные, эфирные, пряные, смолистые, жженые и гнилостные - по одному в каждой вершине треугольной призмы.

Правда, пока что ни одна из существующих классификаций запахов так и не получила всеобщего признания.

Самая известная и распространённая в парфюмерии классификация была предложена в 1990 году Французским Парфюмерным Комитетом Comite Francais De Parfum. Согласно этой классификации все ароматы объединяются в 7 основных групп (семейств).

В ароматерапии применяется система субъективного описания используемых ароматов с помощью понятий из других сенсорных модальностей.

Структура обонятельного анализатора

Периферический отдел
Этот отдел начинается с первично-чувствующих обонятельных сенсорных рецепторов, которые являются окончаниями дендрита так называемой нейросенсорной клетки. По своему происхождению и строению обонятельные рецепторы являются типичными нейронами, способными к генерации и передаче нервных импульсов. Но дальняя часть дендрита такой клетки изменена. Она расширена в "обонятульную булаву", от которой отходят 6–12 (1-20 по другим данным) ресничек, в то время как от основания клетки отходит обычный аксон (см. рис.). У человека имеется около 10 млн обонятельных рецепторов. Кроме того, дополнительные рецепторы находятся помимо обонятельного эпителия также в дыхательной области носа. Это свободные нервные окончания сенсорных афферентных волокон тройничного нерва, которые также реагируют на пахучие вещества.

Рисунок обонятельного анализатора.: 1 - обонятельная луковица, 2 - афферентные нейроны номер два (митральные), 3 - решётчатая кость с проходящими через неё аксонами рецепторных клеток, 4 - обонятельный эпителий, содержащий рецепторные клетки, 5 - гломерулы с синаптическиами контактами, 6 - рецепторные обонятельные клетки (по совместительству - афферентные нейроны номер один).

Реснички, или обонятельные волоски, погружены в жидкую среду – слой слизи, вырабатываемой боуменовыми железами носовой полости. Наличие обонятельных волосков значительно увеличивает площадь контакта рецептора с молекулами пахучих веществ. Движение волосков обеспечивает активный процесс захвата молекул пахучего вещества и контакта с ним, что лежит в основе целенаправленного восприятия запахов. Рецепторные клетки обонятельного анализатора погружены в обонятельный эпителий, выстилающий полость носа, в котором кроме них имеются опорные клетки, выполняющие механическую функцию и активно участвующие в метаболизме обонятельного эпителия. Часть опорных клеток, располагающихся вблизи базальной мембраны, носит название базальных.

Рецепцию запахов осуществляют 3 типа обонятельных нейронов:

1. Обонятельные рецепторные нейроны (ORNs) в основном эпителии.

2. GC-D-нейроны в основном эпителии.

3. Вомероназальные нейроны (VNNs) в вомероназальном эпителии. Вомероназальный орган, как считается, отвечает за восприятие феромонов, летучих веществ, которые обеспечивают социальные контакты и половое поведение. Недавно же было установлено, что рецепторные клетки вомероназального органа выполняют также функцию детекции хищников по его запаху. На каждый вид хищника существует свой особый рецептор-детектор.

Указанные три типа нейронов отличаются друг от друга по способу трансдукции и рабочим белкам, а также по своим сенсорным путям.

Молекулярными генетиками открыто около 330 генов, контролирующих обонятельные рецепторы. Они кодируют около 1000 рецепторов основного обонятельного эпителия и 100 рецепторов вомероназального эпителия, которые чувствительны к феромонам.

Проводниковый отдел
Первым нейроном обонятельного анализатора следует считать ту же обонятельную нейросенсорную, или нейрорецепторную, клетку. Аксоны этих клеток собираются в пучки, пронизывают базальную мембрану обонятельного эпителия и входят в состав немиелизированных обонятельных нервов. Они образует на своих окончаниях синапсы, называемые гломерулами. В гломерулах аксоны рецепторных клеток контактируют с главным дендритом митральных нервных клеток обонятельной луковицы, которые представляют собой второй нейрон .

Обонятельные луковицы лежат на базальной (нижней) поверхности лобных долей. Их относят либо к древней коре, либо выделяют в особую часть обонятельного мозга. В обонятельной луковице млекопитающих насчитывают 6 слоёв. Важно отметить, что обонятельные рецепторы, в отличие от рецепторов других сенсорных систем, не дают топической пространственной проекции на луковице, благодаря своим многочисленным конвенгентным и дивергентным связям.

Аксоны митральных клеток обонятельных луковиц образуют обонятельный тракт, который имеет треугольное расширение (обонятельный треугольник) и состоит из нескольких пучков. Волокна обонятельного тракта отдельными пучками идут из обонятельных луковиц в обонятельные центры высшего порядка, например, в передние ядра таламуса (зрительного бугра). Однако большинство исследователей считает, что отростки второго нейрона идут прямо в кору большого мозга, минуя таламус. Но обонятельная сенсорная система не даёт проекций в новую кору (неокортекс), а только в зоны архи- и палеокортекса: в гиппокамп, лимбическую кору, миндалевидный комплекс.
Эфферентный контроль осуществляется с участием перигломерулярных клеток и клеток зернистого слоя, находящихся в обонятельной луковице, которые образуют эфферентные синапсы с первичными (Д1) и вторичными (Д2) дендритами митральных клеток. При этом может быть эффект возбуждения или торможения афферентной передачи.
Некоторые эфферентные волокна приходят из контралатеральной луковицы через переднюю комиссуру. Нейроны, отвечающие на обонятельные стимулы, обнаружены в ретикулярной формации, имеется связь с гиппокампом и вегетативными ядрами гипоталамуса. Связь с лимбической системой объясняет присутствие эмоционального компонента в обонятельном восприятии, например, приносящие удовольствие, или гедонические, компоненты ощущения запахов.

Центральный, или корковый, отдел

Этот отдел локализуется в передней части грушевидной коры в области гиппокампа (извилины морского конька).

Восприятие (рецепция) запаха периферическим отделом обонятельного анализатора
Рецепция и трансдукция
Молекулы пахучего вещества вначале растворяются в водном растворе, а именно в слизи, которая покрывает эпителий носовой полости. Затем они взаимодействуют со специализированными белками, встроенными в мембрану обонятельных волосковых нейросенсорных рецепторных клеток. При этом происходит адсорбция раздражителей на хеморецепторной мембране. Согласно стереохимической теории этот контакт возможен в том случае, если форма какого-то участка молекулы пахучего вещества соответствует форме рецепторного белка в мембране (как ключ и замок). Слизь, покрывающая поверхность хеморецептора, является структурированным матриксом. Она контролирует доступность рецепторной поверхности для молекул раздражителя и способна изменять условия рецепции. Важным моментом теории восприятия запаха является положение о многоточечных взаимодействиях молекул пахучих веществ и рецептивных участков. Это означает, что в качестве лигандов разные по строению молекулы могут своими сходными участками связываться с рецепторными белками на одной и той же рецепторной клетке, но в то же время одинаковые по строению молекулы пахучего вещества могут за счёт своих разных активных центров связываться с разными рецепторными клетками и таким способом создавать комбинированное раздражение целой группы разных обонятельных рецепторов. Полученная комбинация рецепторов как раз и воспринимается как характерный запах данного пахучего вещества.
Вслед за взаимодействием молекулы-раздражителя с молекулярным рецептором-белком происходит изменение конформации рецепторной белковой молекулы, вследствие чего открываются хемоуправляемые натриевые ионные каналы мембраны. Ионы натрия через открывшиеся каналы проникают внутрь клетки и приносят положительные электрические заряды. За счёт этого происходит деполяризация мембраны (т.е. уменьшение отрицательности внутри клетки), и генерируется рецепторный потенциал в области микроворсинок. Из обонятельной нейрорецепторной клетки при её возбуждении выделяется медиатор, что ведёт к возникновению возбуждающего постсинаптического потенциала (ВПСП) и возникновению затем потенциала действия и нервного импульса во внесинаптических отделах нервного волокна. И таким образом, в виде потока нервных импульсов обонятельное сенсорное возбуждение передается в другие структуры обонятельного анализатора.

Работа обонятельной (ольфакторной) сенсорной системы
1. Движение химического раздражения (раздражителя) к сенсорным рецепторам.
Находящееся в воздухе вещество-раздражитель по воздухоносным путям попадает в носовую полость → достигает обонятельного эпителия →растворяется в слизи, окружающей реснички рецепторных клеток→одним из своих активных центров связывается с молекулярным рецептором (белком), встроенном в мембрану обонятельной нейросенсорной клетки (обонятельного сенсорного рецептора).
2. Трансдукция химического раздражения в нервное возбуждение.
Присоединение молекулы-раздражителя (лиганда) к молекуле-рецептору →изменяется конформация молекулы-рецептора→запускается каскад биохимических реакций с участием G-белка и аденилатциклазы→производится цАМФ (циклический аденозинмонофосфат)→активируется протеин-киназа→она фосфорилирует и открывает в мембране ионные каналы, проницаемые для трёх видов ионов: Na+, K+, Ca2+→. →возникает локальный электрический потенциал (рецепторный)→рецепторный потенциал достигает порогового значения (критического уровня деполяризации)→порождается (генерируется) потенциал действия и нервный импульс.
3. Движение афферентного обонятельного сенсорного возбуждения к низшему нервному центру.
Нервный импульс, возникший в результате трансдукции в нейросенсорной обонятельной клетке, бежит по её аксону в составе обонятельного нерва в обонятельную луковицу (обонятельный низший нервный центр).
4. Трансформация в низшем нервном центре афферентного (входящего) обонятельного возбуждения в эфферентное (выходящее) возбуждение.
5. Движение эфферентного обонятельного возбуждения из низшего нервного центра в высшие нервные центры.
6. Перцепция — построение сенсорного образа раздражения (раздражителя) в виде ощущения запаха.

Адаптация обонятельного анализатора
Адаптация к действию пахучего вещества в обонятельном анализаторе зависит от скорости потока воздуха над обонятельным эпителием и концентрации пахучего вещества. Обычно адаптация проявляется по отношению к одному запаху и может не затрагивать другие запахи.

Виды нарушения обоняния:
1) аносмия – отсутствие;
2) гипосмия – понижение;
3) гиперосмия – повышение обонятельной чувствительности;
4) паросмия – неправильное восприятие запахов; 5) нарушение дифференцировки;
5) обонятельные галлюцинации, когда возникают обонятельные ощущения при отсутствии пахучих веществ;
6) обонятельная агнозия, когда человек ощущает запах, но его не узнает.
С возрастом наблюдаются в основном снижение обонятельной чувствительности, а также другие виды функциональных расстройств обоняния.

Дегустатор применяет обонятельную сенсорную систему

Выдающийся американский винный критик и дегустатор Роберт Паркер обладает уникальным обонянием и способностью к различению вкусов, и кроме того — хорошо натренированной сенсорной памятью — он навечно запоминает вкус однажды попробованного вина.
Он продегустировал 220 000 вин — до 10 000 вин в год — и все их откомментировал в своем знаменитом бюллетене The Wine Advocate.
Robert Parker разработал самую известную и востребованную в мире 100-балльную шкалу оценки качества вин — по винтажам (годам урожая) — так называемую шкалу Роберта Паркера — на которую равняются все мировые винные рынки. И этот успех ему обеспечили две хорошо развитые сенсорные системы: обонятельная и вкусовая! . Ну, и конечно, высшая нервная деятельность тоже не лишней оказалась! ;)

Название работы: Обонятельная ольфакторная сенсорная система

Предметная область: Медицина и ветеринария

Описание: Сруктурно функциональная характеристика обонятельного анализатора. По волокнам обонятельного нерва импульсы поступают на обонятельную луковицу структуру переднего мозга в которой осуществляется обработка информации и далее следуют в корковый обонятельный центр.

Дата добавления: 2015-01-29

Размер файла: 334.64 KB

Работу скачали: 8 чел.

Обонятельная (ольфакторная) сенсорная система, или обонятельный анализатор, — это нейросистема для распознавания летучих и водорастворимых веществ по конфигурации их молекул, создающая субъективные сенсорные образы в виде запахов.

Сруктурно-функциональная характеристика обонятельного анализатора.

— Периферический отдел образуют рецепторы верхнего носового хода слизистой оболочки носовой полости. Обонятельные рецепторы в слизистой носа оканчиваются обонятельными ресничками. Газообразные вещества растворяются в слизи, окружающей реснички, затем в результате химической реакции возникает нервный импульс.

— Проводниковый отдел — обонятельный нерв . По волокнам обонятельного нерва импульсы поступают на обонятельную луковицу (структуру переднего мозга, в которой осуществляется обработка информации) и далее следуют в корковый обонятельный центр.

— Центральный отдел — корковый обонятельный центр, расположенный на нижней поверхности височной и лобной долей коры больших полушарий . В коре происходит определение запаха и формируется адекватная на него реакция организма.

Обонятельный анализатор включает:

Периферический отдел анализатора располагается в толще слизистой оболочки верхнего носового хода и представлен веретенообразными клетками, имеющими по два отростка. Один отросток достигает поверхности слизистой, заканчиваясь здесь утолщением, другой (вместе с другими нитями-отростками) составляет проводниковый отдел.

Периферический отдел обонятельного анализатора — это первично-чувствующие рецепторы, которые являются окончаниями нейросекреторной клетки. Верхняя часть каждой клетки несет 12 ресничек, а от основания клетки отходит аксон. Реснички погружены в жидкую среду — слой слизи, вырабатываемой боуменовыми железами. Наличие обонятельных волосков значительно увеличивает площадь контакта рецептора с молекулами пахучих веществ. Движение волосков обеспечивает активный процесс захвата молекул пахучего вещества и контакта с ним, что лежит в основе целенаправленного восприятия запахов. Рецепторные клетки обонятельного анализатора погружены в обонятельный эпителий, выстилающий полость носа, в котором кроме них имеются опорные клетки, выполняющие механическую функцию и активно участвующие в метаболизме обонятельного эпителия.

Периферическая часть обонятельного анализатора расположена в слизистой оболочке верхнего носового хода и противолежащей части носовой перегородки. Она представлена обонятельными и опорными клетками. Вокруг каждой опорной клетки расположено 9—10 обонятельных. Обонятельные клетки покрыты волосками, которые представляют собой нити длиной 20—30 мкм. Они сгибаются и разгибаются со скоростью 20—50 раз в 1 мин. Внутри волосков расположены фибриллы, которые обычно заходят в утолщение — пуговку, имеющуюся на конце волоска. В теле обонятельной клетки и в ее периферическом отростке расположено большое количество микротрубочек диаметром 0,002 мкм, предполагают, что они осуществляют связь между различными органеллами клетки. Тело обонятельной клетки богато РНК , которая образует возле ядра плотные скопления. После воздействия паров пахучих веществ происходит их разрыхление и частичное исчезновение, что говорит о том, что функция обонятельных клеток сопровождается изменениями в распределении РНК и в ее количестве.


Периферический отдел обонятельного анализатора: д — схема строения носовой полости: 1 — нижний носовой ход; 2 — нижняя, 3 — средняя и 4 — верхняя носовые раковины; 5 — верхний носовой ход; Б — схема строения обонятельного эпителия: 1 — тело обонятельной клетки, 2 — опорная клетка; 3 — булава; 4 — микроворсинки; 5 — обонятельные нити

Обонятельная клетка имеет два отростка. Один из них через отверстия продырявленной пластинки решетчатой кости направляется в полость черепа к обонятельным луковицам, в которых возбуждение передается на расположенные там нейроны . Их волокна образуют обонятельные пути, которые подходят к различным отделам ствола мозга . Корковый отдел обонятельного анализатора находится в гиппокамповой извилине и в аммоновом роге.

Второй отросток обонятельной клетки имеет форму палочки шириной 1 мкм, длиной 20—30 мкм и заканчивается обонятельным пузырьком — булавой, диаметр которой 2 мкм. На обонятельном пузырьке расположено 9—16 ресничек.

Проводниковый отдел представлен проводящими нервными путями в виде обонятельного нерва, ведущие к обонятельной луковице (образование овальной формы). Проводниковый отдел. Первым нейроном обонятельного анализатора следует считать нейросенсорную или нейрорецепторную клетку. Аксон этой клетки образует синапсы, называемые гломерулами, с главным дендритом митральных клеток обонятельной луковицы, которые представляют второй нейрон. Аксоны митральных клеток обонятельных луковиц образуют обонятельный тракт, который имеет треугольное расширение (обонятельный треугольник) и состоит из нескольких пучков. Волокна обонятельного тракта отдельными пучками идут в передние ядра зрительного бугра.

Центральный отдел состоит из обонятельной луковицы, связанной ветвями обонятельного тракта с центрами, которые расположены в палеокортексе (древней коре больших полушарий головного мозга) и в подкорковых ядрах, а так же корковый отдел, который локализован в височных долях мозга, извилине морского коня.

Центральный, или корковый, отдел обонятельного анализатора локализуется в передней части грушевидной доли коры в области извилины морского коня.

Восприятие (рецепция) запаха периферическим отделом обонятельного анализатора
Рецепция и трансдукция

Молекулы пахучего вещества вначале растворяются в водном растворе, а именно в слизи, которая покрывает эпителий носовой полости. Затем они взаимодействуют со специализированными белками, встроенными в мембрану обонятельных волосковых нейросенсорных рецепторных клеток. При этом происходит адсорбция раздражителей на хеморецепторной мембране. Согласно стереохимической теории этот контакт возможен в том случае, если форма какого-то участка молекулы пахучего вещества соответствует форме рецепторного белка в мембране (как ключ и замок). Слизь, покрывающая поверхность хеморецептора, является структурированным матриксом. Она контролирует доступность рецепторной поверхности для молекул раздражителя и способна изменять условия рецепции. Важным моментом теории восприятия запаха является положение о многоточечных взаимодействиях молекул пахучих веществ и рецептивных участков. Это означает, что в качестве лигандов разные по строению молекулы могут своими сходными участками связываться с рецепторными белками на одной и той же рецепторной клетке, но в то же время одинаковые по строению молекулы пахучего вещества могут за счёт своих разных активных центров связываться с разными рецепторными клетками и таким способом создавать комбинированное раздражение целой группы разных обонятельных рецепторов. Полученная комбинация рецепторов как раз и воспринимается как характерный запах данного пахучего вещества.

Вслед за взаимодействием молекулы-раздражителя с молекулярным рецептором-белком происходит изменение конформации рецепторной белковой молекулы, вследствие чего открываются хемоуправляемые натриевые ионные каналы мембраны. Ионы натрия через открывшиеся каналы проникают внутрь клетки и приносят положительные электрические заряды. За счёт этого происходит деполяризация мембраны (т.е. уменьшение отрицательности внутри клетки), и генерируется рецепторный потенциал в области микроворсинок. Из обонятельной нейрорецепторной клетки при её возбуждении выделяется медиатор, что ведёт к возникновению возбуждающего постсинаптического потенциала (ВПСП) и возникновению затем потенциала действия и нервного импульса во внесинаптических отделах нервного волокна. И таким образом, в виде потока нервных импульсов обонятельное сенсорное возбуждение передается в другие структуры обонятельного анализатора.

Работа обонятельной (ольфакторной) сенсорной системы
1. Движение химического раздражения (раздражителя) к сенсорным рецепторам.
Находящееся в воздухе вещество-раздражитель по воздухоносным путям попадает в носовую полость → достигает обонятельного эпителия →растворяется в слизи, окружающей реснички рецепторных клеток→одним из своих активных центров связывается с молекулярным рецептором (белком), встроенном в мембрану обонятельной нейросенсорной клетки (обонятельного сенсорного рецептора).
2. Трансдукция химического раздражения в нервное возбуждение.
Присоединение молекулы-раздражителя (лиганда) к молекуле-рецептору →изменяется конформация молекулы-рецептора→запускается каскад биохимических реакций с участием G-белка и аденилатциклазы→производится цАМФ (циклический аденозинмонофосфат)→активируется протеин-киназа→она фосфорилирует и открывает в мембране ионные каналы, проницаемые для трёх видов ионов: Na+, K+, Ca2+→. →возникает локальный электрический потенциал (рецепторный)→рецепторный потенциал достигает порогового значения (критического уровня деполяризации)→порождается (генерируется) потенциал действия и нервный импульс.
3. Движение афферентного обонятельного сенсорного возбуждения к низшему нервному центру.
Нервный импульс, возникший в результате трансдукции в нейросенсорной обонятельной клетке, бежит по её аксону в составе обонятельного нерва в обонятельную луковицу (обонятельный низший нервный центр).
4. Трансформация в низшем нервном центре афферентного (входящего) обонятельного возбуждения в эфферентное (выходящее) возбуждение.
5. Движение эфферентного обонятельного возбуждения из низшего нервного центра в высшие нервные центры.
6. Перцепция — построение сенсорного образа раздражения (раздражителя) в виде ощущения запаха.

Восприятие запахов. Молекулы пахучего вещества взаимодействуют со специализированными белками, встроенными в мембрану обонятельных волосковых нейросенсорных рецепторных клеток. При этом происходит адсорбция раздражителей на хеморецепторной мембране. Согласно стереохимической теории этот контакт возможен в том случае, если форма молекулы пахучего вещества соответствует форме рецепторного белка в мембране (как ключ и замок). Слизь, покрывающая поверхность хеморецептора, является структурированным матриксом. Она контролирует доступность рецепторной поверхности для молекул раздражителя и способна изменять условия рецепции. Современная теория обонятельной рецепции предполагает, что начальным звеном этого процесса могут быть два вида взаимодействия: первое — это контактный перенос заряда при соударении молекул пахучего вещества с рецептивным участком и второе — образование молекулярных комплексов и комплексов с переносом заряда. Эти комплексы обязательно образуются с белковыми молекулами рецепторной мембраны, активные участки которых выполняют функции доноров и акцепторов электронов. Существенным моментом этой теории является положение о многоточечных взаимодействиях молекул пахучих веществ и рецептивных участков.

Особенности адаптации обонятельного анализатора. Адаптация к действию пахучего вещества в обонятельном анализаторе зависит от скорости потока воздуха над обонятельным эпителием и концентрации пахучего вещества. Обычно адаптация проявляется по отношению к одному запаху и может не затрагивать другие запахи.

Восприятие обонятельных раздражений. Обонятельные рецепторы обладают очень большой чувствительностью. Для возбуждения одной обонятельной клетки человека достаточно от 1 до 8 молекул пахучего вещества (бутилмеркаптана). Механизм восприятия запахов до настоящего времени еще не установлен. Предполагают, что обонятельные волоски являются как бы специализированными антеннами, которые активно участвуют в поиске и восприятии пахучих веществ. Относительно механизма восприятия существуют разные точки зрения . Так, Эймур (1962) считает, что на поверхности волосков обонятельных клеток расположены особые рецептивные участки в виде ямок, щелей определенного размера и определенным образом заряженных. Молекулы различных пахучих веществ имеют форму, размер и заряд, комплементарные различным участкам обонятельной клетки, и это обусловливает различение запахов.


Восприятие обонятельных раздражений

Некоторые исследователи полагают, что обонятельный пигмент, имеющийся в обонятельной рецептивной зоне, также участвует в восприятии обонятельных раздражений, как пигмент сетчатки при восприятии зрительных раздражений. Согласно этим представлениям окрашенные формы пигмента содержат возбужденные электроны. Пахучие вещества, действуя на обонятельный пигмент, вызывают переход электронов на более низкий энергетический уровень, что сопровождается обесцвечиванием пигмента и освобождением энергии, которая затрачивается на возникновение импульсов.

Биопотенциалы возникают в булаве и распространяются далее по обонятельным путям до коры головного мозга.

Молекулы пахучего вещества связываются с рецепторами. Сигналы от рецепторных клеток поступают в гломерулы (клубочки) обонятельных луковиц — небольших органов, расположенных в нижней части мозга прямо над носовой полостью. В каждой из двух луковиц содержится примерно 2000 гломерул — в два раза больше, чем существует видов рецепторов. Клетки, обладающие рецепторами одного вида, отправляют сигнал в одни и те же клубочки луковиц. Из гломерул сигналы передаются в митральные клетки — крупные нейроны, а далее в особые области мозга, где информация от разных рецепторов комбинируется, формируя общую картину.

По Эймуру весь букет запахов создается сочетанием этих семи составляющих. В апреле 1991 года сотрудники Института им. Говарда Хьюза (Колумбийский университет) Ричард Аксель и Линда Бак выяснили, что строение рецепторных участков мембраны обонятельных клеток генетически запрограммировано, и таких специфических участков имеется более 10 тыс. видов. Таким образом, человек способен воспринимать более 10 тыс. запахов.

Адаптацию обонятельного анализатора можно наблюдать при длительном действии запахового раздражителя. Адаптация к действию пахучего вещества происходит довольно медленно в течении 10 секунд или минут и зависит от продолжительности действия вещества, его концентрации и скорости потока воздуха (принюхивание).

По отношению ко многим пахучим веществам довольно быстро наступает полная адаптация, т. е. их запах перестает ощущаться. Человек перестает замечать такие непрерывно действующие раздражители, как запах своего тела, одежды, комнаты и т. п. По отношению к ряду веществ адаптация происходит медленно и лишь частично. При кратковременном действии слабого вкусового или обонятельного раздражителя: адаптация может проявиться в повышении чувствительности соответствующего анализатора. Установлено, что изменения чувствительности и явления адаптации в основном происходят не в периферическом, а в корковом отделе вкусового и обонятельного анализаторов. Иногда, особенно при частом действии одного и того же вкусового или обонятельного раздражителя, в коре больших полушарий возникает стойкий очаг повышенной возбудимости. В таких случаях ощущение вкуса или запаха, к которому возникла повышенная возбудимость, может появляться и при действии различных других веществ. Мало того, ощущение соответствующего запаха или вкуса может стать назойливым, появляясь и при отсутствии каких-либо вкусовых или запаховых раздражителей, иными словами, возникают иллюзии, и галлюцинации. Если во время обеда сказать, что блюдо протухло или прокисло, то у некоторых людей появляются соответствующие обонятельные и вкусовые ощущения, в результате чего они отказываются от еды.

Адаптация к одному запаху не снижает чувствительности к одорантам другого вида, т.к. различные пахучие вещества действуют на разные рецепторы

Виды нарушения обоняния:

1) аносмия – отсутствие;

2) гипосмия – понижение;

3) гиперосмия – повышение обонятельной чувствительности;
дифференцировки;

Читайте также: