Развертка поверхности вращения реферат

Обновлено: 05.07.2024

Так как все грани многогранной поверхности изображаются на развертке в натуральную величину, построение ее сводится к определению величины отдельных граней поверхности – плоских многоугольников.

Метод триангуляции

Пример 1. Развертка пирамиды (рисунок 13.1).

При построении развертки пирамиды применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников – граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих.

Рисунок 13.1. Пирамида и её развертка

Для этого необходимо знать натуральную величину ребер и сторон основания. Алгоритм построения можно сформулировать следующим образом (рисунок 13.2):

1 Определяют натуральную величину основания пирамиды (например, методом замены плоскостей проекций)
2 Определяют истинную величину всех ребер пирамиды любым из известных способов (в данном примере натуральная величина всех ребер пирамиды определена методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций и проходящей через вершину пирамиды S)
3 Строят основание пирамиды и по найденным трем сторонам строят какую-либо из боковых граней, пристраивая к ней следующие (рисунок 13.3).

Рисунок 13.2. Определение истинной величины

основания и ребер пирамиды

Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки. Примером первой точки на рисунках служит точка К0 и КÎSАD, а иллюстрацией второго случая являются точки М0 и М0 * . Для определения точки К0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ (метод замены плоскостей проекций) и (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S0М0 и, наконец, точки К0.

Рисунок 13.3. Построение развертки пирамиды

Способ нормального сечения

В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину.




Пример 2. Развертка призмы (рисунок 13.4).

Пересекая призму вспомогательной плоскостью α, перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения – треугольника 1, 2, 3, а затем определяют истинную величину этого сечения. На примере она найдена методом вращения.

В дальнейшем строям отрезок 10-10 * , равный периметру нормального сечения. Через точки 10, 20, 30 и 10 * проводят прямые, перпендикулярные 10-10 * , на которых откладывают соответствующие отрезки боковых ребер призмы, беря их с новой фронтальной проекции. Так, на перпендикуляре, проходящем через точку 10, отложены отрезки 10D0=14D4 и 10А0=14А4.. Соединив концы отложенных отрезков, получают развертку боковой поверхности призмы. Затем достраивают основание.

Способ раскатки

Пример 3. Развертка призмы, частный случай, когда основание призмы на одну из плоскостей проекций проецируется в натуральную величину (рисунок 13.5).

Развертка боковой поверхности такой призмы осуществляется способом раскатки. Этот способ заключается в следующем. Сначала, как и в предыдущем примере, преобразуют эпюр так, чтобы боковые ребра призмы стали параллельны одной из плоскостей проекций.

Рисунок 13.4. Развертка призмы способом нормального сечения

Рисунок 13.5. Развертка призмы способом раскатки

Затем новую проекцию призмы вращают вокруг ребра С4F4 до тех пор пока грань ACDF не станет параллельной плоскости П4.

При этом положение ребра С4F4 остается неизменным, а точки принадлежащие ребру AD перемещаются по окружностям, радиус которых определяется натуральной величиной отрезков AC и DF (так как основания призмы параллельны П1 то на эту плоскость проекций они проецируются без искажения, т.е. R=A1C1=D1F1), расположенных в плоскостях, перпендикулярных ребру С4F4.

Таким образом, траектории движения точек A и D на плоскость П4 проецируются в прямые, перпендикулярные ребру С4F4.

Когда грань ACDFстанет параллельна плоскости П4, она проецируется на неё без искажения т.е. вершины A и D окажутся удаленными от неподвижных вершин C и F на расстояние, равное натуральной величине отрезков AC и DF. Таким образом, засекая перпендикуляры, по которым перемещаются точки A4 и D4 дугой радиуса R=A1C1=D1F1, можно получить искомое положение точек развертки A0 и D0.

Следующую грань АBDE вращают вокруг ребра AD. На перпендикулярах, по которым перемещаются точки B4и E4 делают засечки из точек A0 и D0 дугой радиуса R=A1B1=D1E1. Аналогично строится развертка последней боковой грани призмы.

Процесс последовательного нахождения граней призмы вращением вокруг ребер можно представить как раскатку призмы на плоскость параллельную П4 и проходящую через ребро С4F4.

Построение на развертке точки К, принадлежащей боковой грани АBDE, ясно из рисунка. Предварительно через эту точку по грани провели прямую , параллельную боковым ребрам, которая затем построена на развертке.

б) Развертка цилиндрической поверхности.

Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму (рисунок 13.6). Чем больше углов в призме, тем точнее развертка (при n →призма преобразуется в цилиндр).

в) Развертка конической поверхности

Развертка конической поверхности выполняется аналогично развертке пирамиды, предварительно вписав в конус n-угольную пирамиду (рисунок 13.6).

Если задана поверхность прямого конуса, то развертка его боковой поверхности представляет круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ=360 о r / l, где r – радиус окружности основания конуса.

Рисунок 13.6. Развертка цилиндрической поверхности

Рисунок 13.7. Развертка конической поверхности

Запомните! Задание Существует три способа построения развертки: способ нормального сечения, раскатки и треугольника.Дайтехарактеристику каждому из способов. Внимательно рассмотрите примеры, приведенные в лекции. Выполните построения по рисункам 13.1…13.7.

Контрольные вопросы

1 Что называют разверткой поверхности?

2 Какие поверхности называют развертывающимися и какие – неразвертывающимися?

3 Укажите основные свойства разверток

4 Укажите последовательность графических построений разверток поверхностей конуса и цилиндра.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

МБОУ Сухо – Сарматская СОШ

Таганрог 2016

Содержание

Основные свойства развертки

Развертка поверхности многогранников

Развертка цилиндрической поверхности

Развертка конической поверхности

Список использованной литературы

1. Введение

С развертками поверхностей мы часто встречаемся в обыденной жизни, на производстве и в строительстве. Чтобы изготовить футляр для книги (рис. 169), сшить чехол для чемодана, покрышку для волейбольного мяча и т. п., надо уметь строить развертки поверхностей призмы, шара и других геометрических тел. Разверткой называется фигура, полученная в результате совмещения поверхности данного тела с плоскостью. Для одних тел развертки могут быть точными, для других — приближенными. Точные развертки имеют все многогранники (призмы, пирамиды и др.), цилиндрические и конические поверхности и некоторые другие. Приближенные развертки имеют шар, тор и другие поверхности вращения с криволинейной образующей. Первую группу поверхностей будем называть развертывающимися, вторую — неразвёртывающимися.


hello_html_2ea6078d.jpg

Разверткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).

Приступая к изучению развертки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую пленку. Некоторые из представленных таким образом поверхностей можно путем изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещен с плоскостью без разрывов и склеивания, то такую поверхность называют развертывающейся, а полученную плоскую фигуру - ее разверткой. Трубная цилиндрическая резьба применяется для соединения труб, где требуется герметичность. Профиль резьбы - равнобедренный треугольник с углом при вершине.

2. Основные свойства развертки

1. Длины двух соответствующих линий поверхности и ее развертки равны между собой;

2. Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке;

3. Прямой на поверхности соответствует также прямая на развертке;

4. Параллельным прямым на поверхности соответствуют также параллельные прямые на развертке;

5. Если линии, принадлежащей поверхности и соединяющей две точки поверхности, соответствует прямая на развертке, то эта линия является геодезической.

3.Развертка поверхности многогранников

Разверткой многогранной поверхности называется плоская фигура,получаемая последовательным совмещением всех гранейповерхности с плоскостью.

Так как все грани многогранной поверхности изображаются на развертке в натуральную величину, построение ее сводится к определению величины отдельных граней поверхности - плоских многоугольников.

Существует три способа построения развертки многогранных поверхностей:

1. Способ нормального сечения;

2. Способ раскатки;

3. Способ треугольника.

4. Развёртка пирамиды

hello_html_m74a2943e.jpg

Рисунок 1. Пирамида и её развертка

При построении развертки пирамида применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников - граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих. Для этого необходимо знать натуральную величину ребер и сторон основания.

hello_html_12015a8c.jpg

Рисунок 2. Определение истинной величины основания и ребер пирамиды

Алгоритм построения можно сформулировать следующим образом ( рис.2 ):

1. Определяют натуральную величину основания пирамиды (например методом замены плоскостей проекций);

2. Определяют истинную величину всех ребер пирамиды любым из известных способов (в данном примере натуральная величина всех ребер пирамиды определена методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций и проходящей через вершину пирамиды S );

3. Строят основание пирамиды и по найденным трем сторонам строят какую-либо из боковых граней, пристраивая к ней следующие (рис.8.42).

Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки.

Примером первой точки на рисунках служит точка К 0 и К О SАD , а иллюстрацией второго случая являются точки М 0 и М 0 * . Для определения точки К 0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ (метод замены плоскостей проекций) и (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S 0 М 0 и, наконец, точки К 0 .

hello_html_70a5db27.jpg

Рисунок 3. Построение развертки пирамиды

5. Развёртка призмы

В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину.

Пересекая призму вспомогательной плоскостью б , перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения - треугольника 1 , 2 , 3 , а затем определяют истинную величину этого сечения. На примере она найдена методом вращения.

В дальнейшем строям отрезок 1 0 -1 0 * , равный периметру нормального сечения. Через точки 1 0 , 2 0 , 3 0 и 1 0 * проводят прямые, перпендикулярные 1 0 -1 0 * , на которых откладывают соответствующие отрезки боковых ребер призмы, беря их с новой фронтальной проекции. Так, на перпендикуляре, проходящем через точку 1 0 , отложены отрезки 1 0 D 0 = 1 4 D 4 и 1 0 А 0 = 1 4 А 4 .

Соединив концы отложенных отрезков, получают развертку боковой поверхности призмы. Затем достраивают основание. ( рис.4 .)

hello_html_6186d85f.jpg

Рисунок 4. Развертка призмы способом нормального сечения

Развертка призмы, частный случай, когда основание призмы наодну из плоскостей проекций проецируется в натуральную величину (рис.5).

Развертка боковой поверхности такой призмы осуществляется способом раскатки. Этот способ заключается в следующем. Сначала, как и в предыдущем примере, преобразуют эпюр так, чтобы боковые ребра призмы стали параллельны одной из плоскостей проекций.

Затем новую проекцию призмы вращают вокруг ребра С 4 F 4 до тех пор пока грань ACDF не станет параллельной плоскости П 4 . При этом положение ребра С 4 F 4 остается неизменным, а точки принадлежащие ребру AD перемещаются по окружностям, радиус которых определяется натуральной величиной отрезков AC и DF (так как основания призмы параллельны П 1 то на эту плоскость проекций они проецируются без искажения т.е. R = A 1 C 1 = D 1 F 1 ), расположенных в плоскостях, перпендикулярных ребру С 4 F 4 . Таким образом, траектории движения точек A и D на плоскость П 4 проецируются в прямые, перпендикулярные ребру С 4 F 4 .

Когда грань ACDF станет параллельна плоскости П 4 , она проецируется на неё без искажения т.е. вершины A и D окажутся удаленными от неподвижных вершин C и F на расстояние, равное натуральной величине отрезков AC и DF . Таким образом, засекая перпендикуляры, по которым перемещаются точки A 4 и D 4 дугой радиуса R = A 1 C 1 = D 1 F 1 , можно получить искомое положение точек развертки A 0 и D 0 .

Следующую грань АBDE вращают вокруг ребра AD . На перпендикулярах, по которым перемещаются точки B 4 и E 4 делают засечки из точек A 0 и D 0 дугой радиуса R = A 1 B 1 = D 1 E 1 . Аналогично строится развертка последней боковой грани призмы.

Процесс последовательного нахождения граней призмы вращением вокруг ребер можно представить как раскатку призмы на плоскость параллельную П 4 и проходящую через ребро С 4 F 4 .

Построение на развертке точки К , принадлежащей боковой грани АBDE, ясно из рисунка. Предварительно через эту точку по грани провели прямую , параллельную боковым ребрам, которая затем построена на развертке.

hello_html_6cd7c26f.jpg

Рисунок 5. Развертка призмы способом раскатки.

6. Развертка цилиндрической поверхности

Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму ( рис.6 ). Чем больше углов в призме, тем точнее развертка (при n > ?призма преобразуется в цилиндр.

hello_html_1c2df2b0.jpg

Рисунок 6. Развертка цилиндрической поверхности.

7.Развертка конической поверхности

Развертка конической поверхности выполняется аналогично развертке пирамиды, предварительно вписав в конус n-угольную пирамиду ( рис.7 ).

Если задана поверхность прямого конуса, то развертка его боковой поверхности представляет круговой сектор, радиус которого равен длине образующей конической поверхности l , а центральный угол ц =360 о r / l , где r - радиус окружности основания конуса.

hello_html_m35618e44.jpg

Рисунок 7. Развертка конической поверхности.

8. Построение условных разверток неразвертывающихся поверхностей

Развертку неразвертывающейся поверхности построить нельзя. Для построения условной развертки такой поверхности применяют метод аппроксимации, который заключается в следующем.

Данная неразвертываюшаяся поверхность Ф разбивается на некоторые отсеки. Каждый из этих отсеков заменяется отсеком кривой развертывающейся поверхности. Совокупность всех отсеков развертывающихся поверхностей называется обводом Ф' поверхности Ф. С помощью триангуляции обвод Ф' заменяется обводом Ф" гранных поверхностей. Развертка гранных поверхностей, образующих обвод Ф", принимается за условную развертку поверхности Ф. При свертывании такой развертки, кроме изгибания, необходимо произвести частичное растяжение или сжатие отдельных ее участков.

Построение развертки сферы

Сферическая поверхность является неразвертывающейся. Существующие методы построения ее развертки дают лишь приближенные результаты.

Сущность одного из них заключается в том, что элемент сферической поверхности заменяется элементом цилиндрической поверхности касательной к сфере по главному меридиану m. Ось такой цилиндрической поверхности проходит через центр сферы перпендикулярно G 2. При этом под элементом сферы понимают часть ее, ограниченную двумя большими окружностями.

Для выполнения построения развертки поверхность сферы необходимо:

1) разделить большими окружностями на несколько (например 6) равных частей. Каждый из образовавшихся элементов сферы проецируется на плоскость П 1 , в виде сектора;

2) описать вокруг сферы цилиндрическую поверхность, ось которой проходит через центр сферы перпендикулярно к П 2 ;

3) заменить элемент сферы частью цилиндрической поверхности. Горизонтальной проекцией этого цилиндрического элемента окажется треугольник А 1 В 1 О 1 , а фронтальной - контур сферы (дуга окружности).

4) для построения развертки цилиндрического элемента (лепестка) разделить его фронтальную проекцию на восемь равных частей;

5) построить горизонтальные проекции образующих, соответствующих точкам деления. Истинные длины отрезков образующих для построения развертки взять с горизонтальной проекции (отрезки А 1 В 1 , С 1 D 1 , E 1 F 1 , G 1 H 1 ) а расстояния между ними измерить на фронтальной проекции (расстояния между точками 1 2 2 2 , и 2 2 3 2 );

6) при построении цилиндрического элемента (лепестка) через середину отрезка АВ = А 1 В 1 провести вертикальную ось симметрии лепестка на которой отложить вверх и вниз четыре отрезка 1 0 -2 0 = 1 2 2 2 , 2 0 - 3 0 = 2 2 3 2 , 3 0 - 4 0 = 3 2 4 2 , 4 0 - 5 0 = 4 2 5 2 .

8) соединить плавной кривой концы отрезков, в результате чего получится развертка верхней половины лепестка.

При выполнении построения развертки часто возникает необходимость определить положение какой-либо точки на поверхности. Рассмотрим положение точки К на поверхности сферы и перенесем ее изображение на развертку. Это можно выполнить с помощью двух координат дуг S 1 и S 2 . S 2 показывает смещение точки К от экватора к полюсу, а дуга S 1 - смещение ее от одного из меридианов по параллели сферы. Дуга S 2 равна той части меридиана сферы, которая ограничена экватором и параллелью, проходящей через точку К (К 2 ).

Длину этой дуги S 2 = К 2 ´ М 2 нужно откладывать на развертке от экватора соответствующего лепестка по вертикальной оси симметрии.

Строим развертку каждого сектора (лепестка) цилиндрической поверхности. На чертеже показана развертка одного из них. Затем ломаная 1 - 3 - 5 - 7. заменяется плавной кривой, проходящей через те же точки. Полученная фигура принимается за условную развертку сектора сферы. Полная развертка будет состоять из восьми таких фигур (рис.8).

Рисунок 8. Построение развертки сферы

10.Построение развертки цилиндрической поверхности

Рисунок 9. Построение развертки цилиндрической поверхности

Триангуляция конической поверхности осуществляется вписыванием в нее пирамидальной поверхности, которая определяется ломаной 1 - 2 - 3 - 4, . вписанной в направляющую кривую конуса, и вершиной S. Развертка этой n-угольной пирамиды и принимается за развертку конуса. Все построения на чертеже (рис. 9.4) выполняются аналогично построениям на чертеже (рис.9.2). Ломаная линия 1 - 2 - 3 - 4, . получающаяся на развертке пирамиды, заменяется плавной кривой, проходящей через те же точки.

При построении разверток цилиндрических поверхностей способ триангуляции, как правило, не применяется. Цилиндрическая поверхность заменяется (аппроксимируется) вписанной в нее призматической поверхностью, которая определяется ломаной 1 - 2 - 3 - 4, . вписанной в направляющую кривую цилиндра, и направлением образуюших. Развертка этой п-угольной призмы и принимается за развертку цилиндра (рис. 9.5). Все построения выполняются, как на рис. 9.3.

Ломаная линия - 2 - 3 - 4, . получающаяся на развертке призмы, заменяется плавной кривой, проходящей через те же точки. Развертка боковой поверхности прямого кругового цилиндра представляет собой прямоугольник со сторонами, соответственно равными 2пr и h, где r - радиус окружности основания цилиндра, а h - его высота.

10. Заключение

Многие технические конструкции изготавливаются из гибкого листового материала. Заготовки этих конструкций представляют собой их развертки. Построение разверток изделий и изделий по их разверткам - важная техническая задача.

Многие изделия и детали нередко содержат фасонные элементы сложных геометрических форм из листового материала. Изготовление их требует построения разверток.

Умение построения разверток имеет огромное практическое значение при конструировании различных изделий из листового материала. Часто приходится изготавливать не только развертывающиеся поверхности, но и неразвертыващиеся. В этом случае последние разбивают на части, которые можно приближенно заменить развертывающимися поверхностями (цилиндрическими, коническими, многогранными), а затем строят развертки этих частей.

Список использованной литературы

Свойства развертки поверхностей. Способы построения развертки многогранных поверхностей. Применение способа треугольника при построении развертки пирамиды. Развертка призмы способами нормального сечения и раскатки. Коническая и цилиндрическая поверхности.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 28.12.2011
Размер файла 511,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Брянская государственная инженерно-технологическая академия

Кафедра графики и геодезии

по начертательной геометрии

"Развёртка поверхностей"

Подготовил студент группы САТ-102

Преподаватель: Зайцева И.И.

Содержание

    Введение
  • Основные свойства развертки
  • Развертка поверхности многогранников
  • Развёртка пирамиды
  • Развёртка призмы
  • Развертка цилиндрической поверхности
  • Развертка конической поверхности
  • Заключение
  • Список использованной литературы

Введение

Разверткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).

Приступая к изучению развертки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую пленку. Некоторые из представленных таким образом поверхностей можно путем изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещен с плоскостью без разрывов и склеивания, то такую поверхность называют развертывающейся, а полученную плоскую фигуру - ее разверткой. Трубная цилиндрическая резьба применяется для соединения труб, где требуется герметичность. Профиль резьбы - равнобедренный треугольник с углом при вершине.

Основные свойства развертки

1. Длины двух соответствующих линий поверхности и ее развертки равны между собой;

2. Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке;

3. Прямой на поверхности соответствует также прямая на развертке;

4. Параллельным прямым на поверхности соответствуют также параллельные прямые на развертке;

5. Если линии, принадлежащей поверхности и соединяющей две точки поверхности, соответствует прямая на развертке, то эта линия является геодезической.

Развертка поверхности многогранников

Разверткой многогранной поверхности называется плоская фигура, получаемая последовательным совмещением всех граней поверхности с плоскостью.

Так как все грани многогранной поверхности изображаются на развертке в натуральную величину, построение ее сводится к определению величины отдельных граней поверхности - плоских многоугольников.

Существует три способа построения развертки многогранных поверхностей:

1. Способ нормального сечения;

2. Способ раскатки;

3. Способ треугольника.

Развёртка пирамиды

Рисунок 1. Пирамида и её развертка

При построении развертки пирамида применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников - граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих. Для этого необходимо знать натуральную величину ребер и сторон основания.

Рисунок 2. Определение истинной величины основания и ребер пирамиды

Алгоритм построения можно сформулировать следующим образом (рис.2):

1. Определяют натуральную величину основания пирамиды (например методом замены плоскостей проекций);

2. Определяют истинную величину всех ребер пирамиды любым из известных способов (в данном примере натуральная величина всех ребер пирамиды определена методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций и проходящей через вершину пирамиды S);

3. Строят основание пирамиды и по найденным трем сторонам строят какую-либо из боковых граней, пристраивая к ней следующие (рис.8.42).

Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки.

Примером первой точки на рисунках служит точка К0 и КОSАD, а иллюстрацией второго случая являются точки М0 и М0 * . Для определения точки К0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ (метод замены плоскостей проекций) иSК (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S0М0 и, наконец, точки К0.

Рисунок 3. Построение развертки пирамиды

Развёртка призмы

В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину.

Пересекая призму вспомогательной плоскостью б, перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения - треугольника 1, 2, 3, а затем определяют истинную величину этого сечения. На примере она найдена методом вращения.

В дальнейшем строям отрезок 10-10 * , равный периметру нормального сечения. Через точки 10, 20, 30 и 10 * проводят прямые, перпендикулярные 10-10 * , на которых откладывают соответствующие отрезки боковых ребер призмы, беря их с новой фронтальной проекции. Так, на перпендикуляре, проходящем через точку 10, отложены отрезки 10D0=14D4 и 10А0=14А4.

Соединив концы отложенных отрезков, получают развертку боковой поверхности призмы. Затем достраивают основание. (рис.4.)

Рисунок 4. Развертка призмы способом нормального сечения

Развертка призмы, частный случай, когда основание призмы на одну из плоскостей проекций проецируется в натуральную величину (рис.5).

Развертка боковой поверхности такой призмы осуществляется способом раскатки. Этот способ заключается в следующем. Сначала, как и в предыдущем примере, преобразуют эпюр так, чтобы боковые ребра призмы стали параллельны одной из плоскостей проекций.

Затем новую проекцию призмы вращают вокруг ребра С4F4 до тех пор пока грань ACDF не станет параллельной плоскости П4. При этом положение ребра С4F4 остается неизменным, а точки принадлежащие ребру AD перемещаются по окружностям, радиус которых определяется натуральной величиной отрезков AC и DF (так как основания призмы параллельны П1 то на эту плоскость проекций они проецируются без искажения т.е. R=A1C1=D1F1), расположенных в плоскостях, перпендикулярных ребру С4F4. Таким образом, траектории движения точек A и D на плоскость П4 проецируются в прямые, перпендикулярные ребру С4F4.

Когда грань ACDF станет параллельна плоскости П4, она проецируется на неё без искажения т.е. вершины A и D окажутся удаленными от неподвижных вершин C и F на расстояние, равное натуральной величине отрезков AC и DF. Таким образом, засекая перпендикуляры, по которым перемещаются точки A4 и D4 дугой радиуса R=A1C1=D1F1, можно получить искомое положение точек развертки A0 и D0.

Следующую грань АBDE вращают вокруг ребра AD. На перпендикулярах, по которым перемещаются точки B4 и E4 делают засечки из точек A0 и D0 дугой радиуса R=A1B1=D1E1. Аналогично строится развертка последней боковой грани призмы.

Процесс последовательного нахождения граней призмы вращением вокруг ребер можно представить как раскатку призмы на плоскость параллельную П4 и проходящую через ребро С4F4.

Построение на развертке точки К, принадлежащей боковой грани АBDE, ясно из рисунка. Предварительно через эту точку по грани провели прямую NМ, параллельную боковым ребрам, которая затем построена на развертке.

Рисунок 5. Развертка призмы способом раскатки

Развертка цилиндрической поверхности

Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму (рис.6). Чем больше углов в призме, тем точнее развертка (при n >?призма преобразуется в цилиндр.).

развертка поверхность многогранная коническая

Рисунок 6. Развертка цилиндрической поверхности

Развертка конической поверхности

Развертка конической поверхности выполняется аналогично развертке пирамиды, предварительно вписав в конус n-угольную пирамиду (рис.7).

Если задана поверхность прямого конуса, то развертка его боковой поверхности представляет круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол ц=360 о r / l, где r - радиус окружности основания конуса.

Рисунок 7. Развертка конической поверхности

Заключение

Многие технические конструкции изготавливаются из гибкого листового материала. Заготовки этих конструкций представляют собой их развертки. Построение разверток изделий и изделий по их разверткам - важная техническая задача.

Многие изделия и детали нередко содержат фасонные элементы сложных геометрических форм из листового материала. Изготовление их требует построения разверток.

Умение построения разверток имеет огромное практическое значение при конструировании различных изделий из листового материала. Часто приходится изготавливать не только развертывающиеся поверхности, но и неразвертыващиеся. В этом случае последние разбивают на части, которые можно приближенно заменить развертывающимися поверхностями (цилиндрическими, коническими, многогранными), а затем строят развертки этих частей.

Список использованной литературы

1. Курс начертательной геометрии (В.О. Гордон, М.А. Семенцов - Огиевский)

2. Начертательная геометрия. Курс лекций для студентов. (В.А. Антипов)

Подобные документы

Построение разверток поверхностей. Параллелепипед и его развертка. Чертеж развертки поверхности правильной пирамиды, прямого кругового конуса, прямого кругового цилиндра, правильной призмы, прямого эллиптического цилиндра. Способ нормального сечения.

контрольная работа [1,8 M], добавлен 11.11.2014

Способы формообразования и отображения поверхностей. Закон образования поверхности. Основные свойства, вытекающие из закона образования поверхности вращения. Линейчатые поверхности с плоскостью параллелизма. Образование каркаса циклических поверхностей.

реферат [2,0 M], добавлен 19.05.2014

Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.

реферат [5,4 M], добавлен 10.01.2009

Подробный анализ поверхностей Каталана и условия, отделяющие этот класс от класса линейчатых поверхностей. Формулы для расчета первой и второй квадратичных форм поверхностей класса КА. Доказательство утверждений о влиянии вида кривых на тип поверхности.

дипломная работа [1,4 M], добавлен 06.06.2011

Общие сведения о пересечении кривых поверхностей. Способ вспомогательных секущих плоскостей. Пересечение поверхностей с параллельными осями. Применение способа концентрических сфер. Последовательность нахождения горизонтальных проекций заданных точек.

методичка [2,0 M], добавлен 18.02.2015

История возникновения и понятия дифференциальной геометрии, в которой плоские и пространственные кривые и поверхности изучаются с помощью дифференциального исчисления и методами математического анализа. Применение темы "Теория поверхностей " в школе.

реферат [608,8 K], добавлен 23.04.2015

Характеристика семейства поверхностей. Касательная прямая и плоскость. Криволинейные координаты. Вычисление длины дуги кривой на поверхности и ее площади. Угол между двумя линиями на поверхности. Нормальная кривизна линий, расположенных на поверхности.

Шар. Цилиндр. Конус. Площади поверхности и объемы этих фигур.

Подробная теория с наглядными иллюстрациями и основные формулы.

Читай эту статью, здесь все это есть.

Всего за 15 минут ты полностью во всём разберешься!

Тело вращения – это тело в пространстве, которое возникает при вращении какой-нибудь плоской фигуры вокруг какой-нибудь оси.

Вот самый простой пример: цилиндр.

Берем прямоугольник и начинаем вращать его вокруг одной из сторон.


А теперь гораздо хитрее. Бывает так, что ось вращения находится далеко от фигуры, которая вращается.



Что получится? Бублик. А по-научному – ТОР.


Ну и так вот можно любую фигуру вертеть вокруг любой оси, и будут получаться разные более или менее сложные тела вращения.

Ну, а поверхность вращения – это просто граница тела вращения. Ведь поверхность это всегда граница тела.

Здесь мы рассмотрим подробно несколько тел вращения. Те, которые встречаются в школьных задачах. Это шар, цилиндр и конус.

Шар – тело вращения, полученное вращением полуокружности вокруг диаметра.


Вообще-то есть и другое определение шара – через ГМТ (геометрическое место точек)

Шар – геометрическое место точек, удаленных от одной фиксированной точки на расстояние, не более заданного.

Скажу тебе по секрету, что, хоть второе определение и пугающее на вид, оно удобнее в обращении. Задумайся, ведь если тебя попросят сказать, что такое шар, ты скажешь что-то вроде:

Ну, в общем, шар он и есть шар.

Названия, которые ты должен знать:



Незнакомое тебе, наверное, только одно.

Диаметральное сечение шара – сечение, проходящее через центр. Это сечение иногда еще называют большим кругом.

Площадь поверхности сферы


Откуда взялось? Умные математики придумали – это не так уж просто – придется просто запомнить.

Объем шара


Это еще одна хитрая формула, которую придется запомнить, не понимая, откуда она взялась.

Если ты знаком с производной, то можешь заметить это:

И это не случайно! Но почему это так вышло, мы тоже здесь обсуждать не будем. Можешь попробовать доказать это сам!

Цилиндр

Цилиндр – тело, образованное вращением прямоугольника вокруг одной из сторон.


Основания у цилиндра – это круги

Еще у цилиндра есть так называемая развертка.

Представь, что у нас от цилиндра осталась только боковая поверхность, и мы ее разрезали вдоль образующей и развернули.


Что получится? Представь себе, прямоугольник.


Развертка цилиндра – прямоугольник.

Площадь боковой поверхности цилиндра

\( H\) – высота, она же образующая.


Откуда взялась эта формула? Это как раз легко! Именно потому, что цилиндр можно развернуть, и получится прямоугольник \( 2\pi R\cdot H\).

Площадь этого прямоугольника и есть площадь боковой поверхности цилиндра.

Площадь прямоугольника, как мы хорошо помним равна произведению сторон, поэтому


Площадь полной поверхности цилиндра

Прибавляем теперь площадь двух кругов – оснований и получаем:


Можно вынести (хотя и не обязательно) \( 2\pi R\):

Но эту формулу неудобно запоминать!

Гораздо проще запомнить, что полная поверхность – сумма боковой поверхности и еще двух кругов – оснований, а боковая поверхность – прямоугольник. И тогда \( _>\) можно вообще не запоминать, ты всегда сам напишешь, что

Объем цилиндра

\( R\) – радиус основания \( H\) – высота


\( V=_>\cdot H\), только у призмы и параллелепипеда \( _>\) — это площадь многоугольника, а у цилиндра \( _>\) — это площадь круга.

Конус

Конус – тело вращения, образованное вращением прямоугольного треугольника вокруг одного из катетов.


Названия, относящиеся к конусу:


Что тут нужно твердо помнить?

Ясно ли это? Вроде должно быть ясно, ведь образующая – это гипотенуза (одна и та же!) Треугольника, который вращаем, а радиус основания – катет.

У конуса тоже есть развертка.


Снова представим, что основания нет, разрежем боковую поверхность вдоль образующей и развернём кулек. Что получится?

Представь себе сектор круга. Пусть длина образующей равна \( l\).

Развертка конуса – сектор круга радиуса \( l\)


Площадь поверхности конуса

Как найти площадь боковой поверхности корпуса? Вспомним о развертке, ведь для цилиндра все было просто именно с помощью развертки.

По формуле площади сектора \( _>=^>\cdot \frac\) Где \( \alpha \) – угол при вершине в радианах.


И это уже формула. В некоторых задачах бывает дан именно угол при вершине в развертке конуса.

Но если все же даны только образующая и радиус основания, как быть?


Нужно осознать, что же такое дуга в развертке? Это бывшая окружность основания! Поэтому длина этой дуги равна \( 2\pi R\).

С другой стороны, длина этой же дуги равна \( \alpha \cdot l\), так как это дуга окружности радиуса \( l\). Поэтому

\( \alpha \cdot l=2\pi R\)

\( R\) — радиус окружности основания,

\( l\) — длина образующей

Ну, и осталось площадь полной поверхности конуса. Прибавим к боковой поверхности площадь круга основания, и получаем:

Можно вынести \( \pi R\):


Но, как и для цилиндра, не надо запоминать вторую формулу, гораздо проще всегда пользоваться первой.

Объём конуса

\( R\) – радиус основания \(


Это так же, как у пирамиды

\( _>\) — это не площадь многоугольника, а площадь круга.

А вот откуда взялась \( \frac\)?, по-прежнему остается загадкой, потому что эта \( \frac\) получена в результате довольно хитрых рассуждений умных математиков.

Бонус: Вебинары по стереометрии из нашего курса подготовки к ЕГЭ по математике

ЕГЭ 14 Стереометрия. Расстояние между точками и от точки до прямой

Затем мы научимся двум основным вещам — находить расстояние между точками на таких рисунках, а также расстояние от точки до прямой.

На этих умениях строится всё дальнейшее изучение стереометрии. В общем это очень важное, базовое видео, с которого нужно начинать изучение стереометрии.

Не перескакивайте, не пропускайте его! Даже если вы знаете стереометрию, вы найдете для себя очень много полезного и нового в этом видео.

ЕГЭ 14. Стереометрия. Пирамида. Разбор варианта профильного ЕГЭ 2020

Наши курсы по подготовке к ЕГЭ по математике, информатике и физике

Курсы для тех, кому нужно получить 90+ и поступить в топовый ВУЗ страны.


Алексей Шевчук — ведущий курсов

Твой ход!

Ну как тебе? Понравилось?

Держу пари, даже если ты первый раз слышишь о телах вращения, ты сейчас чувствуешь себя намного увереннее в этой теме!

А теперь мы хотим услышать тебя. Нам очень интересно твое мнение об этой статье!

Напиши его в комментариях ниже!

Помогла ли тебе эта статья? Достаточна ли она подробна?

Остались вопросы? Задай их!

Мы ответим. Мы читаем все.

Добавить комментарий Отменить ответ

Один комментарий


Александр Кель :

Некоторые комментарии прошлых лет к этой статье:

Мария
07 февраля 2018
Очень понятно, доступно

Александр (админ)
07 февраля 2018
Мария, мы рады! Заходи к нам и делись с друзьями!

Евгений
05 марта 2018
Сайт замечательный! Совокупность лёгкого и понятного для прочтения текста и самих рисунков отличная.

Александр (админ)
05 марта 2018
Спасибо, Евгений! Заходи… )

Левон
09 мая 2018
Потрясающе! Я в восторге. Всё так хорошо расписано и показано, даже предлагают как можно легче формулами воспользоваться. Продолжайте в том же духе!

Александр (админ)
09 мая 2018
Спасибо большое, Левон!

Дилдора
18 мая 2018
Да, отлично! Мне тоже понравился. А как можно скачать, чтобы воспользоваться.

Александр (админ)
18 мая 2018
Дилдора, привет! К сожалению пока скачать никак нельзя ((( Только если по кускам делать скриншоты и потом распечатать. Руки не доходят сделать.

Таня
18 июня 2018
Молодцы, ребята. Это доступно, лаконично, толково. Успехов Вам и нам.

Максим
23 мая 2019
Прекрасный сайт. Дела. сейчас реферат по этой теме, обычно приходится сокращать, а здесь наоборот лить воду) Купил бы что-нибудь не для того, чтобы читать, а чтобы этот сайт жил, но, к сожалению, сам студент и деняк нема(

Александр (админ)
23 мая 2019
Ничего, Максим, студенты становятся профи и начинают зарабатывать. Все будет тип-топ! За добрые слова спасибо!

Геннадий
31 июля 2019
А если образующая колонны — дуга вытянутого эллипса, то какова боковая поверхность этой колонны?

Алексей Шевчук
01 августа 2019
Геннадий, здесь не обойтись без интеграла. Нужно знать зависимость радиуса колонны от высоты (например, можно вывести из уравнения эллипса).

Геннадий
09 августа 2019
Алексей! В одной из традиций такие образующие могли строить по контрольным точкам. Эллипс с полуосями 1040 и 65 (соотношение 16 к 1) модулей являет 36 точек с целочисленными координатами. Высота колонны — 256 модулей, верхний радиус — 14 модулей, а нижний — 16 модулей. Ось колонны паралельна вертикальной оси разметочного эллипса. Растояние между этими осями — 49 модулей. Основание колонны проецируем на малую ось данного эллипса.

Алексей Шевчук
13 августа 2019
Геннадий, ни эллипсы, ни интегрирование (на нужном для этой задачи уровне) в школьной программе не проходятся. Вкратце Ваша задача решается так: 1) Сначала необходимо составить уравнение эллипса. Например, в виде (x-x0)^2/a^2+(y-y0)^2/b^2 = 1 (рекомендую взять x0=49 и y0=0). 2) Пользуясь этим уравнением, можно вывести зависимость радиуса колонны от высоты (при х0=49 и у0=0 нужно будет просто выразить x из уравнения). 3) Нужно вычислить, на каких высотах y1 и y2 радиусы равны 14 и 16 (таких пар будет несколько, зависит от того, выпуклая колонна или вогнутая) — в Вашем случае всё просто, это 256 и 0. 4) наконец, нужно взять определённый интеграл по dy с пределами y1 и y2 от функции 2*pi*x (длины окружности на каждой высоте). Чтобы упростить вычисления, рекомендую пользоваться программами типа wolfram alpha.

Алексей Шевчук
25 августа 2019
Пояс закрытого эллиптического тора вполне подойдёт. Правда, не уверен, что Вы найдёте готовые формулы вычисления для подобных фигур

Окружающий нас мир динамичен и разнообразен, и далеко не всякий объект можно просто обмерить линейкой. Для подобного переноса используются специальные техники, как то триангуляция.
Потребность в составлении сложных развёрток, как правило, возникает при моделировании, работе с бумагой и металлом, в слесарном деле. Написанная ниже статья, объясняет принципы построения развёрток тел вращения (цилиндр, конус) и их частных случаев (сечение конуса, конус с переходом с круга на квадрат).

Содержание

Основы и инструмент

  • Все нижеописанные действия выполняются на бумаге, при помощи линейки, карандаша и циркуля. Рекомендуется комплект лекал, для повышения точности и качества развёрток.
  • При изготовлении развёрток на металле используется метровая линейка, чертилка, циркуль по металлу, комплект лекал, молоток и керно, для отметки узловых точек.
  • Длина окружности считается по формуле:


или

Где:
— радиус окружности,
— диаметр окружности,
— длина окружности,
— Число Пи (Pi),
Как правило, для вычисления используется значение (Pi) до второго знака (3,14), но в некоторых случаях, этого может быть недостаточно.

  • Усечённый конус с доступной вершиной: Конус, при построении которого можно определить положение вершины.
  • Усечённый конус с недоступной вершиной: Конус, при построении которого положение вершины определить затруднительно, в виду её удалённости.
  • Триангуляция: способ построения разверток поверхностей неразвертывающихся, конических, общего вида и с ребром возврата.
  • Следует помнить: Независимо от того, является рассматриваемая поверхность развертываемой или неразвертываемой, графически может быть построена только приближенная развертка. Это объясняется тем, что в процессе снятия и откладывания размеров и выполнения других графических операций неизбежны погрешности, обусловливаемые конструктивными особенностями чертежных инструментов, физическими возможностями глаза и погрешностями от замены дуг хордами и углов на поверхности плоскими углами. Приближенные развертки кривых не-развертывающихся поверхностей, кроме графических погрешностей, содержат погрешности, полученные за счет несовпадения элементов таких поверхностей с плоскими аппроксимирующими элементами. Поэтому для получения поверхности из такой развертки, кроме изгибания, необходимо произвести частичное растяжение и сжатие отдельных ее участков. Приближенные развертки при тщательном выполнении обладают точностью, достаточной для практических целей.

Представленный в статье материал, подразумевает, что вы имеете представление об основах черчения, умеете делить окружность, находить центр отрезка при помощи циркуля, снимать/переносить размеры циркулем, пользоваться лекалами, и соответствующим справочным материалом. Потому, объяснение многих моментов в статье опущено.

Построение развёртки цилиндра

Цилиндр



Тело вращения с наиболее простой развёрткой, имеющей форму прямоугольника, где две параллельные стороны соответствуют высоте цилиндра, а две другие параллельные стороны — длине окружности оснований цилиндра.

Усечённый цилиндр (рыбина)



  • Для создания развёртки, начертим четырёхугольник ACDE в натуральную величину (см.чертёж).
  • Проведём перпендикуляр BD, из плоскости AC в точку D, отсекая от построения прямую часть цилиндра ABDE, которую можно достроить по мере надобности.
  • Из центра плоскости CD (точка O) проведём дугу, радиусом в половину плоскости CD, и разделим её на 6 частей. Из получившихся точек O, проведём перпендикулярные прямые к плоскости CD. Из точек на плоскости CD, проведём прямые, перпендикулярные к плоскости BD.
  • Отрезок BC переносим, и превращаем в вертикаль. Из точки B, вертикали BC, проводим луч, перпендикулярный вертикали BC.
  • Циркулем снимаем размер C-O1, и откладываем на луче, из точки B, точку 1. Снимаем размер B1-C1, и откладываем перпендикуляр из точки 1.
  • Циркулем снимаем размер O1-O2, и откладываем на луче, из точки 1, точку 2. Снимаем размер B2-C2, и откладываем перпендикуляр из точки 2.
  • Повторять, пока не будет отложена точка D.
  • Получившиеся вертикали, из точки C, вертикали BC, до точки D — соединить лекальной кривой.
  • Вторая половина развёртки зеркальна.

Подобным образом строятся любые цилиндрические срезы.
Примечание: Почему "Рыбина" — если продолжить построение развёртки, при этом половину построить от точки D, а вторую в обратную сторону от вертикали BC, то получившийся рисунок, будет похож на рыбку, или рыбий хвост.

Построение развёртки конуса

Конус



Развёртка конуса может быть выполнена двумя способами. (См. чертёж)

  1. Если известен размер стороны конуса, из точки O, циркулем чертится дуга, радиусом равным стороне конуса. На дуге откладываются две точки (A1 и B1), на расстоянии равном длине окружности и соединяются с точкой О.
  2. Строится конус в натуральную величину, из точки O, в точку A, ставится циркуль, и проводится дуга, проходящая через точки A и B. На дуге откладываются две точки (A1 и B1), на расстоянии равном длине окружности и соединяются с точкой О.

Для удобства, от можно откладывать половину длинны окружности, в обе стороны от осевой линии конуса.
Конус со смещёной вершиной строиться так же, как усечённый конус со смещёнными основаниями.

Как отложить длину окружности на дуге:

Конус с прямоугольным (многогранным) основанием.



  1. В случае, если конус имеет ровное, радиальное, основание: (При построении окружности на виде с верху, путём установки циркуля в центр, и очерчивания окружности по произвольной вершине — все вершины основания укладываются на дугу окружности.) Построить конус, по аналогии с развёрткой обычного конуса (основание строить по окружности, от вида сверху). Отложить дугу из точки O. В произвольной части дуги поставить точку A1, и поочерёдно отложить все грани основания на дугу. Конечная точка последней грани будет B1.
  2. Во всех иных случаях конус строится по принципу триангуляции (см. далее).

Усечённый конус с доступной вершиной



Построить усечённый конус ABCD в натуральную величину (См. чертёж).
Стороны AD и BC продожить, до появления точки пересечения O. Из точки пересечения O, провести дуги, с радиусом OB и OC.
На дуге OC, отложить длину окружности DC. На дуге OB, отложить длину окружности AB. Полученные точки соединить отрезками L1 и L2.
Для удобства, от можно откладывать половину длинны окружности, в обе стороны от осевой линии конуса.

Как отложить длину окружности на дуге:

Примечание: Совсем не обязательно, что отрезки L1 и L2, если их продолжить, будут сходится в точке O. Если быть до конца честным, то сойтись они должны, но с учётом поправок на погрешности инструмента, материала и глазомера — точка пересечения может оказаться чуть ниже или выше вершины, что не является ошибкой.

Усечённый конус с переходом с круга на квадрат



Подготовка:
Построить усечённый конус ABCD в натуральную величину (см. чертёж), построить вид сверху ABB1A1. Окружность поделить на равные части (в приведённом примере показано деление одной четверти). Точки AA1-AA4 соединить отрезками с точкой A. Провести ось O, из центра которой провести перпендикуляр O-O1, высотой равной высоте конуса.
Ниже, первичные размеры снимаются с вида сверху.
Построение:

Подобным образом построить остальные сегменты.
Примечание: Если конус имеет доступную вершину, и КВАДРАТНОЕ основание - то построение можно провести по принципу усечённого конуса с доступной вершиной, а основание — конуса с прямоугольным (многогранным) основанием. Точность будет ниже, но построение существенно проще.

Читайте также: