Разведка лазерных излучений реферат

Обновлено: 04.07.2024

Методы и средства защиты от воздействия лазерного излучения можно подразделить на организационные, инженерно-технические и средства индивидуальной защиты. Надежной защитой от случайного попадания на человека является экранирование луча световодом на всем пути его действия. В качестве средств индивидуальной защиты применяются специальные защитные очки, стекла в которых подбираются в соответствии… Читать ещё >

Лазерное излучение ( реферат , курсовая , диплом , контрольная )

РЕФЕРАТ Лазерное излучение

Использование лазерных приборов связано с определенной опасностью для человека. В данной работе будут рассмотрены особенности практического применения лазерных приборов и способы защиты, связанные с возможностью поражения глаз и кожных покровов человека.

Лазер и его классификация

лазер безопасность излучение защита Для начала познакомимся с лазером.

Лазер, или оптический квантовый генератор, — это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.

Отдельные атомы таких материалов при попадании на них фотона обладают свойствами перехода с верхнего энергетического уровня на нижний уровень с испусканием двух фотонов, индуцированных с той же частотой, поляризацией и направлением распространения.

Примером может служить рубиновый оптический квантовый генератор, в котором рабочим телом является рубин. Мощность в импульсе составляет около 100 МВт при мощности на возбуждение около 20 кВт/см 3 , а температура, создаваемая лазерным пучком, может достигать 10 15 К (примерно в 10 11 раз больше температуры Солнца).

Существуют и другие виды лазеров с твердым телом, например из ниодимового стекла, флюоритита кальция с примесью атомов таких редкоземельных элементов, как диспрозий, самарий и пр. (длина волны излучения равна 1,06 мкм), или газовые лазеры, например гелий — ниодимовые лазеры (длина волны излучения равна 632,8 нм; 1,15 и 3,39 мкм) и др.

Лазеры, или оптические квантовые генераторы, находят всё более широкое применение в различных отраслях производства, науке, медицине, биологии, сельском хозяйстве, связи и др.

В зависимости от характера активной среды лазеры подразделяются на твердотелые (на кристаллах или стеклах), газовые, лазеры на красителях, химические, полупроводниковые и др.

По степени опасности лазерного излучения для обслуживающего персонала лазеры подразделяются на четыре класса:

* класс I (безопасные) — выходное излучение не опасно для глаз;

* класс II (малоопасные) — опасно для глаз прямое или зеркально отраженное излучение;

* класс III (среднеопасные) — опасно для глаз прямое, зеркально, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и (или) для кожи прямое или зеркально отраженное излучение;

* класс IV (высокоопасные) — опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.

Классификация определяет специфику воздействия излучения на орган зрения и кожу. В качестве ведущих критериев при оценке степени опасности генерируемого лазерного излучения приняты величина мощности (энергии), длина волны, длительность импульса и экспозиции облучения.

По характеру генерации излучения лазеры подразделяются на импульсные и лазеры непрерывного действия. Энергетические параметры лазеров зависят от их вида. Воздействие лазерного излучения на организм человека носит сложный характер и обусловлено как непосредственным действием лазерного излучения на облучаемые ткани, так и вторичными явлениями, выражающимися в различных изменениях, возникающих в организме в результате облучения. Различают термическое и нетермическое действия лазерных излучений.

Лазерное излучение и его особенности

Лазерное излучение — электромагнитное излучение, генерируемое в диапазоне волн 0,2−1000 мкм. Этот диапазон делится на следующие области спектра в соответствии с биологическим действием лазерного луча: 0,2−0,4 мкм — ультрафиолетовая область, 0,4−0,75 — видимая, 0,75−1,4 мкм — ближняя инфракрасная, свыше 1,4 мкм — дальняя инфракрасная область. Наиболее часто используют в технике лазеры с длинами волн, мкм: 0,34, 0,49−0,51, 0,53, 0,694, 1,06 и 10,6.

Отличие лазерного излучения от других видов излучения заключается в монохроматичности, когерентности и высокой степени направленности. При оценке биологического действия следует различать прямое, отраженное и рассеянное лазерное излучение. Эффекты воздействия определяются механизмом взаимодействия лазерного излучения с тканями (тепловой, фотохимический, ударно-акустический и др.) и зависят от длины волны излучения, длительности импульса (воздействия), частоты следования импульсов, площади облучаемого участка, а также от биологических и физико-химических особенностей облучаемых тканей и органов. Лазерное излучение с длиной волны 380…1400 нм представляет наибольшую опасности для сетчатки глаза, а излучение с длиной волны 180…380 нм и свыше 1400 нм — для передних сред глаза. Особенностями лазерных излучений являются монохроматичность излучения (строго одной длины), когерентность излучения (все источники излучения испускают электромагнитные волны в одной фазе), острая направленность луча (малое расхождение). Эти свойства позволяют с помощью лазера на сравнительно малой площади получать исключительно большие плотности энергии. Именно благодаря этому лазеры используются для обработки материалов — резание, сверление отверстий в металлах, сверхтвердых материалах, кристаллах, пайка, точечная сварка и др.

Диапазон длин волн, излучаемых лазерами, охватывает видимый спектр и распространяется в инфракрасную и ультрафиолетовую области. Для каждого режима работы лазера и спектрального диапазона рекомендуются соответствующие предельно допустимые уровни (ПДУ) для энергии (W) и мощности (P) излучения, прошедшего ограничивающую апертуру d = 7 мм. Для видимого диапазона или d = 1.1 мм, для остальных, энергетической экспозиции (H) и облученности (E), усредненных по ограничивающей апертуре: H = W / Sa, E = P / Sa, где Sa — ограничивающая апертура.

Хронические ПДУ в 5 — 10 раз ниже ПДУ однократного воздействия. При одновременном воздействии ЛИ разного диапазона их действие суммируется с умножением на соответствующий энерговклад.

Лазерное излучение характеризуется некоторыми особенностями:

2 — малая длительность импульсов (до 0.1 нс.);

3 — высокая плотность мощности (до 1e+9 Вт/см 2 ) энергии;

4 — Измерение энергетических параметров и характеристик лазерного излучения

Виды действия лазерного излучения

Наиболее опасно лазерное излучение с длиной волны:

380?1400 нм — для сетчатки глаза,

180?380 нм и свыше 1400 нм — для передних сред глаза,

180?105 нм (т.е. во всем рассматриваемом диапазоне) — для кожи.

Основную опасность при эксплуатации лазера представляет прямое лазерное излучение.

Степень потенциальной опасности лазерного излучения зависит от мощности источника, длины волны, длительности импульса и чистоты его следования, окружающих условий, отражения и рассеяния излучения.

Биологические эффекты, возникающие при воздействии лазерного излучения на организм человека, делятся на две группы:

Первичные эффекты — органические изменения, возникающие непосредственно в облучаемых тканях;

Вторичные эффекты — неспецифические изменения, появляющиеся в организме в ответ на облучение.

Факторы лазерного излучения

В процессе изготовления, испытания и эксплуатации лазерных изделий на обслуживающий персонал могут воздействовать физические, химические и психофизиологические опасные и вредные факторы.

К физическим факторам относятся:

· Лазерное излучение (прямое, рассеянное, зеркальное или диффузно отраженное);

· Высокое напряжение в цепях управления и источниках электропитания лазера (лазерных установок);

· Повышенный уровень ультрафиолетовой радиации от импульсных ламп накачки или кварцевых газоразрядных трубок в рабочей зоне;

· Повышенная яркость света от импульсных ламп накачки и зоны взаимодействия лазерного излучения с материалом мишени;

· Повышенный шум и вибрация на рабочем месте, возникающие при работе лазера (лазерной установки);

· Повышенный уровень ионизирующего рентгеновского излучения от газоразрядных трубок и др. элементов, работающих при анодном напряжении более 5 кВ;

· Повышенный уровень электромагнитных излучений ВЧ — и СВЧ — диапазонов в рабочей зоне;

· Повышенный уровень инфракрасной радиации в рабочей зоне;

· Повышенная температура поверхностей оборудования;

· Взрывоопасность в системах накачки лазеров;

· Возможность взрывов и пожаров при попадании лазерного излучения на горючие материалы.

К химическим факторам относятся:

· Загрязнение воздуха рабочей зоны продуктами взаимодействия лазерного излучения с мишенью и радиолиза воздуха (озон, окислы азота и др);

· Токсические газы и пары от лазерных систем с прокачкой хладагентов и др.

Психофизиологические факторы - это:

· Монотония, гипокинезия, эмоциональная напряженность, психологический дискомфорт;

Локальные нагрузки на мышцы и кисти предплечья; напряженность анализаторных функций (зрение, слух).

Выходные излучения лазера

Не представляет опасности для глаз и кожи

Представляет опасность при облучении глаз прямым или зеркальным отражением излучения

Представляет опасность при облучении глаз прямым, зеркальным отражением излучения, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности и (или) при облучении кожи прямым или зеркальным отражением излучения

Представляет опасность при облучении кожи диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности

Наличие опасных и вредных факторов в зависимости от класса лазера (классы лазеров приведены в табл. 1) приведено в табл. 2.

Жизненная необходимость в информации для любых государственных или коммерческих организаций вынуждает их расходовать людские, материальные и финансовые ресурсы на ее постоянное добывание. Так как любую работу эффективнее выполняют профессионалы, то эти структуры создают специализированные органы, предназначенные для добывания информации. Такими органами являются органы разведки.

Возможности лазерной разведки. Достоинства и недостатки.

Лазерная разведка является одним из перспективных видов разведок. Интенсивно используется на земле, на море и, особенно в воздушном пространстве и космосе. Она предназначена для обнаружения, распознавания и определения координат с помощью приборов, работающих на принципе использования лазерного излучения.

Лазерное излучение может быть послано тонкими пучками с углами расходимости, измеряемыми долями минуты или даже секундами. Рассеяние энергии при этом столь незначительно, что при мощности излучения лазера в 100 кВт можно передавать информацию на расстояние в несколько световых лет в воздушном пространстве. Но, однако, и у лазерного излучения по сравнению с радиоволнами есть недостатки. Говоря о колоссальных расстояниях, на которых может осуществляться связь с использованием лазера, имеют в виду, что луч света пробегает это расстояние в вакууме. В атмосфере лучи быстро затухают и обычно дальность распространения составляет сотни км. Кроме того, лучи лазера не в состоянии огибать даже мелкие неровности. Некоторые вещества, прозрачные для радио-лучей, являются непреодолимой преградой для лазера. Эти недостатки не имеют значения в космосе. Поэтому использование лазеров особенно перспективно для космической радиоэлектронной разведки. Поскольку лазер испускает энергию в виде тонких пучков, то усложняется ведение поиска и наведение на нужный объект, т.к. даже небольшое отклонение луча приводит к большим линейным отклонениям в зоне нахождения объекта.

Типы лазеров, и их устройство.

Лазер - это источник излучения, обладающий многими замечательными свойствами, главные из которых монохроматичность, т. е. очень чистый цвет излучения, большая яркость и - при определенных условиях - высокая направленность. В основе работы лазера лежит интереснейшее явление - вынужденное, или стимулированное, излучение. Чтобы излучать, система (атомы-излучатели) должна находиться в возбужденном (верхнем) энергетическом состоянии. Переходя в нижнее энергетическое состояние, она освобождает (излучает) энергию. Переход может быть как самопроизвольным (спонтанным), так и стимулированным внешним излучением. Одновременно внешнее излучение поглощается системой за счет переходов из нижнего энергетического состояния в верхнее. В обычных условиях, когда большая часть системы находится в нижнем состоянии, суммарный эффект состоит в поглощении.

Если с помощью специального источника возбуждения перевести большую часть системы в верхнее, вместо поглощения возникнет усиление. Но это еще не лазер - генератор, а только усилитель. Он может усиливать не только внешнее, но и собственное (спонтанное) излучение, которое будет нарастать лавинообразно.

Чтобы получить генератор, надо создать обратную связь - замкнуть "вход" на "выход". Тогда образуется структура со своими резонансными частотами - резонатор, в котором в случае превышения усиления над потерями возникает генерация на длине волны, лежащей в полосе спонтанного излучения.

Итак, в лазере обязательно имеются источник возбуждения, обратная связь и активная среда. Особое внимание следует обратить на то, чтобы активная среда обеспечивала минимальные потери. Отсюда, казалось бы, очевидно, что она должна быть максимально однородной и с минимальным рассеянием.


  1. Полупроводниковые лазеры

  1. Твердотельные лазеры

  1. Жидкостные лазеры

  1. Газоразрядные лазеры

- лазеры, в которых генерируемое излучение рождается на переходах между энергетическими уровнями свободных ионов (применяется термин “ионные лазеры”).

- лазеры, генерирующие на переходах между уровнями свободных атомов.

- лазеры, генерирующие на переходах между уровнями молекул (так называемые молекулярные лазеры).


  1. Гелий-неоновой лазер имеет три основных рабочих перехода, на длинах волн 3,39, 1,15 и 0,63 мкм.

Это типичный лазер на нейтральных атомах (атомарный) – это газоразрядный гелий-неоновый лазер, в котором используется смесь гелия и неона в соотношении примерно 10:1,5:1, при общем давлении в газоразрядной трубке около 80 Па. Вынужденное излучение создается атомами неона, а атомы гелия участвуют лишь в передачи энергии атомам неона (рис 1.)

При возбуждении газовой смеси электрическим током (постоянным или переменным с частотой около 30 МГц) возникает тлеющий разряд, подобный разряду в рекламной неоновой лампе. В электрическом разряде часть атомов неона переходит с основного уровня Е­1 на долгоживущие возбужденные уровни Е4 и Е5. Инверсия населенностей создается благодаря большей населенности этих уровней по сравнению с короткоживущим уровнем Е3. В чистом неоне созданию инверсии населенности мешает метастабильный уровень Е2, поэтому полезным оказалось введения в рабочую смесь гелия.

Под действием электрического разряда часть атомов гелия ионизируется и образуется плазма, содержащая электроны с большой кинетической энергией. Эти электроны, сталкиваясь с атомами гелия, переводят их из основного состояния Е1 на долгоживущие возбужденные уровни Е2 и Е3, которые близки к уровням Е4 и Е5 неона. Поэтому при столкновениях возбужденных атомов гелия с невозбужденными атомами неона возникает высокая вероятность резонансной передачи возбуждения, в результате чего атомы неона оказываются на уровнях Е4 и Е5, а атомы гелия возвращаются в основное состояние. Вероятность возбуждения атомов неона до уровней Е2 и Е3­­ за счет столкновений с атомами гелия мала, так как энергия этих состояний существенно отличается от энергии уровней Е2 и Е3­­ гелия. Таким образом, использование вспомогательного газа – гелия дает возможность осуществить дополнительно заселение энергетических уровней неона и получить инверсию населенностей между уровнями Е3 и Е4 , Е5.

Поскольку уровень Е3 неона является короткоживущим, на переходах Е4Е3 и Е5Е3, можно получить непрерывную генерацию. Переходу Е4Е3 соответствует генерация в ближней инфракрасной области с длиной волны 1,153 мкм, а переходу Е5Е3 – в красной области видимого спектра с длиной волны 0,6328 мкм. Каждый из уровней Е3, в диапазоне видимого и инфракрасного спектров гелий-неоновый лазер может содержать большое число (~130) спектральных линий. Выделение нужной спектральной линии осуществляется подбором зеркал оптического резонатора, введением в резонатор диспергирующего или селективно поглощающего элемента, постоянного магнита. Между уровнями Е4 и Е­5 неона есть еще один короткоживущий уровень, переход атомов на который с уровня Е5 позволяет получить генерацию на длине волны 3,392 мкм.

Достоинством гелий-неоновых лазеров являются когерентность их излучения, малая потребляемая мощность (8…10 Вт) и небольшие размеры. Основные недостатки – невысокий КПД (0,01…0,1 %) и низкая выходная мощность, не превышающая 60 мВт. Эти лазеры могут работать в импульсном режиме, если для возбуждения использовать импульсное напряжение большой амплитуды при длительности в единицы микросекунд. Главные области практического применения гелий-неоновых лазеров – научные исследования и измерительная техника.

2. В аргоновом лазере генерация происходит на переходах между уровнями однократного иона аргона (Ar+). Основными являются переходы на длинах волн 0,488 мкм (голубой цвет) и 0,515 мкм (зеленый цвет).

Инверсия населенностей в таком лазере между верхним (4p) и нижним (4s) рабочими уровнями создается таким образом. Уровень 4p, имеющий по сравнению с уровнем 4s большее время жизни, заселяются ионами аргона за счет их столкновения с быстрыми электронами в газовом разряде за счет переходов возбужденных ионов из группы расположенных выше уровней 5p. В то же время уровень 5p, обладающий очень коротким временем жизни, быстро опустошается за счет возвращения ионов в основное состояние. Так как уровни 5p, 5s, 4p состоят из групп подуровней, генерация может происходить одновременно на нескольких длинах волн: от 0,45 до 0,515.

В настоящие время аргоновые ионные лазеры являются самыми мощными источниками непрерывного когерентного излучения в ультрафиолетовом и видимом диапазонах спектра. Широкому распространению мощных аргоновых лазеров мешают их высокая стоимость, сложность, малый КПД (~0,1 %) и большая потребляемая мощность (3…5 кВт).

3. Генерация в СО2-лазере происходит на переходах между колебательными уровнями молекулы углекислого газа (СО2) основными являются переходы на длинах волн 9,6 и 10,6 мкм. Основными составляющими газовой смеси являются углекислый газ и молекулярный азот.

Особенности газовых лазеров большей частью обусловлены тем, что они, как правило, являются источниками атомных или молекулярных спектров. Поэтому длины волн переходов точно известны, они определяются атомной структурой и обычно не зависят от условий окружающей среды. Стабильность длины волны генерации, при определенных усилиях, может быть значительно улучшена по сравнению со стабильностью спонтанного излучения.

Типы газовых лазеров.

Эксимерные лазеры. Так называют газовые лазеры, генерирующие на переходах между электронными состояниями эксимерных (разлетных) молекул. К таким молекулам относятся, например молекулы Ar2, Kr2, Xe2 , ArF, KrCl, XeBr и др. Эти молекулы содержат атомы инертных газов.

Заметим, что в эксимерных лазерах реализованы наиболее низкие значения генерируемых длин волн. Так в лазере на молекулах Хе2 наблюдалась генерация на длине волн 0,172 мкм, в лазере на молекулах Kr2 0,147 мкм, в лазере на Ar2 0,126 мкм.

Электроионизационные лазеры. В качестве ионизирующего излучения используют ультрафиолетовое излучение, электронный пучок из ускорителя, пучки заряженных частиц, являющихся продуктами ядерных реакций.

Химические лазеры. Реакции идущие с высвобождением энергии, называют экзоэнергетичсекими. В этих лазерах энергия, высвобождающаяся при химических реакциях, идет на возбуждение активных центров и, в конечном счете, преобразуется в энергию когерентного света.

Приведем пример реакций замещения, которые используются в химических лазерах:

F + H2 -> HF* + H , F + D2 ->DF* + D, H + Cl2 -> Hcl* + Cl,

Cl + HJ - > HCl* + J.

Звездочка указывает на то, что молекула образуется в возбужденном колебательном состоянии.

Принцип работы лазеров.

Пусть имеется цепочка атомов, вытянутых в прямую линию. Если все эти атомы находятся в возбужденном состоянии, то внешний фотон, ударив в крайний атом по направлению вдоль цепочки, вызовет излучение фотона из этого атома, причем излученный фотон будет иметь такую же энергию и такое же направление излучения, что и ударивший фотон. Т.о. будут двигаться вдоль цепочки уже 2 фотона ==> лавинообразная реакция. В результате световой поток усиливается в огр. число раз. Теоретически коэффициент усиления может достигать 1020. Важно, что в результате такого усиления будет двигаться поток фотонов с одинаковой энергией и направлением. В действительности, кроме атомов, находящихся в возбужденном состоянии и способных дать когерентное излучение под действием фотонной бомбардировки, всегда имеются атомы, находящиеся в основном невозбужденном состоянии. Эти атомы поглощают энергию ударивших их фотонов, и тем самым уменьшают энергию выходного когерентного излучения – уменьшают усиление света. Если число возбужденных атомов будет равно числу невозбужденных, то усиление света не получится. Таким образом, для усиления света и получения когерентного излучения, необходимо, чтобы число возбужденных атомов было больше находящихся в невозбужденном состоянии. Т.е. должна быть инверсная заселенность энергетических уровней. Надо переселить в большинстве атомов электроны на более удаленные от ядра орбиты (более высокие уровни энергии). Чтобы усиление света происходило в течение необходимого промежутка времени нужно все это время сохранять инвертированное состояние вещества, т.е. поддерживать большое число возбужденных атомов. Для этого надо к данному веществу подводить тем или иным способом энергию, вызывающую возбуждение атомов (процесс накачки). Квантовый усилитель можно превратить в генератор, если осуществить в нем ПОС, при которой часть энергии излучения с выхода возвращается на вход и снова усиливается.

Основными характеристиками лазера являются:

- диапазон волн и ширина спектра генерируемого излучения;

- энергетические параметры, коэффициент полезного действия при преобразовании электрической энергии источника накачки в энергию оптического излучения;

- угловые расхождения и пространственная когерентность излучения;

- временные характеристики излучения;

- габаритные размеры, масса;

- напряжение и мощность источника питания;

- возможность установки аппаратуры на подвижных

- влияние внешних условий на стабильность параметров.

Лазеры излучают энергию, как правило, в виде тонких пучков, но при этом усложняется система поиска и наведения луча на нужный объект, особенно на больших расстояниях, так как даже небольшое угловое отклонение луча приводит к большим линейным его отклонениям в зоне нахождения объекта.

Известно, что разработаны лазерные устройства, обеспечивающие эффективное обнаружение, подслушивание и регистрацию (перехват) разговоров, ведущихся в помещениях. Дальность действия устройств до 1000 метров. Прослушивание и перехват переговоров ведутся благодаря получению отраженного сигнала

от обычного оконного стекла, представляющего собой своеобразную мембрану, которая колеблется со звуковой частотой, создавая фонограмму происходящего разговора.

Военное применение лазеров.

1. Лазерная локация.

Лазерной локацией называют область, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемого лазерами. Объектами лазерной локации могут быть танки, корабли, подводные объекты, ракеты, спутники, промышленные и военные сооружения. Принципиально лазерная локация осуществляется активным методом.

Лазерное излучение отличается от радио излучения тем, что оно является узконаправленным, монохроматичным, имеет большую импульсивную мощность и высокую спектральную яркость. Все это делает оптическую локацию конкурентно-способной в сравнении с радиолокацией, особенно при ее использовании в космосе (где нет поглощающего воздействия атмосферы) и под водой (где слоя ряда волн оптического диапазона существуют окна прозрачности).

Delphi site: daily Delphi-news, documentation, articles, review, interview, computer humor.

Для получения информации об интересующем объекте может быть использовано значительное количество различной по физическим принципам действий и способам добывания аппаратуры и средств (рис. 1.4) технической разведки (ТСР).

Параметры этой аппаратуры являются определяющими в организации технического канала утечки информации. Поэтому при решении задачи защиты информации необходимо учитывать возможные технические характеристики ТСР как на момент создания системы защиты ,так и на весь период ее эксплуатации. Так, например, последовательное повышение чувствительности приемного тракта за счет постановки различных типов ма-лошумящих усилителей в приемных трактах специальных приемных устройств позволило существенно повысить дальность перехвата интересующих РЭС (Л.64) и потребовало их учета при проведении защитных мероприятий.

В соответствии с физическими принципами построения технические средства разведки подразделяются на средства оптической (ОР), оптикоэлектронной (ОЭР), радиоэлектронной (РЭР), гидроакустической (ГАР), акустической (АР), химической (ХР), радиоционной (РДР), сейсмической (СР), магнито-метрической (ММР) и компьютерной разведок (КР).

Подобные ТСР могут размещаться на космических, авиационных, морских и наземных носителях.

Оптическая разведка обеспечивает добывание информации с помощью оптических ТСР, обеспечивающих прием электромагнитных колебаний инфракрасного, видимого и ультрафиолетового диапазонов, излучаемых или отраженных интересующими объектами наблюдения и местными предметами.

Делится на фотографическую и визуально-оптическую. Ведется с использованием оптических приборов наблюдения (бинокли, перископы, монокуляры, в т.ч. панхроматические) и специальной фотоаппаратуры.

Оптико-электронная разведка обеспечивает получение информации с помощью ТСР, имеющих входную оптическую систему с фотоприемником и электронными схемами обработки электрического сигнала, которые обеспечивают прием электромагнитных волн видимого и инфракрасного диапазонов, излученных или отраженных объектами наблюдения и местностью.

В состав ТСР ОЭР входят - телевизионная, лазерная и инфракрасная разведки и разведка лазерных излучений.

ТСР ОЭР подразделяются на активные и пассивные. Пассивная аппаратура ОЭР основана на приеме собственных или переотраженных излучений объектами наблюдения.

К ТСР пассивной ОЭР относятся приборы ночного видения (ПНВ), тепловизоры, теплопеленгаторы и радиометры.

С помощью аппаратуры телевизионной разведки осуществляется добывание информации за счет приема сигналов в видимом и ближнем ИК

диапазонах, отраженных объектами наблюдения и элементами окружающей среды.

Приборы разведки лазерных излучений обеспечивают добывание информации содержащейся в оптических сигналах лазерной техники различного назначения - системах дальнометрии, локации, связи, навигации, силового воздействия т.п.

Л

Рис Л .4. Технические средства разведки.

В состав аппаратуры активной ОЭР входят лазерные устройства со сканированием зондирующего светового луча и инфракрасные с использованием ИК излучателя для подсветки местности.

Приборы лазерной разведки обеспечивают получение видовой информации путем облучения местности зондирующими лазерными сигналами и последующим приемом и анализом отраженных от объектов и местности этих сигналов.

ТСР радиоэлектронной разведки (РЭР) обеспечивают получение информации за счет приема и анализа электромагнитных излучений , создаваемых работающими радиоэлектронными средствами (РЭС). Эти излучения могут быть собственными (основными) излучениями или вторичными-(отраженными).

Параметры излучений РЭС, обеспечивающие их функционирование и выполнение поставленных задач - частота излучений, мощность, вид модуляции, вид амплитудного или фазового спектра, использование непрерывных или импульсных излучений,вид диаграммы направленности и т.п.относятся к основным параметрам РЭС.Для более точной привязки соответствующему РЭС и объекту на котором оно установлено, используют "паразитные" параметры излучений РЭС - выбег частоты при прогреве генератора, излучение на гармониках, паразитные излучения и т.п.

Так, например, характерным признаком излучений радиозакладных устройств является их излучение как на основной частоте, так и на гармониках.

В радиоэлектронную разведку входят пассивные средства получения информации- радиоразведка, радиотехническая разведка, радиотепловая разведка и разведка побочных ЭМИ и наводок (ПЭМИН) и активные - радиолокационная разведка.

Технические средства радиоразведки обеспечивают получение данных об объекте наблюдения путем поиска, обнаружения, перехвата, анализа и местоопределения положения его РЭС связи, радиотелеметрии и радионавигации.

Технические средства радиотехнической разведки обеспечивают получение данных об объекте наблюдения путем поиска, обнаружения, перехвата и анализа перехваченных сигналов, а также определения местоположения РЭС локации, навигации, управления,средств РЭБ, а также радиоизлучений технических устройств и технологического оборудования электрогенераторов и электродвигателей, трансформаторов, реле, коммутирующих устройств, систем зажигания двигателей внутреннего сгорания и т.п.

ТСР радио - и радиотехнической разведки, в зависимости от решаемых задач, объединяются в различные комплексы - стационарные, мобильные, портативные. Для поиска и обнаружения, анализа, местоопределения и перехвата интересующих излучений используются наборы антенных устройств, малошумящих усилителей, специальных приемных устройств (прямого усиления, супергетеродинных), анализирующих устройств, демодуляторов, устройств регистрации и т.п.

Технические средства радиотепловой разведки позволяют по тепловому излучению наземных, воздушных, морских и космических объектов, обнаруживать и определять их местоположение. К таким средствам относятся радиотепловые станции (РЛТС) позволяющие за счет контрастности теплового излучения объектов и фона земной поверхности, моря выявлять объекты наблюдения.

Технические средства радиолокационной разведки обеспечивают получение информации об объекте наблюдения путем облучения этого объекта и окружающей среды зондирующими радиосигналами с последующим приемом и анализом части рассеянного объектом зондирующего сигнала.

Делится на параметрическую, видовую, нелинейную.

Параметрическая РЛР обеспечивает получение информации, которая содержится в пространственных, скоростных и отражательных характеристиках объекта наблюдения (например, для обнаружения, определения координат и параметров движения космических, воздушных, морских и наземных объектов).

Средства видовой РЛР обеспечивают получение информации содержащейся в видовых изображениях объектов наблюдения и местности (картографирование местности, определение расположения интересующих объектов - кораблей, укреплений и т.п., ведущееся строительство объектов

- заводов, пристаней и т. п., определение метеоусловий и т.п.).

За последнее время широкое распространение получили средства нелинейной радиолокации, позволяющие за счет разности отраженных от объекта сигналов на 2-й и 3-й гармониках определять "начинку" объекта -металл или электронные компоненты.

Технические средства гидроакустической разведки ( ГАР ) обеспечивают добывание информации путем приема и анализа акустических сигналов инфразвукового, звукового и ультразвукового диапазонов, создаваемых или отраженных от надводных и подводных объектов.

Технические средства ГАР подразделяются на активные и пассивные.

С помощью гидролокаторов, работающих на принципе излучения в водной среде зондирующих акустических сигналов с последующим приемом и анализом отраженных от объектов наблюдения и морского дна эхо-сиг-налов проводится:

- гидролокационная параметрическая разведка (получение информации содержащейся в пространственных, скоростных и других характеристиках объектов наблюдения);

- гидролокационная видовая разведка (изображения дна и объектов, получаемые из отраженных сигналов).

Пассивные ТСР ГАР:

Шумопеленгаторы принимают и анализируют шумовые акустические излучения в водной среде, возникающие при работе двигателей, гребных валов, машин и механизмов различных агрегатов надводных кораблей, подводных лодок и других плавсредств.

ТСР предназначенные для приема и анализа акустических сигналов, создаваемых гидролокаторами, эхолотами, системой гидроакустической связи и другим гидроакустическим вооружением надводных кораблей, подводных лодок и других плавсредств.

Подобные ТСР обеспечивают:

- разведку гидроакустических шумовых полей, создаваемых работающими гребными валами, различными двигателями и механизмами надводных кораблей и подводных лодок;

- разведку гидроакустических сигналов, создаваемых различными работающими средствами гидроакустического вооружения надводных кораблей и подводных лодок;

Технические средства радиационной разведки (РДР) обеспечивают получение информации за счет приема и анализа радиоактивных излучений, связанных с выбросом и отходами производства ядерных боеприпасов и зарядов, производством и эксплуатацией ядерных реакторов, двигателей и радиоактивным заражением местности.

ТСР РДР подразделяются на аппаратуру дистанционного обнаружения и измерения параметров радиационного поля и аппаратуру отбора радиоактивных проб почвы, воды и воздуха в районе расположения интересующего объекта.

Аппаратура дистанционной РДР включает в свой состав дозиметры (для определения суммарных доз радиоактивности), радиометры (для измерения радиации), рентгенометры (для обнаружения радиоактивного заражения местности и последующей радиационной разведки интересующих районов) и спектрометры (для определения изотопного состава излучателей). Аппаратура отбора радиоактивных проб практически не отличается от обычной радиометрической и спектрометрической аппаратуры широко используемой при химическом анализе проб окружающей среды.

Технические средства химической разведки ГХР1 обеспечивают получение информации путем контактного или дистанционного анализа изменения химического состава окружающей объект наблюдения среды под воздействием выбросов и отходов производства, работы двигателей, в результате выстрелов и взрывов, преднамеренного рассеяния химических веществ, испытаний и применения химического оружия. ТСР ХР включает: аппаратуру дистанционной разведки (радары, радиометры, ИК-спектро-метры); аппаратуру контактного анализа (газоанализаторы, газосигнализаторы, пробоотборные устройства).

Может устанавливаться на космических носителях (радиометры и ИК-спектрометры), воздушных носителях - самолетах, вертолетах (пробоотборные средства), наземных и морских носителях (приборы локального и дистанционного действия).

Технические средства сейсмической разведки обеспечивают получение информации путем обнаружения и анализа деформационных и сдвиговых полей в земной поверхности, возникающих под воздействием различных взрывов (в основном разведки подземных ядерных взрывов и определения их параметров). Для получения сейсмограмм, характеризующих волновое поле, создаваемое взрывом, применяются технические средства и методические приемы, образующие обобщенный сейсморегистрирующий канал - совокупность последовательно соединенных аппаратов, осуществляющих прием механических колебаний почвы, их преобразования в электрические сигналы и запись на носитель.

Технические средства магнитометрической разведки (ММР) обеспечивают получение информации об объекте путем обнаружения и анализа локальных изменений поля Земли под воздействием объектов с большой магнитной массой. Наиболее известно применение подобных ТСР для обнаружения и определения объектов с большой массой (подводные лодки), находящихся в водной среде. Подобные ТСР позволяют также создавать "магнитные портреты" различных объектов.

Компьютерная разведка позволяет получать информацию из электронных баз данных ЭВМ, включенных в компьютерные сети, а также информацию об особенностях их построения и функционирования в целях добывания сведений об объекте, конечных результатах, формах и способах деятельности субъектов, являющихся пользователями информационно-вычислительной сети, и используемом аппаратурном и программном обеспечении, протоколах управления и информационного взаимодействия и используемых средствах и методах защиты информации. Возможные этапы ведения компьютерной разведки представлены в таблице 1.2.

1. Принципы работы средств лазерной разведки.

В настоящее время существенно возросло использование лазерных приборов в системах вооружения и военной техники. В частности, широкое применение лазерные приборы находят в системах дальнометрии , локации, разведки, связи, навигации, подсвета и целеуказания , наведения средств поражения, силового воздействия. В таблице 1 приведены виды лазерных средств, используемые длины волн и режимы работы.


Таблица 1 Виды лазерных средств, длины волн и режимы работы.

Под лазерной разведкой понимается процесс получения видовой информации путем облучения местности зондирующими лазерными сигналами с последующим приемом и анализом отраженного от местности и объектов лазерного излучения.

Лазерная разведка решает те же задачи, что и фотографическая. Однако, по сравнению с последней , она обеспечивает следующие преимущества:

· возможность скрытного ведения разведки в ночных условиях;

· оперативную обработку и передачу разведывательной информации на пункт сбора и обработки.

В настоящее время средства лазерной разведки используются только на воздушных носителях. Однако в соответствии с программой НАСА создается лазерная система, которую предполагают использовать для ведения разведки из космоса. Для этого конструируется специальный лазер, работающий в режиме излучения коротких импульсов с большой пиковой мощностью.

Принцип действия лазерной системы воздушной разведки заключается в следующем. Узконаправленный луч лазера с помощью вращающейся многогранной зеркальной призмы сканирует местность перпендикулярно направлению полета самолета (рис. 1). Одновременно с лучом лазера действует приемная оптическая система с фотоприемником (ФП), которая воспринимает отраженные объектами и местностью лазерные сигналы и фокусирует принятое излучение на ФП. ФП преобразует лазерное излучение в электрические сигналы, амплитуда которых меняется в соответствии с интенсивностью принятого лазерного излучения. После соответствующей обработки сигналов формируется строка изображения местности, над которой пролетает носитель разведывательной аппаратуры. Развертка изображения местности по кадрам осуществляется за счет перемещения носителя по курсу.


Рис. 1- Упрощенная функциональная схема лазерной системы воздушной разведки с воспроизведением изображения на экране ЭЛТ

Изображение местности в лазерных системах разведки может регистрироваться на фотопленку либо воспроизводиться на экране ЭЛТ. Возможна также передача данных лазерной разведки на Землю по радиоканалу.

Длина волны зондирующего излучения лазера должна совпадать с окнами прозрачности атмосферы и лежать в области максимальной контрастности объектов разведки и фонов. Выбор ФП для конкретной системы разведки проводится исходя из минимальной пороговой чувствительности для данного спектрального диапазона. Постоянная времени и частотная характеристика ФП выбирается в соответствии с параметрами передающей и приемной оптики, т.е. ФП с усилителем не должен снижать разрешающую способность лазерной системы.

Основными ТТХ лазерной системы разведки являются:

1. Высота применения Н зависит от многих факторов: мощности лазера, чувствительности ФП, коэффициента ослабления лазерного излучения в атмосфере, угловой разрешающей способности системы и других параметров.

2.Диапазон изменения отношения V / H .

3.Угол сканирования зависит от типа сканирующего устройства, угла поля зрения приемной оптики, мощности лазера.

4.Разрешающая способность лазерной системы определяется шириной зондирующего лазерного луча и углом поля зрения приемной оптики. В системе линейного сканирования при фиксированных значениях ширины луча и поля зрения приемного объектива линейная разрешающая способность является функцией высоты и угла сканирования.

5. Рабочие длины волн и ограничения по метеорологическим условиям.

Лазерные камеры с линейным сканированием дают высококачественные изображения местности в ночных условиях без каких-либо иных источников освещения кроме лазера.

Совершенствование разведывательных систем с лазерным сканированием идет по следующим направлениям:

· разработка многоволновых лазерных камер, в которых используется несколько лазеров с различными длинами волн излучения, обеспечивающих лучшее обнаружение целей, обусловленное различием их поглощающей и отражающей способности;

· создание трехмерной лазерной сканирующей камеры, в которой к изображению, полученному при линейном сканировании, добавляется третья составляющая - показание измеренной с помощью лазера высоты;

· разработка лазерной камеры со сканированием местности от горизонта до горизонта в целях панорамного обзора.

Создана лазерная камера переднего обзора растрового типа, работающая в реальном масштабе времени. Она аналогична инфракрасным или телевизионным системам обзора, за исключением того, что в лазерной камере используется освещение наблюдаемой местности собственным излучением. Подобная система обеспечивает получение изображений с большим контрастом по сравнению с ПК-камерами переднего обзора.

Кроме того, дальнейшее развитие аппаратуры лазерной разведки направлено на повышение разрешающей способности, расширение полосы разведки, увеличение высот и диапазона скоростей боевого применения.

В настоящее время используются устройства, предназначенные для обнаружения пассивных систем низкоуровневого телевидения и тепловой разведки.

Обнаружение подобных систем осуществляется по бликам, возникающим при накрытии их входной оптики лазерным зондирующим лучом. По отраженным от оптики сигналам можно определить тип системы и рабочую длину волны.

Аналогичный метод может быть применен к решению задачи инспекции ИСЗ военного назначения.

Читайте также: