Расчет железобетонных конструкций реферат

Обновлено: 08.07.2024

Предварительное назначение размеров железобетонных элементов подземного здания. Расчётные и нормативные характеристики арматуры и бетона. Расчет и подбор прочности рабочей арматуры полки ребристой плиты перекрытия, колонны, столбчатого фундамента.

Московский государственный университет природообустройства

Кафедра инженерные конструкции

Расчет и конструирование железобетонных конструкций подземного здания

Выполнил: студент 426 гр.

Проверил: Тетиор А.Н.

1. Назначение размеров ж/б элементов подземного здания

2. Расчет прочности ребристой плиты перекрытия по I и II группам предельных состояний. Назначение расчётных и нормативных характеристик арматуры и бетона

3. Подбор рабочей арматуры полки плиты

4. Расчёт плиты на поперечную силу в приопорных зонах

5. Расчёт трещиностойкости в нормальном сечении

6. Расчет колонны

7. Расчёт столбчатого фундамента

1. Предварительное назначение размеров железобетонных элементов подземного здания

Размеры элементов при конструировании, как правило, задаются на основе предыдущего объемного опыта конструирования

1) колонны: сборные сплошные, прямоугольного сечения

2) ригель: сборные прямоугольного сечения, с опиранием плит по верху ригелей

Высоту ригеля h рекомендуется принимать (1/8 … 1/20) пролёта ?

h = (1/10)*6 = 0,6 м = 60 см

Ширину ригеля b рекомендуется принимать (1/2 … 1/3) высоты ригеля h

b= Ѕ * h = Ѕ * 0,6 = 0,3 м = 30 см

3) ребристая плита перекрытия: сборные ребристые с ненапрягаемой стержневой

Ширина плиты принимается по осям bf = 1200 мм, высоту h ребристой плиты принимаем 1/20 ?1- шаг колонны, ?1 = 6м, тогда h=30см

Толщина полки плиты 4см,

bf - ширина плиты без учёта запаса 1180мм

2. Расчет прочности ребристой плиты перекрытия по I и II группам предельных состояний. Назначение расчётных и нормативных характеристик арматуры и бетона

Для бетона класса В20 нормативное значение сопротивления сжатию Rb,n и расчётное сопротивление сжатию Rb равны:

- коэффициент надёжности по бетону при сжатии 1,3.

Нормативное сопротивление определяется на основе фактических результатов испытаний, с учётом статистической изменчивости свойств.

При расчёте по предельным состояниям от предельных состояний уходят искусственно завышая нагрузки и искусственно занижая прочность материалов.

Расчётное сопротивление бетона на осевое растяжение

- расчетное сопротивление арматуры осевому растяжению для класса стали А400.

- модуль упругости для арматуры.

Сбор вертикальных нагрузок

Коэффициент надежности г

1) собственный вес плиты

2) керамическая плитка h=13 мм

3) цементно-песчаный раствор h=20 мм

Плита рассчитывается как балка, нагруженная равномерно распределенной нагрузкой.

?с = ?1 - ? - 0,14 = 6 - 0,16 = 5,84 м

? =2 см = 0,02 м - ширина монтажного зазора между плитами (в стыках)

?с - длина расчетного пролета плиты

Расчет арматуры ребер плиты.

= h - a - d/2 = 30 - 2 - 1 = 27 см

- рабочая высота сечения,

h - высота плиты, h=30 см

а - толщина защитного слоя бетона, a = 20 мм = 2см

d - диаметр арматуры, d = 20 мм = 2 см

(Принимаем d = 20 мм согласно предыдущему опыту a > d, a = 20мм)

- усилие в растянутой арматуре.

; - для арматуры А400

При расчете арматуры ребер плиты сечение плиты проводят к эквивалентному тавровому, соединив два продольных ребра. Полка тавра находится в сжатой зоне, а в растянутой, откуда максимально удален бетон, находится рабочая арматура.

М - момент, возникающей в ребре плиты

- ширина плиты , = 115 см

Следовательно при сохранении этого условия сжатая арматура по расчёту не требуется.

Аs - требуемая площадь сечения арматуры

Принимаем два стержня арматуры диаметром = 20мм и площадью = 6,28см 2 (Пр.5, с.402(1))

3. Подбор рабочей арматуры полки плиты

Для расчёта полки вырезается поперечная полоса шириной 1м.

Намечаем конструктивную арматуру полки плиты: намечаем диаметр арматуры 3мм, шаг стержней 300мм. Концы стержней не должны доходить до края элемента на 10мм

Согласно рекомендациям принимаем защитный слой 5мм для верхней арматуры и 15мм для нижней, назначаем диаметр арматуры 3мм В500 Rs = 415МПа

Принимаем lc=11см и определим М

Полного защемления полок в ребрах нет.

b - расчетный пролет = 1м

Определим площадь арматуры полки плиты на 1 погонный метр

Принимаем количество стержней 13, с шагом 7см

Согласно приложению 8 с. 406, при As = 0,9 и d = 3мм, принимаем шаг стержней арматуры 300мм

В соответствии с рекомендациями норм принимаем диаметр поперечной арматуры (хомутов) 8мм, шаг хомутов назначаем, в приопорной зоне 150мм, на остальной части пролета шаг хомутов 100мм.

4. Расчёт плиты на поперечную силу в приопорных зонах

С=127см - невыгоднейшее значение

Окончательно принимаем с = 2h0 = 54см

Для восприятия поперечной силы арматурой

Площадь арматуры диаметром 8мм

0,503см 2 - площадь одного хомута

5. Расчёт трещиностойкости в нормальном сечении

1. Расчет на образование трещин М?Мcrc

2. Расчет раскрытия трещин асrс?[асrс]

1) М - внешний момент в нормальном сечении.

Мсrc - момент воспринимаемый сечением трещин(в конце 1-й стадии)

2) [асrс] = 0,3 - при длительной нагрузке.

Раскрытие трещин рассчитывается для непродолжительного действия нагрузок отечественными нормами.

[асrс] = 0,4 - при кратковременной нагрузке.

Если трещина при раскрытии 0,3мм - она самозалечивается.

Текучесть арматуры наступает при раскрытии трещины 0,7 - 1,2мм

Текучесть - рост деформации, при постоянном напряжении.

А1-площадь половины полки

Wpl - упругопластический момент сопротивления сечения

Придельные деформации бетона при растяжении

6. Расчет колонны

Определение нагрузок на колонну.

А грузовая площадь =

G1= P*A = 734,4kH - вес пригруза

G2= 17*Н*А = 17*3*43,2 = 2203,2кН

G3 = 0,4*0,6*6,6*3*25=118,8кН - собственный вес колонны

G4 = 3*43,2*10,186 = 1320,11кН - вес перекрытий с полезной нагрузкой

G5 = 0,6*0,3*3*7,2*25 = 97,2кН - вес ригелей

Расчёт прочности колонны, как сжатого элемента

Все сжатые элементы в строительстве работают на внецентренное сжатие, так требуется расчёт рамы с жесткими узлами. Расчёт мы упрощаем, и считаем колонну как центрально-сжатый элемент.

Rsc для А400 = 355МПа

Окончательно принимаем 10 стержней арматуры диаметром 18мм и площадью 25,4см 2

Толщина защитного слоя 20мм. Диаметр поперечной арматуры(хомутов) 6мм.

Шаг продольной арматуры принимаем из условия от 15d и не более 500мм. Окончательно примем шаг продольной арматуры 250мм.

Рассчитываем площадь консоли.

Фактическая l=25 больше расчётной l=8, условие выполняется.

7. Расчёт столбчатого фундамента

Вычисление площади основания фундамента

R - расчётное сопротивление грунта 0,5МПа

г - объёмная масса грунта 1,7т/м 3

d-глубина заложения фундамента, условно примем 150см

Принимаем трехступенчатый фундамент, с высотой всех ступеней 300мм, шириной первой и второй ступени 300мм, и третьей ступени 400мм. Размеры стакана фундамента 1000х1100.

Расчёт по нормальному сечению I-I

Принимаем защитный слой

d предварительно принимаем 20мм

Шаг арматуры рекомендуется 20см. Принимаем 5 арматур диаметром 12мм и площадью 5,65см 2 . Арматура не доходит до края бетона на 10мм.

Расчёт нижней ступени на продавливание.

Список используемой литературы

Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте. Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.

>>>>> Перейти к скачиванию файла с работой
Кстати! В нашей группе ВКонтакте мы бесплатно помогаем с поиском рефератов, курсовых и информации для их написания. Не спешите выходить из группы после загрузки работы, мы ещё можем Вам пригодиться ;)

Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.

Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.


Заказать реферат (курсовую, диплом или отчёт) без рисков, напрямую у автора.


Похожие работы:
Одноэтажное каркасное промышленное здание

Расчет железобетонного каркаса одноэтажного трехпролетного производственного здания согласно основным принципам расчета, конструирования и компоновки железобетонных конструкций. Основные элементы железобетонного каркаса: плоские поперечные рамы.

Расчет железобетонных колонн поперечника одноэтажной рамы промышленного здания по несущей способности. Проверка прочности колонны при съёме с опалубки, транспортировании и монтаже. Определение эксцентриситетов приложения продольных сил и сечения арматуры.

Описание объемно-планировочного решения, состав помещений. Расчет железобетонной плиты лоджии. Предварительное назначение размеров лестничного марша. Выбор основных строительно-монтажных машин, оснастки и приспособлений по техническим параметрам.

Нормальный и усложненный тип балочных клеток в рабочих площадках: компоновка балочной клетки и выбор стали, расчет железобетонного настила и его балок, проверка прочности принятого сечения и жесткости клети. Расчет базы и колонны на устойчивость.

Описание основных параметров проектируемого объекта. Характеристика: назначение, конструктивная схема жилого дома, стройгенплан, применяемые материалы и изделия. Расчет железобетонных конструкций. Технология выполнения работ, организация строительства.

Определение нормативных и расчетных значений нагрузок. Расчет кирпичного центрально-сжатого столба. Расчет железобетонной колонны со случайным эксцентриситетом. Определение глубины заложения и размеров подошвы фундамента. Расчет нагельного соединения.

Определение числа пролетов и размеров мостового перехода. Проектирование промежуточной опоры. Определение числа свай в фундаменте опоры. Расчет железобетонного пролетного строения. Подбор устоев моста по типовому проекту. Определение стоимости моста.

Расчет и компоновка плит перекрытия, пролетов и нагрузок. Расчет прочности панели по предельным состояниям 1-й и 2-й групп. Определение положения границы сжатой зоны бетона. Статический расчет ригеля и колонны. Расчет железобетонного фундамента здания.


Похожие учебники и литература 2019:
Готовые списки литературы по ГОСТ


Сопромат - курс лекций


Перейти в список рефератов, курсовых, контрольных и дипломов по
дисциплине Строительство и архитектура

1.Расчет предварительно напряженной плиты покрытия.

Требуется выполнить расчет и конструирование сборной ж/бетонной плиты покрытия размером 3х6 м, арматура предварительно напряженная, натяжение арматуры механическое на упоры металлических форм, здание неотапливаемое, второй район по нормированию снегового покрова.

Нормативные нагрузки и соответствующие коэффициенты надежности элементов покрытия.

Нормат. Нагр-ка, Н/м 2

Коэф. надежн-ти по нагр-ке

Ж/б плита размером 3х6 м

Класс арматуры для продольных ребер Ат-IV, Rsp=510 МПа, Rsp,ser=590 МПа, Es=190000 МПа, для поперечных ребер назначаем арматуру класса A-III, Ш6, 8 мм, Rs=355 МПа, для полки плиты на местный изгиб Ш 3 Вр-I, Rs=375 МПа.

Принимаем величину контролируемого напряжения для напрягаемой арматуры уsp= 0,6?Rsp,ser = 0,6?590 = 470 МПа, Дгsp=0,1.

Назначаем класс бетона В30, гв2= 0,9, Rbb2= 17?0.9 = 15,3 МПа, Rbtb2= 1,2?0,9 = 1,08 МПа, Rbt,ser=1,8 МПа, Eb= 29000 МПа, б = Es/Eb = 190000/29000 = 6,55.

Назначаем геометрические размеры, соответствующие типовой плите покрытия, вес плиты 2,4 т, вес 1 м 2 - 1333 Н/м 2 .

1.2 Определение нагрузок

Нормативная нагрузка, кН/м 2

Коэффициент надежности по нагрузке

Расчетная нагрузка, кН/м 2

Постоянная:

-собственный вес плиты

-пароизоляция

-утеплитель

-асфальтовая стяжка, д=2 см

Итого:

1.3 Расчет полки плиты на местный изгиб

Расчетная схема. При отношении ширины плиты к расстоянию между поперечными ребрами (0,99 м) больше 2 полк плиты на местный изгиб следует рассчитывать, как балочную. Выделяется, условно, полоса шириной 1 м и рассматривается, как многопролетная неразрезная балка, опорами у которой являются поперечные ребра. Размеры сечения этой балки: ширина - 100 см, высота - 2,5 см.

Расчетные пролеты принимаются равными расстояниям в чистоте между поперечными ребрами lp= 99 - 10 = 89 см.

Расчетная нагрузка на 1 м длины выделенной полосы состоит из собственного веса полки плиты и нагрузки от кровли. Собственный вес плиты толщиной д = 2,5 см при объемном весе с = 2500 кг/м 3 с учетом коэффициента надежности по нагрузке гf = 1,1 будет равен

1 ? 1 ? д ? с ? г = 1 ? 1 ? 0,025 ? 2500 ? 1,1 = 68,8 кг/м 2 = 688 Н/м 2

Расчетная нагрузка (см. табл.)

q = 688 + (3641 - 1466) = 2863 Н/м 2

Изгибающие моменты определяются с учетом перераспределения усилий вследствие пластических деформаций, в расчет принимается изгибающий момент

М = ql 2 /11 = 2863 ? 0,89 2 /11 = 206,12 Н?м

Оптимальность толщины полки плиты проверяется из условия прочности при ж = 0,1 и соответственно бт=0,095

Требуемая площадь арматуры при

по таблице ж=0,092

Принимаем 8 Ш3 Вр-I (Аs=0,57см 2 ), шаг рабочих стержней в сетке 100/8 = 12,5 см. Назначаем распределительную арматуру (не менее 10% от площади рабочей арматуры) 4 Ш3 Вр-I (Аs=0,28см 2 ) шаг стержней распределительной арматуры 100/4 = 25 см.

1.4 Расчет поперечного ребра плиты

Расчетная схема. С продольными ребрами поперечные ребра связаны монолитно, поэтому в качестве расчетной схемы для поперечного ребра принимаем однопролетную балку с защемленными опорами.

Расчетное сечение поперечного ребра принимается тавровым с шириной полки bf, равной расстоянию между поперечными ребрами.

h = 13 см, b = (4+10)/2=7 см, bf = 99 см, hf = 2,5 см

Расчетный пролет принимается как расстояние в чистоте между продольными ребрами.

Расчетная нагрузка определяется на полосу шириной bf = 99 см с учетом нагрузки от собственного веса ребра при с = 2500 кг/м 3 и гf = 1,1. Собственный вес одного метра ребра 0,07?(0,15-0,025)?1?2500?1,1=24,06 кг/м = 244 Н/м

q = 241 + 688?0,99+(3641 - 1466)?0,99 = 3075 Н/м

Изгибающие моменты определяются с учетом перераспределения усилий вследствие пластических деформаций, пролетный и опорные моменты принимаются одинаковыми.

Требуемая площадь арматуры в пролете (расчетное сечение тавровое - полка в сжатой зоне), принимаем

Проверим положение нейтральной оси

- нейтральная ось проходит в пределах высоты полки

Принимаем 1 Ш8 (Аs=0,503см 2 )

Требуемая площадь арматуры на опорах (расчетное сечение прямоугольное - полка в растянутой зоне) ,

Принимаем так же как в пролете 1 Ш8 (Аs=0,503см 2 )

Проверим необходимость расчета хомутов

условие удовлетворяется, поперечная арматура по расчету не требуется, принимаем конструктивно хомуты Ш3 мм Вр-I с шагом 15 см.

1.5 Расчет плиты на общий изгиб по нормальным сечениям

Расчетная схема. Плита покрытия свободно опирается на ригели поперечных рам и при расчете рассматривается как однопролетная свободно опертая балка. В качестве расчетного сечения принимаем тавровое сечение с шириной полки bf = 298 см

h = 45 см, b = 2b1=2?12=24 см, bf = 298 см, hf = 2,5 см

Ширина ребра расчетного таврового сечения принимается равной удвоенной ширине средних значений ширины продольных ребер плиты. При ширине плиты bf нагрузка, определенная на 1 м кв. умножается на ширину плиты 3м.

Расчетный пролет плиты принимаем из условия, что опорные реакции размещаются от торцов плиты на расстояниях равных 6 см. lp= 596-2?6=584 см

Изгибающий момент и поперечная сила определяются как в свободно опертой балке:

Требуемая площадь арматуры при определяется в предположении, что нейтральная ось проходит в пределах высоты полки.

проверим положение нейтральной оси из условия

нейтральная ось проходит в пределах высоты полки и сечение рассчитывается как прямоугольное шириной bf=2,24 см (ширина вводимой в расчет полки в каждую сторону от ребра должна быть не более 1/6 части пролета - 1/6 ? 6 м = 1 м)

Определим по таблице жR = 0,5 и гS6 = 1,15

Принимаем 2 Ш10 Ат-IV (Аsр= 1,57см 2 ) по 1 Ш10 в каждом ребре.

1.6 Расчет продольных ребер по наклонным сечениям на поперечную силу

Дополнительные табличные данные. Расчетное сопротивление поперечной арматуры Ш 4 р-I, Rsw =265 МПа, отношение модулей упругости арматуры и бетона расчетная равномерно распределенная нагрузка равна фактической

Рисунок 5 — Расчетное значение плиты Рисунок 6 — Расчетная схема плиты перекрытия Материалы для плиты: Бетон — тяжелый, класса прочности на сжатие В20.,;,; коэффициент условия работы бетона. Плита твердеет в естественных условиях. Начальный модуль упругости. Направление ригелей может быть продольным и поперечным. Это обуславливается технико-экономическими показателями. Выбор типа поперечного… Читать ещё >

Расчет железобетонных конструкций ( реферат , курсовая , диплом , контрольная )

Железобетонные конструкции являются базой современного индустриального строительства. Из железобетона возводят промышленные одноэтажные и многоэтажные здания, гражданские здания различного назначения, в том числе жилые дома.

Бетон, как показывают испытания, хорошо сопротивляется сжатию и значительно хуже растяжению, а сталь имеет высокое сопротивление не только растяжению, но и сжатию. Поэтому включение стальной арматуры в растянутую зону железобетонных элементов существенно повышает их несущую способность.

Совместная работа бетона и стальной арматуры обуславливается выгодным сочетанием их физико-механических свойств.

Железобетон получил широкое распространение в строительстве благодаря его положительным свойствам: долговечности, огнестойкости, стойкости против атмосферных воздействий, высокой сопротивляемости к динамическим нагрузкам и др.

Целью выполнения курсового проекта является овладение основами расчета и проектирования железобетонных конструкций, изучение метода расчета сечений железобетонных конструкций по предельным состояниям.

1. Проектирование монолитного варианта

железобетонный конструкция индустриальный строительство Главные балки располагаются обязательно в поперечном направлении здания, т. е. по наибольшему шагу колонн. Привязка наружных кирпичных стен должна быть равна 250 мм от разбивочных осей до внутренней грани стены. Расстояния между второстепенными балками назначаются с учетом проектирования плиты балочного типа. Допускается принимать размер крайнего проема плиты меньше среднего не более чем на 20%. Размеры поперечных сечений балок должны соответствовать унифицированным.

Назначаем предварительно следующие значения геометрических размеров элементов перекрытия:

1) высота и ширина поперечного сечения второстепенных балок:

2) высота и ширина поперечного сечения главных балок:

3) толщину плиты примем — 70 мм Вычисляем расчетные пролеты и нагрузку на плиту. Согласно рис. 1 и рис. 2 получим в коротком направлении:

а в длинном направлении .

Поскольку отношение пролетов — плита балочного типа Рисунок 1 — Конструктивная схема монолитного перекрытия: 1 — главные балки; 2 — второстепенные балки; 3 — условная полоса шириной 1 м для расчета плиты Рисунок 2 — К расчету неразрезной монолитной плиты: а — расчетные пролеты и схема армирования; б — расчетная схема; в — эпюра изгибающих моментов; г — расчетное сечение плиты Для расчета плиты в плане перекрытия условно выделяем полосу шириной 1 м (рис. 1). Плита будет работать как неразрезная балка, опорами которой служит второстепенная балка и наружные кирпичные стены. При этом нагрузка на 1 погонный метр плиты будет равна нагрузке на 1 м 2 перекрытия. Подсчет нагрузок дан в табл. 1.

Для бетона класса В20 нормативное значение сопротивления сжатию Rb,n и расчётное сопротивление сжатию Rb равны:

Rb,n = 15,0МПа; Rb = 11,5МПа

– коэффициент надёжности по бетону при сжатии 1,3.

Нормативное сопротивление определяется на основе фактических результатов испытаний, с учётом статистической изменчивости свойств.

При расчёте по предельным состояниям от предельных состояний уходят искусственно завышая нагрузки и искусственно занижая прочность материалов.

Расчётное сопротивление бетона на осевое растяжение

- расчетное сопротивление арматуры осевому растяжению для класса стали А400.

– модуль упругости для арматуры.

Сбор вертикальных нагрузок

Плита рассчитывается как балка, нагруженная равномерно распределенной нагрузкой.

ℓс = ℓ1 - ∆ - 0,14 = 6 – 0,16 = 5,84 м

∆ =2 см = 0,02 м – ширина монтажного зазора между плитами (в стыках)

ℓс – длина расчетного пролета плиты

Расчет арматуры ребер плиты.

= h – a – d/2 = 30 – 2 – 1 = 27 см

- рабочая высота сечения,

h – высота плиты, h=30 см

а – толщина защитного слоя бетона, a = 20 мм = 2см

d – диаметр арматуры, d = 20 мм = 2 см

(Принимаем d = 20 мм согласно предыдущему опыту a > d, a = 20мм)

– усилие в растянутой арматуре.

; - для арматуры А400

При расчете арматуры ребер плиты сечение плиты проводят к эквивалентному тавровому, соединив два продольных ребра. Полка тавра находится в сжатой зоне, а в растянутой, откуда максимально удален бетон, находится рабочая арматура.

М – момент, возникающей в ребре плиты

- ширина плиты , = 115 см

Следовательно при сохранении этого условия сжатая арматура по расчёту не требуется.

Аs – требуемая площадь сечения арматуры

Принимаем два стержня арматуры диаметром = 20мм и площадью = 6,28см2 (Пр.5, с.402(1))

3. Подбор рабочей арматуры полки плиты

Для расчёта полки вырезается поперечная полоса шириной 1м.

Намечаем конструктивную арматуру полки плиты: намечаем диаметр арматуры 3мм, шаг стержней 300мм. Концы стержней не должны доходить до края элемента на 10мм

Согласно рекомендациям принимаем защитный слой 5мм для верхней арматуры и 15мм для нижней, назначаем диаметр арматуры 3мм В500 Rs = 415МПа

Принимаем lc=11см и определим М

Полного защемления полок в ребрах нет.

b - расчетный пролет = 1м

Определим площадь арматуры полки плиты на 1 погонный метр

Принимаем количество стержней 13, с шагом 7см

Согласно приложению 8 с. 406, при As = 0,9 и d = 3мм, принимаем шаг стержней арматуры 300мм

В соответствии с рекомендациями норм принимаем диаметр поперечной арматуры (хомутов) 8мм, шаг хомутов назначаем, в приопорной зоне 150мм, на остальной части пролета шаг хомутов 100мм.

4. Расчёт плиты на поперечную силу в приопорных зонах

С=127см – невыгоднейшее значение

Окончательно принимаем с = 2h0 = 54см

Для восприятия поперечной силы арматурой

Площадь арматуры диаметром 8мм

0,503см2 – площадь одного хомута

5. Расчёт трещиностойкости в нормальном сечении

Расчет на образование трещин М≤Мcrc

Расчет раскрытия трещин асrс≤[асrс]

М – внешний момент в нормальном сечении.

Мсrc – момент воспринимаемый сечением трещин(в конце 1-й стадии)

[асrс] = 0,3 – при длительной нагрузке.

Раскрытие трещин рассчитывается для непродолжительного действия нагрузок отечественными нормами.

[асrс] = 0,4 – при кратковременной нагрузке.

Если трещина при раскрытии 0,3мм – она самозалечивается.

Текучесть арматуры наступает при раскрытии трещины 0,7 – 1,2мм

Текучесть – рост деформации, при постоянном напряжении.

А1-площадь половины полки

Wpl – упругопластический момент сопротивления сечения

Придельные деформации бетона при растяжении

6. Расчет колонны

Определение нагрузок на колонну.

А грузовая площадь =

G1= P*A = 734,4kH – вес пригруза

G2= 17*Н*А = 17*3*43,2 = 2203,2кН

G3 = 0,4*0,6*6,6*3*25=118,8кН – собственный вес колонны

G4 = 3*43,2*10,186 = 1320,11кН – вес перекрытий с полезной нагрузкой

G5 = 0,6*0,3*3*7,2*25 = 97,2кН – вес ригелей

N = G1 + G2 + G3 + G4 + G5 = 4473,71kH

Расчёт прочности колонны, как сжатого элемента

Все сжатые элементы в строительстве работают на внецентренное сжатие, так требуется расчёт рамы с жесткими узлами. Расчёт мы упрощаем, и считаем колонну как центрально-сжатый элемент.

Rsc для А400 = 355МПа

Окончательно принимаем 10 стержней арматуры диаметром 18мм и площадью 25,4см2

Толщина защитного слоя 20мм. Диаметр поперечной арматуры(хомутов) 6мм.

Шаг продольной арматуры принимаем из условия от 15d и не более 500мм. Окончательно примем шаг продольной арматуры 250мм.

Рассчитываем площадь консоли.

Фактическая l=25 больше расчётной l=8, условие выполняется.

- условие выполнено

7. Расчёт столбчатого фундамента

Вычисление площади основания фундамента

R – расчётное сопротивление грунта 0,5МПа

г – объёмная масса грунта 1,7т/м3

d-глубина заложения фундамента, условно примем 150см

Принимаем трехступенчатый фундамент, с высотой всех ступеней 300мм, шириной первой и второй ступени 300мм, и третьей ступени 400мм. Размеры стакана фундамента 1000х1100.

Расчёт по нормальному сечению I-I

Принимаем защитный слой

d предварительно принимаем 20мм

Шаг арматуры рекомендуется 20см. Принимаем 5 арматур диаметром 12мм и площадью 5,65см2. Арматура не доходит до края бетона на 10мм.

Расчёт нижней ступени на продавливание.

Список используемой литературы

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Поможем написать работу на аналогичную тему

Похожие рефераты:

Компоновка сборного перекрытия. Расчет плиты перекрытия, сбор нагрузок. Расчет плиты на действие поперечной силы. Расчет ригеля: определение расчетных усилий; расчет прочности сечений. Построение эпюры материалов. Расчет и армирование фундамента.

Компоновка конструктивной схемы сборного перекрытия. Расчет и конструирование многопустотной плиты: конструктивное решение, статический расчет. Подбор продольной и поперечной арматуры, определение геометрических характеристик сечения. Прогибы плиты.

Разработка конструктивной схемы сборного перекрытия, методика и основные этапы проектирования его панели. Составление расчетной схемы нагрузки. Порядок проектирования ригеля, построение эпюры материалов. Разработка и расчет колонн первого этажа.

Определение значений поперечных сил и изгибающих моментов порядок составления уравнения равновесия сил и моментов. Подбор продольной и поперечной арматуры исходя из условий сварки, его главные критерии и обоснование. Спецификация подобранной арматуры.

Конструирование сборной железобетонной плиты, назначение геометрических размеров, классов арматуры и бетона, определение потерь предварительного напряжения. Расчет прочности сплошной колонны среднего ряда фундамента и основных геометрических размеров.

Определение технико-экономических показателей для двух вариантов конструкций: геометрические размеры и расход материалов для плит перекрытия, ригелей; компоновка и сбор нагрузок. Расчет и конструирование элементов каркаса, выбор экономичного варианта.

Изготовление бетонной многопустотной панели покрытия. Расчет и конструирование продольной и поперечной стальной арматуры. Армирование панели сварными сетками из проволоки, в верхней и нижней полках. Расчет по прочности, определение прогибов и деформации.

Схема компоновки сборного железобетонного междуэтажного перекрытия. Сбор нагрузок на перекрытие. Проектирование предварительно напряжённой плиты перекрытия. Расчет неразрезного железобетонного ригеля. Построение необходимых параметров эпюры арматуры.

Решение задач при компоновке железобетонного балочного перекрытия административного здания. Проектирование предварительно напряжённой плиты, неразрезного ригеля. Расчёт и конструирование отдельного железобетонного фундамента и монолитного перекрытия.

Конструктивное решение сборного железобетонного каркасного здания. Проектирование сборного железобетонного перекрытия. Расчет плиты по деформациям и раскрытию трещин. Определение приопорного участка. Расчет сборной железобетонной колонны, ребристой плиты.

Монолитное ребристое перекрытие проектируется для здания, в котором наружные несущие стены и внутренние столбы выполняются из кирпича, а число этажей принимается по заданию. Расчёт и конструирование монолитного ребристого перекрытия здания.

Расчет и конструирование монолитного ребристого перекрытия. Определение расчетных размеров монолитной железобетонной плиты перекрытия и второстепенной балки. Выбор площади сечения арматуры в плите. Геометрические размеры и опоры второстепенной балки.

Характеристики прочности бетона В45 и арматуры А 1000. Расчетный пролет и нагрузки. Расчет прочности плиты по сечению, наклонному к продольной оси. Определение усилий в ригеле поперечной рамы, усилий в средней колонне. Конструирование арматуры колонны.

Компоновка сборного балочного перекрытия. Проектирование сборного железобетонного ригеля. Определение конструктивной и расчетной длин плиты перекрытия. Сбор нагрузок на ригель. Определение его расчетных усилий. Построение эпюры материалов ригеля.

Расчет многопустотной плиты перекрытия. Сбор нагрузок на панель перекрытия. Определение нагрузок и усилий. Расчет монолитной центрально нагруженной. Сбор нагрузок на колонны. Расчет консоли колонны. Расчет монолитного центрально нагруженного фундамента.

Компоновка поперечной рамы и выбор типов колонн. Обеспечение пространственной жесткости задания. Определение нагрузок на поперечную раму. Проектирование и расчет стропильной конструкции. Конструирование колонны и фундамента производственного здания.

Сборное перекрытие с продольным расположением железобетонных монолитных балок и колонн в двухэтажном административном здании: схема расположения, расчет и конструирование; определение нормативной и расчетной нагрузок, выбор материала, его характеристики.

Компоновка конструктивной схемы здания. Статический расчет поперечной рамы. Назначение размеров и выбор материалов. Сбор нагрузок на продольные ребра. Расчетная схема. Определение усилий. Определение мест фактического обрыва нижних стержней.

Расчет монолитного ребристого перекрытия над подвалом, размеров балок. Схема монолитной плиты, уточнение размеров и сбор нагрузок на нее. Схема второстепенной балки, уточнение ее размеров. Сборное ребристое междуэтажное перекрытие, сбор нагрузок на него.

Компоновка сборного железобетонного перекрытия. Расчёт прочности колонны и многопустотной плиты по предельным состояниям первой группы. Проектирование неразрезного ригеля. Конструирование отдельного железобетонного фундамента и монолитного перекрытия.

Для бетона класса В20 нормативное значение сопротивления сжатию Rb,n и расчётное сопротивление сжатию Rb равны:

Rb,n = 15,0МПа; Rb = 11,5МПа

– коэффициент надёжности по бетону при сжатии 1,3.

Нормативное сопротивление определяется на основе фактических результатов испытаний, с учётом статистической изменчивости свойств.

При расчёте по предельным состояниям от предельных состояний уходят искусственно завышая нагрузки и искусственно занижая прочность материалов.

Расчётное сопротивление бетона на осевое растяжение

- расчетное сопротивление арматуры осевому растяжению для класса стали А400.

– модуль упругости для арматуры.

Сбор вертикальных нагрузок

Плита рассчитывается как балка, нагруженная равномерно распределенной нагрузкой.

ℓс = ℓ1 - ∆ - 0,14 = 6 – 0,16 = 5,84 м

∆ =2 см = 0,02 м – ширина монтажного зазора между плитами (в стыках)

ℓс – длина расчетного пролета плиты

Расчет арматуры ребер плиты.

= h – a – d/2 = 30 – 2 – 1 = 27 см

- рабочая высота сечения,

h – высота плиты, h=30 см

а – толщина защитного слоя бетона, a = 20 мм = 2см

d – диаметр арматуры, d = 20 мм = 2 см

(Принимаем d = 20 мм согласно предыдущему опыту a > d, a = 20мм)

– усилие в растянутой арматуре.

; - для арматуры А400

При расчете арматуры ребер плиты сечение плиты проводят к эквивалентному тавровому, соединив два продольных ребра. Полка тавра находится в сжатой зоне, а в растянутой, откуда максимально удален бетон, находится рабочая арматура.

М – момент, возникающей в ребре плиты

- ширина плиты , = 115 см

Следовательно при сохранении этого условия сжатая арматура по расчёту не требуется.

Аs – требуемая площадь сечения арматуры

Принимаем два стержня арматуры диаметром = 20мм и площадью = 6,28см2 (Пр.5, с.402(1))

3. Подбор рабочей арматуры полки плиты

Для расчёта полки вырезается поперечная полоса шириной 1м.

Намечаем конструктивную арматуру полки плиты: намечаем диаметр арматуры 3мм, шаг стержней 300мм. Концы стержней не должны доходить до края элемента на 10мм

Согласно рекомендациям принимаем защитный слой 5мм для верхней арматуры и 15мм для нижней, назначаем диаметр арматуры 3мм В500 Rs = 415МПа

Принимаем lc=11см и определим М

Полного защемления полок в ребрах нет.

b - расчетный пролет = 1м

Определим площадь арматуры полки плиты на 1 погонный метр

Принимаем количество стержней 13, с шагом 7см

Согласно приложению 8 с. 406, при As = 0,9 и d = 3мм, принимаем шаг стержней арматуры 300мм

В соответствии с рекомендациями норм принимаем диаметр поперечной арматуры (хомутов) 8мм, шаг хомутов назначаем, в приопорной зоне 150мм, на остальной части пролета шаг хомутов 100мм.

4. Расчёт плиты на поперечную силу в приопорных зонах

С=127см – невыгоднейшее значение

Окончательно принимаем с = 2h0 = 54см

Для восприятия поперечной силы арматурой

Площадь арматуры диаметром 8мм

0,503см2 – площадь одного хомута

5. Расчёт трещиностойкости в нормальном сечении

Расчет на образование трещин М≤Мcrc

Расчет раскрытия трещин асrс≤[асrс]

М – внешний момент в нормальном сечении.

Мсrc – момент воспринимаемый сечением трещин(в конце 1-й стадии)

[асrс] = 0,3 – при длительной нагрузке.

Раскрытие трещин рассчитывается для непродолжительного действия нагрузок отечественными нормами.

[асrс] = 0,4 – при кратковременной нагрузке.

Если трещина при раскрытии 0,3мм – она самозалечивается.

Текучесть арматуры наступает при раскрытии трещины 0,7 – 1,2мм

Текучесть – рост деформации, при постоянном напряжении.

А1-площадь половины полки

Wpl – упругопластический момент сопротивления сечения

Придельные деформации бетона при растяжении

6. Расчет колонны

Определение нагрузок на колонну.

А грузовая площадь =

G1= P*A = 734,4kH – вес пригруза

G2= 17*Н*А = 17*3*43,2 = 2203,2кН

G3 = 0,4*0,6*6,6*3*25=118,8кН – собственный вес колонны

G4 = 3*43,2*10,186 = 1320,11кН – вес перекрытий с полезной нагрузкой

G5 = 0,6*0,3*3*7,2*25 = 97,2кН – вес ригелей

N = G1 + G2 + G3 + G4 + G5 = 4473,71kH

Расчёт прочности колонны, как сжатого элемента

Все сжатые элементы в строительстве работают на внецентренное сжатие, так требуется расчёт рамы с жесткими узлами. Расчёт мы упрощаем, и считаем колонну как центрально-сжатый элемент.

Rsc для А400 = 355МПа

Окончательно принимаем 10 стержней арматуры диаметром 18мм и площадью 25,4см2

Толщина защитного слоя 20мм. Диаметр поперечной арматуры(хомутов) 6мм.

Шаг продольной арматуры принимаем из условия от 15d и не более 500мм. Окончательно примем шаг продольной арматуры 250мм.

Рассчитываем площадь консоли.

Фактическая l=25 больше расчётной l=8, условие выполняется.

- условие выполнено

7. Расчёт столбчатого фундамента

Вычисление площади основания фундамента

R – расчётное сопротивление грунта 0,5МПа

г – объёмная масса грунта 1,7т/м3

d-глубина заложения фундамента, условно примем 150см

Принимаем трехступенчатый фундамент, с высотой всех ступеней 300мм, шириной первой и второй ступени 300мм, и третьей ступени 400мм. Размеры стакана фундамента 1000х1100.

Расчёт по нормальному сечению I-I

Принимаем защитный слой

d предварительно принимаем 20мм

Шаг арматуры рекомендуется 20см. Принимаем 5 арматур диаметром 12мм и площадью 5,65см2. Арматура не доходит до края бетона на 10мм.

Расчёт нижней ступени на продавливание.

Список используемой литературы

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Поможем написать работу на аналогичную тему

Похожие рефераты:

Компоновка сборного перекрытия. Расчет плиты перекрытия, сбор нагрузок. Расчет плиты на действие поперечной силы. Расчет ригеля: определение расчетных усилий; расчет прочности сечений. Построение эпюры материалов. Расчет и армирование фундамента.

Компоновка конструктивной схемы сборного перекрытия. Расчет и конструирование многопустотной плиты: конструктивное решение, статический расчет. Подбор продольной и поперечной арматуры, определение геометрических характеристик сечения. Прогибы плиты.

Разработка конструктивной схемы сборного перекрытия, методика и основные этапы проектирования его панели. Составление расчетной схемы нагрузки. Порядок проектирования ригеля, построение эпюры материалов. Разработка и расчет колонн первого этажа.

Определение значений поперечных сил и изгибающих моментов порядок составления уравнения равновесия сил и моментов. Подбор продольной и поперечной арматуры исходя из условий сварки, его главные критерии и обоснование. Спецификация подобранной арматуры.

Конструирование сборной железобетонной плиты, назначение геометрических размеров, классов арматуры и бетона, определение потерь предварительного напряжения. Расчет прочности сплошной колонны среднего ряда фундамента и основных геометрических размеров.

Определение технико-экономических показателей для двух вариантов конструкций: геометрические размеры и расход материалов для плит перекрытия, ригелей; компоновка и сбор нагрузок. Расчет и конструирование элементов каркаса, выбор экономичного варианта.

Изготовление бетонной многопустотной панели покрытия. Расчет и конструирование продольной и поперечной стальной арматуры. Армирование панели сварными сетками из проволоки, в верхней и нижней полках. Расчет по прочности, определение прогибов и деформации.

Схема компоновки сборного железобетонного междуэтажного перекрытия. Сбор нагрузок на перекрытие. Проектирование предварительно напряжённой плиты перекрытия. Расчет неразрезного железобетонного ригеля. Построение необходимых параметров эпюры арматуры.

Решение задач при компоновке железобетонного балочного перекрытия административного здания. Проектирование предварительно напряжённой плиты, неразрезного ригеля. Расчёт и конструирование отдельного железобетонного фундамента и монолитного перекрытия.

Конструктивное решение сборного железобетонного каркасного здания. Проектирование сборного железобетонного перекрытия. Расчет плиты по деформациям и раскрытию трещин. Определение приопорного участка. Расчет сборной железобетонной колонны, ребристой плиты.

Монолитное ребристое перекрытие проектируется для здания, в котором наружные несущие стены и внутренние столбы выполняются из кирпича, а число этажей принимается по заданию. Расчёт и конструирование монолитного ребристого перекрытия здания.

Расчет и конструирование монолитного ребристого перекрытия. Определение расчетных размеров монолитной железобетонной плиты перекрытия и второстепенной балки. Выбор площади сечения арматуры в плите. Геометрические размеры и опоры второстепенной балки.

Характеристики прочности бетона В45 и арматуры А 1000. Расчетный пролет и нагрузки. Расчет прочности плиты по сечению, наклонному к продольной оси. Определение усилий в ригеле поперечной рамы, усилий в средней колонне. Конструирование арматуры колонны.

Компоновка сборного балочного перекрытия. Проектирование сборного железобетонного ригеля. Определение конструктивной и расчетной длин плиты перекрытия. Сбор нагрузок на ригель. Определение его расчетных усилий. Построение эпюры материалов ригеля.

Расчет многопустотной плиты перекрытия. Сбор нагрузок на панель перекрытия. Определение нагрузок и усилий. Расчет монолитной центрально нагруженной. Сбор нагрузок на колонны. Расчет консоли колонны. Расчет монолитного центрально нагруженного фундамента.

Компоновка поперечной рамы и выбор типов колонн. Обеспечение пространственной жесткости задания. Определение нагрузок на поперечную раму. Проектирование и расчет стропильной конструкции. Конструирование колонны и фундамента производственного здания.

Сборное перекрытие с продольным расположением железобетонных монолитных балок и колонн в двухэтажном административном здании: схема расположения, расчет и конструирование; определение нормативной и расчетной нагрузок, выбор материала, его характеристики.

Компоновка конструктивной схемы здания. Статический расчет поперечной рамы. Назначение размеров и выбор материалов. Сбор нагрузок на продольные ребра. Расчетная схема. Определение усилий. Определение мест фактического обрыва нижних стержней.

Расчет монолитного ребристого перекрытия над подвалом, размеров балок. Схема монолитной плиты, уточнение размеров и сбор нагрузок на нее. Схема второстепенной балки, уточнение ее размеров. Сборное ребристое междуэтажное перекрытие, сбор нагрузок на него.

Компоновка сборного железобетонного перекрытия. Расчёт прочности колонны и многопустотной плиты по предельным состояниям первой группы. Проектирование неразрезного ригеля. Конструирование отдельного железобетонного фундамента и монолитного перекрытия.

Читайте также: