Распределенные системы имитационного моделирования реферат

Обновлено: 30.06.2024

Одна из важных особенностей АСУ – принципиальная невозможность проведения реальных экспериментов до завершения проекта. Возможным выходом является использование имитационных моделей. Однако их разработка и использование чрезвычайно сложны, возникают затруднения в достаточно точном определении степени адекватности моделируемому процессу. Поэтому важно принять решение – какую создать модель.

Содержание
Прикрепленные файлы: 1 файл

Содержание.docx

Одна из важных особенностей АСУ – принципиальная невозможность проведения реальных экспериментов до завершения проекта. Возможным выходом является использование имитационных моделей. Однако их разработка и использование чрезвычайно сложны, возникают затруднения в достаточно точном определении степени адекватности моделируемому процессу. Поэтому важно принять решение – какую создать модель.

Другой важный аспект использование имитационных моделей в процессе эксплуатации АСУ для принятия решений. Такие модели создаются в процессе проектирования, чтобы их можно было непрерывно модернизировать и корректировать в соответствии с изменяющимися условиями работы пользователя.

Эти же модели могут быть использованы для обучения персонала перед вводом АСУ в эксплуатацию и для проведения деловых игр.

2. Понятие имитационного моделирования

Имитационное моделирование это метод исследования, заключающийся в имитации на ЭВМ с помощью комплекса программ процесса функционирования системы или отдельных ее частей и элементов. Сущность метода имитационного моделирования заключается в разработке таких алгоритмов и программ, которые имитируют поведение системы, ее свойства и характеристики в необходимом для исследования системы составе, объеме и области изменения ее параметров.

Принципиальные возможности метода весьма велики, он позволяет при необходимости исследовать системы любой сложности и назначения с любой степенью детализации. Ограничениями являются лишь мощность используемой ЭВМ и трудоемкость подготовки сложного комплекса программ.

В отличие от математических моделей, представляющих собой аналитические зависимости, которые можно исследовать с помощью достаточно мощного математического аппарата, имитационные модели, как правило, позволяют проводить на них лишь одиночные испытания, аналогично однократному эксперименту на реальном объекте. Поэтому для более полного исследования и получения необходимых зависимостей между параметрами требуются многократные испытания модели, число и продолжительность которых во многом определяются возможностями используемой ЭВМ, а также свойствами самой модели.

Использование имитационных моделей оправдано в тех случаях, когда возможности методов исследования системы с помощью аналитических моделей ограничены, а натурные эксперименты по тем или иным причинам нежелательны или невозможны.

Даже в тех случаях, когда создание аналитической модели для исследования конкретной системы в принципе возможно, имитационное моделирование может оказаться предпочтительным по затратам времени ЭВМ и исследователя на проведение исследования. Для многих задач, возникающих при создании и функционировании АСУ, имитационное моделирование иногда оказывается единственным практически реализуемым методом исследования. Этим в значительной степени объясняется непрерывно возрастающий интерес к имитационному моделированию и расширение класса задач, для решения которых оно применяется.

Методы имитационного моделирования развиваются и используются в основном в трех направлениях: разработка типовых методов и приемов создания имитационных моделей; исследование степени подобия имитационных моделей реальным системам; создание средств автоматизации программирования, ориентированных на создание комплексов программ для имитационных моделей.

Различают два подкласса систем, ориентированных на системное и логическое моделирование. К подклассу системного моделирования относят системы с хорошо развитыми общеалгоритмическими средствами; с широким набором средств описания параллельно выполняемых действий, временных последовательностей выполнения процессов; с возможностями сбора и обработки статистического материала. В таких системах используют специальные языки программирования и моделирования – СИМУЛА, СИМСКРИПТ, GPSS и др. Первые два из этих языков являются подмножествами процедурно-ориентированных языков программирования типа ФОРТРАН, ПЛ/1, расширенными средствами динамических структур данных, операторами управления квазипараллельными процессами, специальными средствами сбора статистики и обработки списков. Эти дополнительные возможности позволяют вести статистические исследования моделей, поэтому такие системы иногда называют системами статистического моделирования.

К подклассу логического моделирования относят системы, позволяющие в удобной и сжатой форме отражать логические и топологические особенности моделируемых объектов, обладающие средствами работы с частями слов, преобразования форматов, записи микропрограмм. К этому подклассу систем относят языки программирования АВТОКОД, ЛОТИС и др.

В большинстве случаев при имитационном моделировании экономических, производственных и других организационных систем управления исследование модели заключается в проведении стохастических экспериментов. Отражая свойства моделируемых объектов, эти модели содержат случайные переменные, описывающие как функционирование самих систем, так и воздействия внешней среды. Поэтому наибольшее распространение получило статистическое моделирование.

Имитационная модель характеризуется наборами входных переменных

наблюдаемых или управляемых переменных

Состояние системы в любой момент времени

и начальные условия Y(t0), R(t0), W(t0) могут быть случайными величинами, заданными соответствующим распределением вероятностей. Соотношения модели определяют распределение вероятностей величин в момент t + ∆t:

Существуют два основных способа построения моделирующего алгоритма – принцип ∆t и принцип особых состояний.

Принцип ∆t. Промежуток времени (t0, t), в котором исследуется поведение системы, разбивают на интервалы длиной ∆t. В соответствии с заданным распределением вероятностей для начальных условий по априорным соображениям или случайным образом выбирают для начального момента t0 одно из возможных состояний z0(t0). Для момента t0 + ∆t вычисляется условное распределение вероятностей состояний (при условии состояния z0(t0)). Затем аналогично предыдущему выбирают одно из возможных состояний z0(t0 + ∆t), выполняют процедуры вычисления условного распределения вероятностей состояний для момента t0 + 2∆t и т.д.

В результате повторения этой процедуры до момента t0 + n∆t = T получают одну из возможных реализаций исследуемого случайного процесса. Таким же образом получают ряд других реализаций процесса. Описанный способ построения моделирующего алгоритма занимает много машинного времени.

Принцип особых состояний. Все возможные состояния системы Z(t) = разбивают на два класса обычные и особые. В обычных состояниях характеристики zi(t) меняются плавно и непрерывно. Особые состояния определяются наличием входных сигналов или выходом, по крайней мере, одной из характеристик zi(t) на границу области существования. При этом состояние системы меняется скачкообразно.

Моделирующий алгоритм должен предусматривать процедуры определения моментов времени, соответствующих особым состояниям, и величин характеристик системы в эти моменты. При известном распределении вероятностей для начальных условий выбирают одно из возможных состояний и по заданным закономерностям изменений характеристик zi(t) находят их величины перед первым особым состоянием. Таким же образом переходят ко всем последующим особым состояниям. Получив одну из возможных реализаций случайного многомерного процесса, с использованием аналогичных процедур строят другие реализации. Затраты машинного времени при использовании моделирующего алгоритма по принципу особых состояний обычно меньше, чем по принципу ∆t.

Имитационное моделирование используют в основном для следующих применений:

1) при исследовании сложных внутренних и внешних взаимодействий динамических систем с целью их оптимизации. Для этого изучают на модели закономерности взаимосвязи переменных, вносят в модель изменения и наблюдают их влияние на поведение системы;

2) для прогнозирования поведения системы в будущем на основе моделирования развития самой системы и ее внешней среды;

3) в целях обучения персонала, которое может быть двух типов: индивидуальное обучение оператора, управляющего некоторым технологическим процессом или устройством, и обучение группы людей, осуществляющих коллективное управление сложным производственным или экономическим объектом.

В системах обоих типов комплекс программ задает некоторую обстановку на объекте, однако между ними имеется существенное различие. В первом случае программное обеспечение имитирует функционирование объектов, описываемых технологическими алгоритмами или передаточными функциями; модель ориентирована на тренировку психофизиологических характеристик человека, поэтому такие модели называются тренажерами. Модели второго типа гораздо сложнее. Они описывают некоторые аспекты функционирования предприятия или фирмы и ориентированы на выдачу некоторых технико- экономических характеристик при воздействии на входы чаще всего не отдельного человека, а группы людей, выполняющих различные функции управления;

4) для макетирования проектируемой системы и соответствующей части управляемого объекта с целью прикидочной проверки предполагаемых проектных решений. Это позволяет в наиболее наглядной и понятной заказчику форме продемонстрировать ему работу будущей системы, что способствует взаимопониманию и согласованию проектных решений. Кроме того, такая модель позволяет выявить и устранить возможные неувязки и ошибки на более ранней стадии проектирования, что на 2–3 порядка снижает стоимость их исправления.

3.Виды имитационного моделирования

4. Имитационные модели производственных процессов

Вид модели производственного процесса зависит в значительной степени от того, является ли он дискретным или непрерывным. В дискретных моделях переменные изменяются дискретно в определенные моменты имитационного времени. Время может приниматься как непрерывным, так и дискретным в зависимости от того, могут ли дискретные изменения переменных происходить в любой момент имитационного времени или только в определенные моменты. В непрерывных моделях переменные процесса являются непрерывными, а время может быть как непрерывным, так и дискретным в зависимости от того, являются непрерывные переменные доступными в любой момент имитационного времени или только в определенные моменты. В обоих случаях в модели предусматривают блок задания времени, который имитирует продвижение модельного времени, обычно ускоренного относительно реального.

Разработка имитационной модели и проведение моделирующих экспериментов в общем случае могут быть представлены в виде нескольких основных этапов, приведенных на рис. 1.

Компонента модели, отображающая определенный элемент моделируемой системы, описывает набором характеристик количественного или логического типа. В зависимости от длительности существования различают компоненты условно-постоянные и временные. Условно-постоянные компоненты существуют в течение всего времени эксперимента с моделью, а временные – генерируются и уничтожаются в ходе эксперимента. Компоненты имитационной модели делят на классы, внутри которых они имеют одинаковый набор характеристик, но отличаются их значениями.

Состояние компоненты определяется значениями ее характеристик в данный момент модельного времени, а совокупность значений характеристик всех компонент определяет состояние модели в целом.

Изменение значений характеристик, являющееся результатом отображения в модели взаимодействия между элементами моделируемой системы, приводит к изменению состояния модели. Характеристика, значение которой в ходе моделирующего эксперимента изменяется, является переменной, в противном случае это параметр. Значения дискретных переменных не изменяются в течение интервала времени между двумя последовательными особыми состояниями и меняются скачком при переходе от одного состояния к другому.

Моделирующий алгоритм представляет собой описание функциональных взаимодействий между компонентами модели. Для его составления процесс функционирования моделируемой системы разбивается на ряд последовательных событий, каждое из которых отражает изменение состояния системы в результате взаимодействия ее элементов или воздействия на системы внешней среды в виде входных сигналов. Особые состояния возникают в определенные моменты времени, которые планируются заранее, либо определяются в ходе эксперимента с моделью. Наступление событий в модели планируется путем составления расписания событий по временам их свершения либо проводится анализ, выявляющий достижение переменными характеристиками установленных значений.



Для возможности объединения отдельных имитаторов в распределенную систему имитации в настоящий момент используются следующие стандарты и технологии:

Семейство программных технологий OPC (OLE for Process Control) предоставляющих единый интерфейс для управления объектами автоматизации и технологическими процессами также представляет значительный интерес, но только в том случае, если необходима интеграция с объектами автоматизации и технологическими процессами. Стандарт CAPE-OPEN используется для взаимодействия имитаторов, разработанных специально для химической промышленности.

В области стандартизации моделирования и имитации значительный вклад внес Институт инженеров по электротехнике и электронике (IEEE). Распределенное моделирование (имитация) – технология обмена данными между тренажерами по локальным или глобальным вычислительным сетям. Это позволяет обеспечить совместную работу отдельных имитаторов как одной управляемой системы моделирования или имитации. Концепция распределенного моделирования опирается на использовании высокоуровневой архитектуры (HLA). Практически стандарт IEEE 1516 определяет архитектуру путем использования единого API (программного интерфейса приложений). Отправными постулатами стандарта являются:

Семейство программных технологий OPC разрабатывалось с целью сокращения затрат на создание и сопровождение приложений промышленной автоматизации. В начале 90-х у разработчиков промышленного программного обеспечения возникла потребность в универсальном инструменте обмена данными с устройствами разных производителей или с разными протоколами взаимодействия. OPC предоставляет разработчикам промышленных программ универсальный фиксированный интерфейс обмена данными с любыми устройствами. В то же время разработчики устройств предоставляют программу, реализующую этот интерфейс.

Для создания сложных имитационных систем можно комбинировать использование IEEE 1516 и OPC, получая возможность использования реального оборудования и SCADA-систем (рисунок ), что может быть достаточно полезным во многих задачах.

Обеспечение связи стандартов IEEE 1516 (являющегося базовым для имитаторов) и OPC (применяемого в SCADA-системах) может быть реализовано, как напрямую в имитаторе, так и посредством посредника. Роль такого посредника, например у меня, выполняет пакет National Instruments LabView. LabView может поддерживать математические модели любой сложности, имеет встроенную поддержку OPC, может выступать в роли OPC-сервера, имеет эффективную поддержку взаимодействия с различными платами ввода вывода, что позволяет использовать необходимое оборудование напрямую, но не имеет, к сожалению, средств взаимодействия с IEEE 1516, что требует написания соответствующих программных компонентов.

В результате использования IEEE 1516 и OPC возможно создание относительно сложных распределенных систем имитации, включающих в себя множество имитаторов, реальное оборудование, SCADA-системы и т. д.

Отдельного рассмотрения заслуживает вопрос сертификации имитатора или имитаторов относительно поддержки стандарта IEEE 1516. Сертифицируются как имитаторы (федераты в терминологии IEEE 1516), так и программные библиотеки, реализующие взаимодействие. Но целью данной сертификации не является выявление функциональных дефектов программы (только сертификация поддержки стандарта IEEE 1516).

Организации, способные провести сертификацию:



Рассмотрим вопросы построения распределенных имитационных систем на основе стандарта IEEE 1516. Базовые термины, используемые в информационном обеспечении, соответствуют терминологии стандарта на системы распределенной интерактивной имитации IEEE 1516 – это федерация, федерат, объект, атрибут и интеракция. Понятие объекта определяется как модель отдельного явления реального мира. Объекты не имеют методов, а имеют только состояния (только структура данных без функций их обработки). Состояния объектов характеризуется фиксированным набором атрибутов — точных значений, которые могут изменяться с течением времени. Каждый объект в любой момент времени характеризуется своим состоянием, которое определяется набором текущих значений его атрибутов. Федераты представляют собой математические описания поведения объектов – имитационные модели, заданные программно (реализованные на директивном языке) или представленные значениями датчиков аппаратных средств. Фактически федератами могут быть как имитаторы, так и реальное оборудование или специальное программное обеспечение. Единственным требованием является обеспечение единого интерфейса для взаимодействия. Федераты могут управлять объектами, меняя (обновления) или получая (отображая) значения их атрибутов. В частности, пользователи имитаторов также являются федератами. Совокупность всех участвующих в имитационном моделировании федератов образует федерацию.

Взаимодействие федератов осуществляется при помощи общего механизма взаимодействия (RTI), реализованного в виде подписки. Федерат, заинтересованный в получении определенных атрибутов и интеракций другого федерата, должен подписаться на них через RTI. Механизм запроса, предоставления и изменения значений атрибутов представлен на рисунке. Механизм организации распределенной имитации и совместной работы представлен на рисунке.



Рисунок. Иерархическая схема федерации

Объекты в имитаторе, это, как правило, 3D модели, источники звука, соответственно атрибутами таких объектов являются положение и ориентация в пространстве, размер, громкость и т.д. Применительно к имитаторам, в качестве интеракций можно рассматривать действия пользователя (федерата), например – включение какой-либо клавиши.



Рисунок. Общий механизм взаимодействия (RTI)



Рисунок. Общий механизм взаимодействия (RTI)



Рисунок. Организация распределенной имитации и совместной работы

При создании распределенных имитационных систем, взаимодействующих через RTI, необходимо учитывать следующие важные особенности. Все элементы федератов и федерации должны быть документированы в определенных файлах (для описания федерации используются FOM (federation object model) файлы), федераты описываются в SOM-файлах (Simulation Object Model). Все данные хранятся только в федератах, RTI не хранит никаких данных, а только передает их. HLA позволяет в любой момент времени только одному федерату изменять значение какого либо атрибута (для передачи прав имеется специальый механизм управления правами). Федераты могут управлять локальным временем, в HLA используются различные внутренние механизмы управления временем (синхронизацией).



Рисунок. Блок-схема реализации базовых возможностей IEEE 1516

В качестве примера можно рассмотреть следующую федерацию, состоящую из двух федератов: радиоуправляемая машина и пульт управления. Предположим, что управления осуществляется путем установки оборотов каждого из 4-х двигателей машины и поворота передних колес. На машине установлен датчик, определяющий расстояние до препятствия и передающий сигнал на пульт управления. Для этого необходимо определить два класса объектов, cYpravlenie для пульта управления и cDatchik для датчика дистанции. Атрибутами класса cYpravlenie являются wheel1, wheel2, wheel3, wheel4, wheel_angle. Атрибутом класса cDatchik является distance. Далее показан файл описания федерации, в формате HLA 1.3 (интеракции приведены как пример).


Далее, имитатор, представляющий управление создает федерат и объект, на основе класса cYpravlenie. Имитатор, представляющий машину, также создает федерат и объект, на основе класса cDatchik. Также федераты подписываются на интересующие их изменения, т.е. федерат-машина подписывается на получение данных объектов от класса cYpravlenie (т.е. на класс cYpravlenie), а федерат-управление на класс cDatchik. Таким образом машина получает изменения от пульта управления, а пульт получает данные от датчика в машине.

Построение более сложных имитационных систем предполагает достаточно серьезное проектирование. Сначала необходимо определить принципиальный состав федерации в первом приближении, т. е. федераты, объекты федератов и атрибуты объектов. При составлении схемы федерации необходимо учитывать и аппаратные компоненты распределенной имитационной систем, т. е. датчики и управляющие аппаратные устройства также должны быть представлены в виде федератов, объектов и атрибутов. На рисунке. показана структура федерации имитатора установки штангового скважинного насоса.



Рисунок. Структура федерации



Рисунок. Пример первого этапа определения связей



Рисунок. Распределение федератов по компьютерам

Как правило распределение федератов основано на экономичности их математической модели, если математические модели федератов не требуют значительных вычислительных ресурсов, то можно использовать один компьютер, если математические модели федератов требуют значительных вычислительных ресурсов, необходимо определение числа компьютеров и соответствующее распределение федератов.

Статистика по каждому федерату отдельно, так и по федерации в целом показывает количество и типы выполненных запросов и позволяет определить возможные проблемы в ходе работы системы.

Пример статистики по федерату:

Синхронизация времени

Как показала практика проектирования и реализации распределенных имитационных систем, наибольшее затруднение вызывают вопросы, связанные с управлением течения времени (синхронизация времени).

Программные библиотеки для реализации RTI

Таблица Коммерческие реализации:

  • CAE RTI CAE Inc. .
  • Chronos RTI Magnetar Games
  • MÄK High Performance RTI MÄK Technologies
  • HLA Direct General Dynamics C4 Systems
  • Openskies RTI Cybernet Systems
  • Pitch pRTI Pitch Technologies
  • RTI NG Pro Raytheon Virtual Technology Corporation
  • CERTI ONERA
  • The Portico Project littlebluefrog labs
  • GERTICO (German RTI based on Corba) Fraunhofer IITB
  • Rendezvous RTI National University of Science and Technology (NUST), Pakistan
  • Open HLA (ohla)

Замеры скорости взаимодействия федератов через RTI

Такие тесты очень важны при проектировании распределенных имитационных систем, особенно, если различные федераты расположены в различных вычислительных сетях, и тем более важны при взаимодействии федератов через сеть Internet.

Для достижения минимальных временных задержек необходимо выбирать сервер с наименьшими временными задержками прохождения пакетов (можно проверить при помощи команды ping). В качестве примера рассмотрим работу одной из созданных в НИИ ЭОР ТюмГНГУ распределенных систем. Используется 100 мегабитная сеть (задержки ping'a

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

ФГБОУ ВО «МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ

Кафедра информатики и вычислительной техники

Компьютерное имитационное моделирование. Статистическое имитационное моделирование.

Автор работы: студентка 4 курса

группы МДМ-217 Видясова Виктория

Проверила: Кормилицина Т. В., канд. физ-мат. наук, доцент

Применение статистического моделирования широко распространено в задачах анализа и проектирования автоматизированных систем, информационно-вычислительных сетей и других сложных организационно-технических объектов. Статистическое моделирование – это метод решения вероятностных и детерминированных задач, основанный на эффективном использовании случайных чисел и законов теории вероятностей. Статистическое моделирование эксплуатирует способность современных компьютеров порождать и обрабатывать за короткие промежутки времени огромное количество случайных чисел. Подавая последовательность случайных чисел на вход исследуемой функции или модели, на её выходе получают преобразованную последовательность случайных величин – выборку. При правильной организации подобного статистического эксперимента выборка содержит ценную информацию об исследуемой функции или модели, которую трудно или практически невозможно получить другими способами. Информация извлекается из выборки методами математической статистики (раздел теории вероятностей). Метод статистического моделирования (синоним этого названия – метод Монте-Карло) позволяет, таким образом, опираясь на строгие законы теории вероятностей, свести широкий класс сложных задач к относительно простым арифметико-логическим преобразованиям выборок. Поэтому такой метод получил весьма широкое распространение. В частности, он почти всегда используется при имитационном моделировании реальных сложных систем.

Указывая, что данная модель имитационная, мы обычно подчеркиваем, что, в отличие от других типов абстрактных моделей, в этой модели сохранены и легко узнаваемы такие черты моделируемого объекта, как структура, связи между компонентами, способ передачи информации . С имитационными моделями также обычно связывают и требование иллюстрации их поведения с помощью принятых в данной прикладной области графических образов . Недаром имитационными обычно называют модели предприятий, экологические и социальные модели.

Имитационная модель – специальный программный комплекс, который позволяет имитировать деятельность какого-либо сложного объекта, в котором:

· отражена структура объекта (и представлена графическим образом) со связями;

· выполняются параллельные процессы.

Для описания поведения могут использоваться как глобальные законы, так и локальные, полученные на основе натурных экспериментов

Таким образом, имитационное моделирование предполагает использование компьютерных технологий для имитации различных процессов или операций (т. е. их моделирования), выполняемых реальными устройствами. Устройство или процесс обычно именуется системой. Для научного исследования системы мы прибегаем к определенным допущениям, касающимся ее функционирования. Эти допущения, как правило, имеющие вид математических или логических отношений, составляют модель, с помощью которой можно получить представление о поведении соответствующей системы.

Если отношения, которые образуют модель, достаточно просты для получения точной информации по интересующим нас вопросам, то можно использовать математические методы. Такого рода решение называется аналитическим . Однако большинство существующих систем являются очень сложными, и для них невозможно создать реальную модель, описанную аналитически. Такие модели следует изучать с помощью моделирования. При моделировании компьютер используется для численной оценки модели, а с помощью полученных данных рассчитываются ее реальные характеристики.

С точки зрения специалиста (информатика-экономиста, математика-программиста или экономиста-математика), имитационное моделирование контролируемого процесса или управляемого объекта – это высокоуровневая информационная технология, которая обеспечивает два вида действий, выполняемых с помощью компьютера:

· работы по созданию или модификации имитационной модели;

· эксплуатацию имитационной модели и интерпретацию результатов.

Имитационное (компьютерное) моделирование экономических процессов обычно применяется в двух случаях:

· для управления сложным бизнес-процессом, когда имитационная модель управляемого экономического объекта используется в качестве инструментального средства в контуре адаптивной системы управления, создаваемой на основе информационных (компьютерных) технологий;

· при проведении экспериментов с дискретно-непрерывными моделями сложных экономических объектов для получения и отслеживания их динамики в экстренных ситуациях, связанных с рисками, натурное моделирование которых нежелательно или невозможно.

Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.

Реальные процессы и системы можно исследовать с помощью двух типов математических моделей: аналитических и имитационных.

В аналитических моделях поведение реальных процессов и систем (РПС) задается в виде явных функциональных зависимостей (уравнений линейных или нелинейных, дифференциальных или интегральных, систем этих уравнений). Однако получить эти зависимости удается только для сравнительно простых РПС. Когда явления сложны и многообразны исследователю приходится идти на упрощенные представления сложных РПС. В результате аналитическая модель становится слишком грубым приближением к действительности. Если все же для сложных РПС удается получить аналитические модели, то зачастую они превращаются в трудно разрешимую проблему. Поэтому исследователь вынужден часто использовать имитационное моделирование.

Имитационное моделирование представляет собой численный метод проведения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими поведение реальных объектов, процессов и систем во времени в течение заданного периода. При этом функционирование РПС разбивается на элементарные явления, подсистемы и модули. Функционирование этих элементарных явлений, подсистем и модулей описывается набором алгоритмов, которые имитируют элементарные явления с сохранением их логической структуры и последовательности протекания во времени.

Имитационное моделирование - это совокупность методов алгоритмизации функционирования объектов исследований, программной реализации алгоритмических описаний, организации, планирования и выполнения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими функционирование РПС в течение заданного периода.

Под алгоритмизацией функционирования РПС понимается пооперационное описание работы всех ее функциональных подсистем отдельных модулей с уровнем детализации, соответствующем комплексу требований к модели.

"Имитационное моделирование" (ИМ)- это двойной термин. "Имитация" и " моделирование" - это синонимы. Фактически все области науки и техники являются моделями реальных процессов. Чтобы отличить математические модели друг от друга, исследователи стали давать им дополнительные названия. Термин "имитационное моделирование" означает, что мы имеем дело с такими математическими моделями, с помощью которых нельзя заранее вычислить или предсказать поведение системы, а для предсказания поведения системы необходим вычислительный эксперимент (имитация) на математической модели при заданных исходных данных.

Основное достоинство ИМ:

1. возможность описания поведения компонент (элементов) процессов или систем на высоком уровне детализации;

2. отсутствие ограничений между параметрами ИМ и состоянием внешней среды РПС;

3. возможность исследования динамики взаимодействия компонент во времени и пространстве параметров системы;

Эти достоинства обеспечивают имитационному методу широкое распространение.

Рекомендуется использовать имитационное моделирование в следующих случаях:

1. Если не существует законченной постановки задачи исследования и идет процесс познания объекта моделирования. Имитационная модель служит средством изучения явления.

2. Если аналитические методы имеются, но математические процессы сложны и трудоемки, и имитационное моделирование дает более простой способ решения задачи.

3. Когда кроме оценки влияния параметров (переменных) процесса или системы желательно осуществить наблюдение за поведением компонент (элементов) процесса или системы (ПС) в течение определенного периода.

4. Когда имитационное моделирование оказывается единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях (реакции термоядерного синтеза, исследования космического пространства).

5. Когда необходимо контролировать протекание процессов или поведение систем путем замедления или ускорения явлений в ходе имитации.

6. При подготовке специалистов для новой техники, когда на имитационных моделях обеспечивается возможность приобретения навыков в эксплуатации новой техники.

7. Когда изучаются новые ситуации в РПС. В этом случае имитация служит для проверки новых стратегий и правил проведения натурных экспериментов.

8. Когда особое значение имеет последовательность событий в проектируемых ПС и модель используется для предсказания узких мест в функционировании РПС.

Однако ИМ наряду с достоинствами имеет и недостатки:

1. Разработка хорошей ИМ часто обходится дороже создания аналитической модели и требует больших временных затрат.

2. Может оказаться, что ИМ неточна (что бывает часто), и мы не в состоянии измерить степень этой неточности.

3. Зачастую исследователи обращаются к ИМ, не представляя тех трудностей , с которыми они встретятся и совершают при этом ряд ошибок методологического характера.

И тем не менее ИМ является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.

Одним из видов имитационного моделирования является статистическое имитационное моделирование, позволяющее воспроизводить на ЭВМ функционирование сложных случайных процессов.

При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели.

В вероятностных аналитических моделях влияние случайных факторов учитывается с помощью задания вероятностных характеристик случайных процессов (законы распределения вероятностей, спектральные плотности или корреляционные функции). При этом построение вероятностных аналитических моделей представляет собой сложную вычислительную задачу. Поэтому вероятностное аналитическое моделирование используют для изучения сравнительно простых систем.

Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях.

В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.

В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.

Статистическая модель случайного процесса - это алгоритм, с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер.

При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название " метод статистических испытаний" или " метод Монте-Карло".

Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.

Итак, статистическое моделирование - это способ изучения сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационных моделей.

Метод Монте-Карло - это численный метод, моделирующий на ЭВМ псевдослучайные числовые последовательности с заданными вероятностными характеристиками.

Методика статистического моделирования состоит из следующих этапов:

1. Моделирование на ЭВМ псевдослучайных последовательностей с заданной корреляцией и законом распределения вероятностей ( метод Монте-Карло), имитирующих на ЭВМ случайные значения параметров при каждом испытании;

2. Преобразование полученных числовых последовательностей на имитационных математических моделях.

3. Статистическая обработка результатов моделирования.

Любопытно, что теоретическая основа метода была известна давно. Более того, некоторые задачи статистики рассчитывались иногда с помощью случайных выборок, т. е. фактически методом Монте-Карло. Однако до появления электронных вычислительных машин (ЭВМ) этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины' вручную—очень трудоемкая работа. Таким образом, возникновение метода Монте-Карло как весьма универсального численного метода стало возможным только благодаря появлению ЭВМ.

Нередко такой прием оказывается проще, чем попытки построить аналитическую модель. Для сложных операций, в которых участвует большое число элементов (машин, людей, организаций, подсобных средств), в которых случайные факторы сложно переплетены, где процесс — явно немарковскпй, метод статистического моделирования, как правило, оказывается проще аналитического (а нередко бывает и единственно возможным).

Метод Монте-Карло- это численный метод решения математических задач при помощи моделирования случайных величин.

Пример 1. Предположим, что нам нужно вычислить площадь плоской фигуры S. Это может быть произвольная фигура с криволинейной границей,

заданная графически или аналитически, связная или состоящая из нескольких кусков. Пусть это будет фигура изображенная на рис. 1, и

предположим, что она вся расположена внутри единичного квадрата.

Выберем внутри квадрата N случайных точек. Обозначим через F число

точек, попавших при этом внутрь S. Геометрически очевидно, что площадь

S приближенно равна отношению F/N. Чем больше N, тем больше точность этой оценки.

Две особенности метода Монте-Карло.

Первая особенность метода - простая структура вычислительного алгоритма.

Вторая осо бенность метода - погрешность вычислений, как правило, пропорциональна D/N2, где D - некоторая постоянная, N - число испытаний. Отсюда видно, что для того, чтобы уменьшить погрешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т. е. объем работы) в 100 раз.

Ясно, что добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат нужен с небольшой точностью (5-10%). Способ применения метода Монте-Карло по идее довольно прост. Чтобы получить искусственную случайную выборку из совокупности величин, описываемой некоторой функцией распределения вероятностей, следует:

1. Построить график или таблицу интегральной функции распределения на основе ряда чисел, отражающего исследуемый процесс (а не на основе ряда случайных чисел), причем значения случайной переменной процесса откладываются по оси абсцисс (х), а значения вероятности (от 0 до 1) - по оси ординат (у).

2. С помощью генератора случайных чисел выбрать случайное десятичное число в пределах от 0 до 1 (с требуемым числом разрядов).

3. Провести горизонтальную прямую от точки на оси ординат соответствующей выбранному случайному числу, до пересечения с кривой распределения вероятностей.

4. Опустить из этой точки пересечения перпендикуляр на ось абсцисс.

5. Записать полученное значение х. Далее оно принимается как выборочное значение.

6. Повторить шаги 2-5 для всех требуемых случайных переменных, следуя тому порядку, в котором они были записаны. Общий смысл легко понять с помощью простого примера: количество звонков на телефонную станцию в течение 1 минуты соответствует следующему распределению:

Кол - во звонков Вероятность Кумулятивная вероятность
О 0,10 0,10

Предположим, что мы хотим провести мысленный эксперимент для пяти периодов времени.

Построим график распределения кумулятивной вероятности. С помощью генератора случайных чисел получим пять чисел, каждое из которых используем для определения количества звонков в данном интервале времени.

Период времени Случайное число Количество звонков

Вернемся к примеру. Для расчета нам нужно было выбирать случайные

точки в единичном квадрате. Как это сделать физически?

Представим такой эксперимент. Рис.1. (в увеличенном масштабе) с фигурой

S и квадратом повешен на стену в качестве мишени. Стрелок, находившийся

на некотором расстоянии от стены, стреляет N раз, целясь в центр квадрата.

Конечно, все пули не будут ложиться точно в центр: они пробьют на мишени N случайных точек. Можно ли по этим точкам оценить площадь S.

Результат такого опыта показан на рис. 2.(см. Приложение 2)

Ясно, что при высокой квалификации стрелка результат опыта будет очень плохим, так как почти все пули будут ложиться вблизи центра и попадут в S.

Реферат - Имитационное моделирование систем управления

Вопросы и ответы для государственного экзамена (кафедра САПР)

  • формат doc
  • размер 2.12 МБ
  • добавлен 15 декабря 2009 г.

ВолГТУ Алгоритмические языки Теория принятия решений Интеллектуальные системы Концептуальное проектирование База данных Аналитическое программное обеспечение Моделирование систем Сети ЭВМ и коммуникации Теоретические основы автоматизированного управления Основы теории управления Основы трансляции Компьютерная графика Методы оптимизацииrn

Голубь А.П., Кузнецов Б.И., Опрышко И.А., Соляник В.П. Системы управления электроприводами

  • формат djvu
  • размер 5.75 МБ
  • добавлен 09 ноября 2010 г.

Киев, Учебно-методический кабинет висшего образования, 1992 год 376 страниц. . Принципы построения систем управления. Математическое описание систем управления электроприводами. Математические модели объектов управления. систем управления электроприводами. Системы регулирования угловой скорости. Аналоговые системы подчиненного регулирования электроприводами с двигателями постоянного тока. Системы регулирования электроприводами с двигателями перем.

Игнатьева А.В., Максимцов М.М. Иcследование систем управления

  • формат doc
  • размер 338.95 КБ
  • добавлен 16 декабря 2008 г.

Москва: "Юнити-ДАНА", 2000 - 157 с. Рассматриваются методы исследования систем управления, их классификация и сущность; практическое применение для анализа целей, функций, структур, процедур принятия решений; процессы организации исследования систем управления; вопросы проектирования систем управления. Для студентов экономических специальностей и аспирантов, а также преподавателей, ведущих курсы в области управления. Экономическая стабильность.

Курсовой проект - Имитационное моделирование процесса поиска подводной лодки КПУГ

  • формат doc
  • размер 742 КБ
  • добавлен 11 ноября 2010 г.

В этой работе я рассмотрел различные анализы, такие как дисперсионный, регрессионный. и т. д. Работа подойдет курсантам! Есть к ней ПО, и различные математические вычисления. кому нужны обращайтесь!

Лекции - Основы конструирования, моделирования, проектирования

  • формат doc
  • размер 850.5 КБ
  • добавлен 27 февраля 2010 г.

Основы моделирования, экономическое моделирование, структура принципы построения систем управления технологическими процессами. Технико-экономические аспекты конструирования и проектирования. Технические средства автоматизации элементов и систем управления.

Лекции - Системный анализ сложных систем

  • формат doc
  • размер 3.66 МБ
  • добавлен 30 апреля 2010 г.

Введение Методология системного анализа Классификация систем Закономерности (больших) сложных систем Методы и объекты системного анализа Системный подход при анализе ТК Структурный анализ сложных систем управления Функциональная, организационная и техническая структура Системный анализ процесса управления в сложных системах Классы задач и виды управления Типовые функциональные структуры систем управления Координация в сложных системах управления.

Реферат - Виды систем автоматического управления

  • формат docx
  • размер 40.1 КБ
  • добавлен 09 февраля 2011 г.

Содержание 1 Алгоритмы работы систем автоматического управления 1.1 Поиск экстремума показателя качества 1.2 Принцип оптимального управления 1.3 Принцип адаптации 2 Классификация систем автоматического управления 2.1 Системы автоматической стабилизации, программного регулирования и следящие системы 2.2 Системы статического и астатического регулирования 2.3 Системы непрерывного, импульсного и релейного действия 2.4 Системы регулирования по.

Учебно-методический комплекс. Дисциплина Моделирование и идентификация объектов управления

  • формат doc
  • размер 976.5 КБ
  • добавлен 08 июля 2011 г.

Цыпкин Я.З Основы теории автоматических систем

  • формат pdf
  • размер 19.9 МБ
  • добавлен 19 сентября 2010 г.

М.: Наука, 1977. 560 с. Книга представляет собой курс лекций по теории автоматических систем. Она состоит из трех частей: основных сведений об автоматическом управлении, теории непрерывных автоматических систем и теории дискретных автоматических систем. В книге излагаются основные идеи автоматического управления, а также закономерности, свойства, особенности и предельные возможности автоматических систем. Большинство глав сопровождается задачам.

Щипанов К.А. и др. Моделирование и анализ систем автоматического управления в MATLAB

  • формат doc
  • размер 791.5 КБ
  • добавлен 02 февраля 2011 г.

УрФУ, 2010 кафедра ТИМ Методические указания содержат основные теоретические сведения и примеры использования математического пакета MATLAB для решения задач автоматического управления. Примеры лабораторных работ. 1. Основные понятия теории автоматического управления 2. Использование математического пакета MatLab для решения задач автоматического управления 2.1 Общие сведения о пакете MatLab 2.2 Библиотека функций Control System ToolBox. Работа.

Читайте также: