Равновесие плавающих тел реферат

Обновлено: 04.07.2024

Сущность второго закона Ньютона. Условия равновесия, устойчивое состояние, его характеристики. Понятие рычага как простейшего механического устройства. Его принцип действия и основные составные. Тело человека как рычаг, использование в быту, технике.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 09.01.2013
Размер файла 14,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки, молодёжи и спорта Украины

Херсонский национальный технический университет

Реферат на тему:

“Равновесие тел. Условие равновесия тел. Рычаг и его использование”

Выполнила: студент группы 1ПХНЗ,

Афанасьева Оксана Артуровна

Крастелёва Елена Васильевна

Если тело покоится, то говорят, что это тело находится в равновесии. Здания, мосты, балки вместе с опорами, части машин, книга на столе и многие другие тела покоятся, несмотря на то что к ним со стороны других тел приложены силы. Задача изучения условий равновесия тел имеет большое практическое значение для машиностроения, строительного дела, приборостроения и других областей техники. Все реальные тела под влиянием приложенных к ним сил изменяют свою форму и размеры, или, как говорят, деформируются. Величина деформации зависит от различных условий: материала тела, его формы, приложенных к нему сил. Деформации могут быть большими, и тогда их легко заметить, например растяжение резинового шнура, изгиб тонкой металлической линейки и т.д. Малые деформации можно обнаружить при помощи специальных приборов.

Если действия сил вызывают значительные деформации тела, то фактически после приложения сил мы будем иметь дело с телом, обладающим новыми геометрическими размерами и формой. И нужно будет определять условия равновесия этого нового деформированного тела. Такого рода задачи, связанные с расчетом деформаций тел, обычно весьма сложны.

Во многих случаях, которые встречаются на практике, деформации тел при их равновесии незначительны. В этих случаях деформациями можно пренебречь и вести расчет так, как если бы тела были недеформируемыми, т. е. абсолютно твердыми. Изучив условия равновесия абсолютно твердого тела, мы найдем условия равновесия реальных тел в тех случаях, когда их деформации можно не учитывать.

Раздел механики, в котором изучаются условия равновесия абсолютно твердых тел, называется статикой.

В статике учитываются размеры и форма тел, а все рассматриваемые тела считаются абсолютно твердыми. Статика - частный случай динамики, так как покой тел, когда на них действуют силы, есть частный случай движения.

Деформации, происходящие в теле, учитываются в прикладных разделах механики (теория упругости, сопротивление материалов). В дальнейшем для краткости абсолютно твердое тело будем называть твердым телом, или просто телом.

1. Условия равновесия, виды равновесия

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.

На рис 2,1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.

Произведение модуля силы на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. .2,2).

Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В Международной системе единиц (СИ) моменты сил измеряются в ньютон-метрах (Н•м).

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов.

Оба эти условия не являются достаточными для покоя.

Катящееся по горизонтальной поверхности колесо - пример безразличного равновесия (рис. 2.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают устойчивые и неустойчивые состояния равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

Шар, лежащий на плоской горизонтальной поверхности, находится в безразличном состоянии равновесия. Шар, находящийся в верхней точке сферического выступа, - пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис.2.4).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси - состояние равновесия неустойчиво (рис. 2.5).

Особым случаем равновесия является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 2.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

равновесие устойчивый рычаг

Рычаг -- простейшее механическое устройство, представляющее собой твёрдое тело (перекладину), вращающееся вокруг точки опоры. Стороны перекладины по бокам от точки опоры называются плечами рычага.

Рычаг используется для получения большего усилия на коротком плече с помощью меньшего усилия на длинном плече (или для получения большего перемещения на длинном плече с помощью меньшего перемещения на коротком плече). Сделав плечо рычага достаточно длинным, теоретически, можно развить любое усилие.

Частными случаями рычага являются также два других простейших механизма: ворот и блок.

Человек стал использовать рычаг ещё в доисторические времена, интуитивно понимая его принцип. Такие инструменты, как мотыга или весло, применялись, чтобы уменьшить силу, которую необходимо было прикладывать человеку. В пятом тысячелетии до нашей эры в Месопотамии применялись весы, использовавшие принцип рычага для достижения равновесия. Позже, в Греции, был изобретён безмен, позволивший изменять плечо приложения силы, что сделало использование весов более удобным. Около 1500 года до н. э. в Египте и Индии появляется шадуф, прародитель современных кранов, устройство для поднимания сосудов с водой.

В 1773 году Джеймс Уатт предложил идею составного рычага, состоящего из двух или нескольких связанных друг с другом рычагов, который можно было использовать для ещё большего увеличения усилия. Пример составного рычага, используемого в повседневной жизни, можно найти в щипчиках для ногтей.

Принцип работы рычага является прямым следствием закона сохранения энергии. Чтобы переместить рычаг на расстояние сила, действующая со стороны груза, должна совершить работу равную.

Если посмотреть с другой стороны, сила, приложенная с другой стороны, должна совершать работу,

где -- это перемещение конца рычага, к которому приложена сила. Чтобы выполнялся закон сохранения энергии для замкнутой системы, работа действующей и противодействующей сил должны быть равны, то есть:

По определению подобия треугольников, отношение перемещений двух концов рычага будет равно отношению его плеч, следовательно

Учитывая, что произведение силы и расстояния является моментом силы, можно сформулировать принцип равновесия для рычага. Рычаг находится в равновесии, если сумма моментов сил (с учётом знака), приложенных к нему, равна нулю.

Для рычагов, как и для других механизмов, вводят характеристику, показывающую механический эффект, который можно получить за счёт рычага. Такой характеристикой является передаточное отношение, оно показывает, как соотносятся нагрузка и приложенная сила:

Составной рычаг представляет собой систему из двух и более простых рычагов, соединённых таким образом, что выходное усилие одного рычага является входным для следующего. Например, для системы из двух последовательно связанных рычагов, если на входное плечо первого рычага приложена сила , на другом конце этого рычага выходное усилие окажется , и связаны они будут с помощью передаточного отношения:

При этом на входное плечо второго рычага будет воздействовать такое же усилие, а выходным усилием второго рычага и всей системы будет , передаточное отношение второй ступени будет равно

При этом механический эффект всей системы, то есть всего составного рычага, будет вычисляться как отношение входного и выходного усилия для всей системы, то есть.

Таким образом, передаточное отношение составного рычага, состоящего из двух простых будет равно произведению передаточных отношений входящих в него простых рычагов.

Составной рычаг в общем случае, состоящий из n простых рычагов

Такой же подход решения можно применять и для более сложной системы, состоящей, в общем случае из n рычагов. В этом случае в системе будет присутствовать 2n плеч. Передаточное отношение для такой системы будет вычисляться по формуле:

Как видно из формулы для этого случая также верно, что передаточное отношение составного рычага равно произведению передаточных отношений входящих в него элементов.

Типы рычагов Различают рычаги 1 рода, в которых точка опоры располагается между точками приложения сил, и рычаги 2 рода, в которых точки приложения сил располагаются по одну сторону от опоры. Среди рычагов 2 рода выделяют рычаги 3 рода, с точкой приложения "входящей" силы ближе к точке опоры, чем нагрузки, что даёт выигрыш в скорости и пути.

Рычаг - один из наиболее распространенных и простых типов механизмов в мире, присутствующий как в природе, так и в рукотворном мире, созданном человеком.

Тело человека как рычаг

К примеру, скелет и опорно-двигательная система человека или любого животного состоит из десятков и сотен рычагов. Взглянем на локтевой сустав. Лучевая и плечевая кости соединятся вместе хрящом, к ним так же присоединяются мышцы бицепса и трицепса. Вот мы и получаем простейший механизм рычага.

Если вы держите в руке гантель весом в 3 кг, какое усилие при этом развивает ваша мышца? Место соединения кости и мышцы делит кость в соотношении 1 к 8, следовательно, мышца развивает усилие в 24 кг! Получается, мы сильнее самих себя. Но рычажная система нашего скелета не позволяет нам в полной мере использовать нашу силу.

Наглядный пример более удачного применения преимуществ рычага в скелетно-мышечной системе организма обратные задние колени у многих животных (все виды кошек, лошади, и т.д.).

Их кости длиннее наших, а особое устройство их задних ног позволяет им гораздо эффективнее использовать силу своих мышц. Да, несомненно, их мышцы гораздо сильнее чем у нас, но и вес их больше на порядок.

Раз уж мы вспомнили о прыжках в высоту, рассмотрим варианты применения рычага, которые придуман человеком. Прыжки в высоту с шестом очень наглядный пример.

При помощи рычага длинной около трех метров (длинна шеста для прыжков в высоту около пяти метров, следовательно, длинное плечо рычага, начинающееся в месте перегиба шеста в момент прыжка, составляет около трех метров) и правильного приложения усилия, спортсмен взлетает на головокружительную высоту до шести метров.

Рычаги так же распространены и в быту. Вам было бы гораздо сложнее открыть туго завинченный водопроводный кран, если бы у него не было ручки в 3-5 см, которая представляет собой маленький, но очень эффективный рычаг.

То же самое относится к гаечному ключу, которым вы откручиваете или закручиваете болт или гайку. Чем длиннее ключ, тем легче вам будет открутить эту гайку, или наоборот, тем туже вы сможете её затянуть.

При работе с особо крупными и тяжелыми болтами и гайками, например при ремонте различных механизмов, автомобилей, станков, используют гаечные ключи с рукояткой до метра.

Другой яркий пример рычага в повседневной жизни самая обычная дверь. Попробуйте открыть дверь, толкая её возле крепления петель. Дверь будет поддаваться очень тяжело. Но чем дальше от дверных петель будет располагаться точка приложения усилия, тем легче вам будет открыть дверь.

Рычаги в технике

Естественно, рычаги так же повсеместно распространены и в технике. Самый очевидный пример рычаг переключения коробки передач в автомобиле. Короткое плечо рычага та его часть, что вы видите в салоне.

Длинное плечо рычага скрыто под днищем автомобиля, и длиннее короткого примерно в два раза. Когда вы переставляете рычаг из одного положения в другое, длинное плечо в коробке передач переключает соответствующие механизмы.

Здесь так же очень наглядно можно увидеть, как длина плеча рычага, диапазон его хода и сила, необходимая для его сдвига, соотносятся друг с другом.

Например, в спортивных автомобилях, для более быстрого переключения передач, рычаг обычно устанавливают короткий, и диапазон его хода так же делают коротким.

Однако, в этом случае водителю необходимо прилагать больше усилий, чтобы переключить передачу. Напротив, в большегрузных автомобилях, где механизмы сами по себе тяжелее, рычаг делают длиннее, и диапазон его хода так же длиннее, чем в легковом автомобиле.

Таким образом, мы можем убедиться в том, что механизм рычага очень широко распространен как в природе, так и в нашем повседневном быту, и в различных механизмах.

Список использованной литературы

1. Савельев И.В. Курс общей физики: Учеб пособие. В 3 -х т. Т.1. Механика. Молекулярная физика. М., 1986.

2. Сивухин Д.В. Термодинамика и молекулярная физика: Учеб. пособие для вузов. - М., 1990.

Подобные документы

Простые механизмы - приспособления, служащие для преобразования силы. Виды простых механизмов и их применение. Правила равновесия сил на рычаге. Применение правила рычага в различного рода устройствах и инструментах, применяемых в технике и быту.

презентация [1,2 M], добавлен 03.03.2011

Понятие и история создания статики, вклад Архимеда в ее развитие. Определение первого условия равновесия тела по второму закону Ньютона. Сущность правила моментов сил, вычисление центра тяжести. Виды равновесия: устойчивое, неустойчивое, безразличное.

презентация [842,9 K], добавлен 28.03.2013

Понятие простого механизма. "Золотое правило" механики. Блок и рычаг как простейшие механические устройства. Неподвижный и подвижный блоки. Механизм "ворот" как разновидность простого механизма "рычаг". Применение наклонной плоскости, клина, винта.

презентация [1,7 M], добавлен 03.10.2012

Состав механической системы, схема соединения балок шарнирами. Составление расчётной схемы и уравнений равновесия в плоской статике. Условия выполнения равновесия сил. Распределение интенсивности нагрузки. Зависимость момента и сил реакций от угла.

контрольная работа [214,5 K], добавлен 24.11.2012

Экстремальные свойства термодинамических потенциалов. Условия равновесия и устойчивости пространственно однородной системы. Общие условия равновесия фаз в термодинамических системах. Фазовые переходы.

лекция [153,2 K], добавлен 25.07.2007

Уравнение равновесия для стержней, направление сил, действующих на точку равновесия, в противоположную сторону. Построение графиков перемещения, ускорения точки, движущейся прямолинейно. Запись уравнения скорости на каждом участке представленного графика.

контрольная работа [5,2 M], добавлен 08.11.2010

Исследование напряжённого состояние в точке. Изучение главного касательного напряжения. Классификация напряжённых состояний. Определение напряжений по площадкам параллельным направлению одного из напряжений. Дифференциальные уравнения равновесия.

На тело, которое находится в жидкости, действуют: сила тяжести, которая направлена вертикально вниз и сила Архимеда, направленная вертикально вверх (рис.1).

Физика плавания тела, рисунок 1

Физика плавания тела

Возможны три варианта движения тела.

  1. Если сила тяжести ($mg$), действующая на тело больше, чем сила Архимеда ($F_A$), то тело движется вниз (тонет).
  2. При равенстве $mg=F_A$, тело способно находится в состоянии равновесия в любой точке сосуда с жидкостью (тело плавает).
  3. В случае если выталкивающая сила больше, силы тяжести тело поднимается в жидкости, то есть всплывает. Когда тело достигает поверхности жидкости, при дальнейшем движении тела сила Архимеда уменьшается, так как она равна: \[F_A=\rho Vg\ \left(1\right),\]

где $\rho $ - плотность жидкости (газа); $V$ - объем тела, находящийся в веществе; $g$ - ускорение свободного падения. Из формулы (1) видно, что с уменьшением части объема тела в жидкости, уменьшается выталкивающая сила, действующая на тело. Когда сила Архимеда станет равна по модулю силе тяжести, тело перестанет всплывать и будет плавать на поверхности жидкости, частично находясь в ней.

И так, если тело плавает в жидкости, то вес жидкости ($P_g$), которую вытеснило тело, равен его весу ($P$) в воздухе.

Условия плавания тел в жидкости для однородных тел (плотность вещества тела $\rho =const$) можно определить следующим образом:

  1. Тело тонет, если $\rho >_g$ ($_g-$плотность жидкости).
  2. $,\ если\ \ \rho Пример 1

Задание. В емкости с водой плавает льдина, внутри которой находится металлический гвоздь (рис.1). Как изменится уровень воды в емкости, после того как лед растает?

Физика плавания тела, пример 1

Решение. Плотность металла, из которого изготовлен гвоздь в несколько раз больше, чем плотность воды, допустим, что:

где $\rho $ - плотность металла гвоздя, $_$ - плотность воды. Из условия плавания тел и выражения (1.1) следует, что объем массы воды, которая уравновешивает гвоздь в $n$ раз больше, чем объем гвоздя. После таяния льда гвоздь тонет, но он не заполняет тот объем, который занимал лед вместе с ним. Получаем, что уровень воды в емкости уменьшится.

Ответ. Уменьшится.

Задание. На речной паром, площадь которого равна $S,$ поставили груз. При этом он осел на $h$ м. Какова масса груза?

Решение. Сила Архимеда, которая будет действовать на паром с грузом, равна:

\[F_A=F_+\rho Vg\ \left(2.1\right),\]

где $F_$ - сила Архимеда, действующая на паром без груза; $\rho $ - плотность воды в реке; $V$ - изменение объема подводной части парома при размещении на нем груза:

\[V=S\cdot h\ \left(2.2\right).\]

Из условия плавания тел мы можем записать, что сила $F_A$ компенсирует силу тяжести, которая действует на систему груз+ паром:

\[\left(m+m_g\right)g=F_+\rho Vg\ \left(2.3\right),\]

где $m$ - масса парома; $m_g$ - масса груза. Причем:

Следовательно, учитывая (2.2) и (2.4) можно записать, что:

\[m_gg=\rho Vg=\cdot hg\to m_g=\rho Sh.\]

Ответ. $m_g=\rho Sh$


Мы помогли уже 4 372 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Условия равновесия плавающего
Тела закон Архимеда
Это изображение имеет пустой атрибут alt; его имя файла - image-10-1.jpg

Закон Архимеда дает простой критерий для оценки поведения тела, погруженного в жидкость. Набор гидростатического давления прикладывается к центру тяжести объема, погруженного в жидкость, и уменьшается до силы, равной массе вытесненного объема в гидромеханике жидкости, направленной вертикально вверх на стенку. Если тело полностью погружено в однородную жидкость и однородное тело, то центр тяжести всего тела совпадает с центром тяжести объема в воде, очевидно, для равновесия необходимо и достаточно, чтобы плотность тела была равна плотности жидкости.

Стевин экспериментально определил, что тела разных масс падают с одинаковым ускорением, установил теоремы о давлении жидкости в сосудах и о равновесии грузов на наклонной плоскости. Людмила Фирмаль

Если, то тело тонет, а если, то тело всплывает и давление на криволинейную стенку. Если неоднородный объект погружен в жидкость, состоящую из горизонтальных слоев разной плотности, то упомянутые центры могут не совпадать, и ради равновесия необходимо и достаточно, чтобы эти центры лежали на одной вертикальной линии, а средняя плотность объектов была равна средней плотности жидкости в объеме поверхности сечения.

Доказал теорему, согласно которой в случае равновесия центр тяжести однородного плавающего тела должен находиться выше центра тяжести вытесненной жидкости. Людмила Фирмаль

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


Одной из ключевых для гидростатики является тема плавания тел, а также их равновесия. Главный ее вопрос – устойчивость простых и сложных тел в жидкостях.

Основной закон

Рассмотрим несжимаемую жидкость, которая находится в состоянии равновесия, и выделим в ней объем V; из условия равновесия следует, что геометрическая сумма всех действующих на него сил, а также их моменты, равны нулю:

\begin \begin\vec F = m \vec g, \\ \vec M_F = \vec M_ \end \end

Под силой F здесь разумеется некая выталкивающая сила. Чтобы найти ее, поместим на место выделенного объема воды некое твердое тело тех же размеров. Такое, что состояние равновесия сохранилось. Тогда сила F будет определяться выражением:

$F = \rho_ж \cdot g \cdot V_ж$. Для нее ввели специальное название – сила Архимеда, в честь греческого ученого, открывшего ее. Одноименный закон гласит: на погруженное (полностью или частично) тело действует выталкивающая сила, численно равная весу вытесненной жидкости.

В формуле силы тяжести выразим массу через плотность и объем и приравняем ее к силе Архимеда:

$\rho_т \cdot V_т \cdot g = \rho_ж \cdot g \cdot V_ж$

Но поскольку $V_т = V_ж$, запишем:

$\rho_т = \rho_ж$ – граничное условие плавания тел.

При равенстве плотности тела и жидкости, в которой оно находится, тело полностью погружено и не тонет. В случае, если плотность жидкости больше плотности тела, последнее всплывает, а если меньше – тонет.

Устойчивость плавающих тел

В гидростатике вместо центра тяжести используют эквивалентное понятие центра плавучести тела. Теперь рассмотрим два возможных случая:

  • Плавающее тело полностью погружено в жидкость. Равновесие достигается в том случае, когда центр масс тела лежит ниже его центра плавучести. В противном случае создается момент сил, и тело вращается.
  • Плавающее тело погружено частично. Эта задача представляет интерес при изучении устойчивости кораблей. Рассмотрим разрез корабля (рис 2.). Его центры масс и плавучести лежат на вертикальной оси симметрии.

При наклоне корабля на малый угол центр плавучести смещается, и тогда линия действия выталкивающей силы пересекает вертикальную ось симметрии в некоторой точке, называемой метацентром. В том случае, если метацентр расположен ниже центра масс, момент сил направлены так, что корабль становится неустойчивым и переворачивается. Соответственно, для устойчивости необходимо, чтобы метацентр был выше центра масс.

Задачи

Найти объем вытесненной жидкости, если известно, что тело полностью погружено в воду и не тонет, а действующая на него выталкивающая сила равна 4200 Н.

Решение:

Запишем второй закон Ньютона:

$\vec F_a = \vec P$, где Р – вес тела, численно равный произведению массы на ускорение свободного падения. Или:

$\rho_ж \cdot g \cdot V_ж = P$

Что мы узнали?

В ходе урока вывели закон Архимеда, на котором базируется теория плавания тел, записали условия, при которых тела плывут и тонут, а также в общем виде рассмотрели вопрос устойчивости плавающих тел.

Читайте также: