Расчет rc и lc фильтров реферат

Обновлено: 04.07.2024

Основное назначение фильтра состоит в том, чтобы исключить прохождение сигналов определенного диапазона частот и в то же время обеспечить передачу сигналов другого диапазона частот. Фильтры делятся на активные и пассивные. Активные фильтры представляют собой частотно-избирательный усилительный каскад. К пассивным фильтрам относятся RC- и LC-фильтры. Фильтры также можно классифицировать исходя из диапазона частот, которые они пропускают или подавляют. Существуют четыре типа фильтров:

  1. Фильтр нижних частот, который пропускает все сигналы с частотой ниже некоторого заданного значения и подавляет сигналы более высоких частот.
  2. Фильтр верхних частот, который пропускает все сигналы с частотой выше некоторого заданного значения и подавляет сигналы более низких частот.
  3. Полосно-заграждающий фильтр (режекторный), который используется для подавления сигналов определенного диапазона частот, тогда как сигналы с частотами выше и ниже этого диапазона проходят беспрепятственно.
  4. Полосно-пропускающий фильтр (полосовой), который пропускает сигналы заданной полосы частот и препятствует прохождению сигналов любых других частот.

RС-фильтры

RС-фильтр высоких частот

Схема RC-фильтра верхних (высоких) частот и его амплитудно-частотная характеристика показаны на рис. 1.



Рис. 1 - Схема и амплитудно-частотная характеристика высокочастотного CR-фильтра.

В этой схеме входное напряжение прикладывается и к резистору, и к конденсатору. Выходное же напряжение снимается с сопротивления. При уменьшении частоты сигнала возрастает реактивное сопротивление конденсатора, а следовательно, и полное сопротивление цепи. Поскольку входное напряжение остается постоянным, то ток, протекающий через цепь уменьшается. Таким образом, снижается и ток через активное сопротивление, что приводит к уменьшению падения напряжения на нем.

Фильтр характеризуется затуханием, выраженным в децибелах, которое он обеспечивает на заданной частоте. RC-фильтры рассчитываются таким образом, чтобы на выбранной частоте среза коэффициент передачи снижался приблизительно на 3 дБ (т.е. составлял 0,707 входного значения сигнала). Частота среза фильтра по уровню - 3 дБ определяется по формуле:


RС-фильтр низких частот

Фильтр низких частот имеет аналогичную структуру, только емкость и сопротивление там меняются местами. Амплитудно-частотную характеристику такого фильтра можно представить как зеркальное отображение АЧХ предыдущего.



Рис. 2 - Схема и амплитудно-частотная характеристика низкочастотного RC-фильтра.

В этой цепи входное напряжение также прикладывается и к резистору, и к конденсатору, но выходное напряжение снимается с конденсатора. При увеличении частоты сигнала реактивное сопротивление конденсатора, а следовательно, и полное сопротивление уменьшаются. Однако, поскольку это полное сопротивление состоит из реактивного и фиксированного активного сопротивлений, его значение уменьшается не так быстро, как реактивное сопротивление. Следовательно, при увеличении частоты снижение реактивного сопротивления (относительно полного сопротивления) приводит к уменьшению выходного напряжения. Частота среза этого фильтра по уровню также определяется по формуле предыдущего фильтра.

Рассмотренные выше фильтры представляют собой RC-цепи, которые характеризуются тремя параметрами, а именно: активным, реактивным и полным сопротивлениями. Обеспечиваемая этими RC-фильтрами величина затухания зависит от отношения активного или реактивного сопротивления к полному сопротивлению.

При расчете любого RC-фильтра можно задать номинал либо резистора, либо конденсатора и вычислить значение другого элемента фильтра на заданной частоте среза. При практических расчетах обычно задают номинал сопротивления, поскольку он выбирается на основании других требований. Например, сопротивление фильтра является его выходным или входным полным сопротивлением.

Полосовой RC-фильтр

Соединяя фильтры верхних и нижних частот, можно создать полосовой RC-фильтр, схема и амплитудно-частотная характеристика которого приведены на рис. 3.



Рис. 3 - Схема и АЧХ полосового RC-фильтра.

На схеме рис. 2. R1 - полное входное сопротивление; R2 - полное выходное сопротивление, а частоты низкочастотного и высокочастотного срезов определяются по формулам:


Следует отметить, что значение верхней частоты среза ( fсв ) должно быть по крайней мере быть в 10 раз больше нижней частоты среза ( fсн ), поскольку только в этом случае полосно-пропускающий фильтр будет работать достаточно эффективно.

Многозвенные RC-фильтры

Одиночный RC-фильтр не может обеспечить достаточного подавления сигналов вне заданного диапазона частот, поэтому для формирования более крутой переходной области довольно часто используют многозвенные фильтры (рис. 4, 5). Частота среза многозвенного фильтра определяется по формуле ВЧ, НЧ RC-фильтра. Добавление каждого звена приводит к увеличению затухания на заданной частоте среза примерно на 6 дБ.


Рис. 4 - Многозвенный высокочастотный фильтр


Рис. 5 - Многозвенный низкочастотный фильтр

LC-фильтры

Фильтры более высокого качества реализуются на основе катушек индуктивности и конденсаторов. В LC-фильтр могут входить также и резисторы. Связь входной и выходной цепей большинства LC-фильтров соответственно с источником сигнала и с нагрузкой производится таким образом, чтобы значения их реактивных или полных сопротивлений были равны.

Г-образный LC-фильтр нижних частот

На рис. 6 приведена схема типового Г-образного LC-фильтра нижних частот.


Рис. 6 - Схема Г-образного низкочастотного LC-фильтра

Расчет такого фильтра производится по следующим формулам:


Все LC-фильтры обладают тем преимуществом, что на переменном токе конденсаторы и катушки индуктивности работают взаимообратно, т.е. при увеличении частоты сигнала индуктивное сопротивление возрастает, а емкостное падает. Таким образом, в LC-фильтре нижних частот реактивное сопротивление параллельного элемента при увеличении частоты сигнала уменьшается и этот элемент шунтирует высокочастотные сигналы. На низких частотах реактивное сопротивление параллельного элемента достаточно высокое. Последовательный элемент обеспечивает прохождение низкочастотных сигналов, а для сигналов высоких частот его реактивное сопротивление велико.

Т-образный LC-фильтр нижних частот

Простой Г-образный фильтр не обеспечивает достаточную крутизну амплитудно-частотной характеристики. Для увеличения крутизны в основную Г-образную структуру вводят дополнительную катушку индуктивности, как показано на рис. 7. Такой фильтр называется Т-образным.


Рис. 7 - Т-образный НЧ LC-фильтр.

В Т-образном фильтре значение конденсатора С такое же, как и в исходной Г-образной структуре, и все ее расчетные формулы сохраняются. Суммарная индуктивность катушек L1 и L2 должна быть эквивалентна индуктивности единственной катушки исходной Г-образной структуры. Обычно требуемая общая индуктивность распределяется между двумя этими катушками поровну таким образом, чтобы каждая из катушек в Т-образном фильтре нижних частот имела индуктивность в два раза меньше, чем катушка в Г-образном фильтре.

П-образный LC-фильтр нижних частот

Крутизну амплитудно-частотной характеристики можно увеличить также путем введения в цепь дополнительного конденсатора. Такой фильтр называется П-образным (рис. 8).


Рис. 8 - П-образный низкочастотный LC-фильтр.

В П-образном фильтре значение индуктивности L такое же, как и в исходной Г-образной структуре, тогда как суммарная емкость конденсаторов С1 и С2 должна быть эквивалентна емкости конденсатора исходной Г-образной структуры. Обычно требуемая общая емкость распределяется между двумя этими конденсаторами поровну таким образом, чтобы каждый из конденсаторов в П-образном фильтре имел емкость, равную половине емкости конденсатора в Г-образном фильтре.

Г-образный LС-фильтр верхних частот

На рис. 9 приведена схема типового Г-образного LС-фильтра верхних частот.


Рис. 9. Схема Г-образного высокочастотного LC-фильтра.

Расчет Г-образного LС-фильтра верхних частот производится по следующим формулам:


В этом фильтре при увеличении частоты сопротивление последовательного элемента уменьшается. Он пропускает высокочастотные сигналы, а для сигналов низких частот его реактивное сопротивление велико. Параллельный элемент оказывает шунтирующее влияние на сигналы низких частот, а для высокочастотных сигналов его реактивное сопротивление велико.

Т-образный LС-фильтр верхних частот

Для увеличения крутизны амплитудно-частотной характеристики в Г-образную структуру можно ввести дополнительный конденсатор, как показано на рис. 10.


Рис. 10 - Т-образный высокочастотный LC-фильтр

Такой фильтр имеет Т-образную структуру. В Т-образном фильтре значение индуктивности L не отличается от ее значения в исходной Г-образной структуре и все расчетные формулы остаются такими же. Суммарная емкость конденсаторов С1 и С2 должна быть эквивалентна емкости одиночного конденсатора исходной Г-образной структуры. Обычно эта требуемая общая емкость распределяется поровну между двумя конденсаторами так, что Т-образном фильтре верхних частот каждый конденсатор имеет емкость, равную удвоенному значению емкости в Г-образной структуре.

П-образный LС-фильтр верхних частот

Крутизну амплитудно-частотной характеристики фильтра можно также повысить путем введения в схему дополнительной катушки индуктивности, как показано на рис. 11, образуя П-образный фильтр.


Рис. 11 - П-образный высокочастотный LC-фильтр

В П-образном LC-фильтре значение емкости конденсатора не изменяется, а суммарная индуктивность катушек L1 и L2 должна быть эквивалентна индуктивности одиночной катушки исходной Г-образной структуры. Обычно требуемая общая индуктивность распределяется поровну между двумя катушками так, что каждая из них имеет индуктивность, равную удвоенному значению индуктивности Г-образной структуры.

Г-образный режекторный LС-фильтр

Работа полосно-заграждающего (режекторного) фильтра основана на различии зависимостей полных сопротивлений параллельной и последовательной резонансных цепей от частоты. Полное сопротивление параллельной LC-цепи на резонансной частоте максимально, тогда как у последовательной цепи оно минимально. Эти две LC-цепи, соединенные определенным образом (рис. 12), образуют Г-образный режекторный фильтр.


Рис. 12 - Г-образный режекторный LC-фильтр

На центральной частоте требуемого диапазона полное сопротивление последовательной LC-цепи (она включена параллельно нагрузке) минимально, и она оказывает шунтирующее воздействие и ослабляет сигналы. Полное сопротивление параллельной LC-цепи (которая включена последовательно с нагрузкой) на центральной частоте требуемого диапазона максимально, и она препятствует прохождению сигналов.

Полосно-пропускающие LC-фильтры

Т-образные и П-образные полосно-пропускающие фильтры (рис. 13) обладают более высокой крутизной амплитудно-частотной характеристики.


Рис.13 - Полосовые П- и Т-образные LC–фильтры

Расчет полосно-пропускающих LC-фильтров производится по следующим формулам:

Фильтры нижних частот, верхних частот, полосовые и режекторные. Требования к амплитудно-частотной характеристике фильтра, частотной зависимости рабочего ослабления фильтра. Масштабирование по частоте и импедансу. Фазо-частотная характеристика Чебышёва.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 25.11.2013
Размер файла 471,6 K

Подобные документы

Методы синтеза электрического фильтра нижних и верхних частот. Аппроксимация частотной характеристики рабочего ослабления фильтра. Реализация схемы фильтров по Дарлингтону. Денормирование и расчёт ее элементов. Определение частотных характеристик фильтра.

курсовая работа [2,4 M], добавлен 23.01.2011

Общая характеристика и принцип действия фильтров нижних частот. Схема простейшего низкочастотного фильтра. Схематическое изображение пассивного RC-фильтра нижних частот и его амплитудно-частотная характеристика. Области применения данных фильтров.

презентация [3,2 M], добавлен 16.12.2013

Этапы процесса синтеза электрической схемы. Требования к частотной характеристике фильтра. Аппроксимация заданной амплитудно-частотной характеристики. Порядок расчета и соображения по методике настройки активных фильтров. Расчет величин элементов схемы.

курсовая работа [490,3 K], добавлен 27.01.2010

Основные типы фильтров, их достоинства и недостатки. Синтез фильтра верхних частот (ФВЧ) с аппроксимацией амплитудно-частотной характеристики (АЧХ) полиномом Баттерворта. Выбор схемы для каскадов общего фильтра. Методика его настройки и регулирования.

курсовая работа [753,3 K], добавлен 29.08.2010

Общие амплитудно-частотные характеристики (АЧХ) различных типов фильтров. Построение схемы фильтра верхних и нижних частот: активные и пассивные фильтры первого и второго порядка. Принципы действия, функции и применение полосовых и режекторных фильтров.

Методические указания включают в себя основы теории фильтров, порядок расчета полиномиальных пассивных LC- и активных RC-фильтров. Приведены примеры расчетов фильтров Баттерворта и Чебышева.

Для облегчения выполнения курсовой работы в приложении приводятся рекомендации - шаблоны по расчёту и построению графиков частотных характеристик рабочего ослабления электрических фильтров с помощью табличного процессора Excel.

Рассмотрены на заседании кафедры ТЭЦ и рекомендованы к печати

Протокол № 22 от 11.02.2008

Предисловие

В основной учебной литературе вопрос ы те ории и расчета фильтров освещены достаточно кратко. В связи с этим, в методические указания включены ос новные теоретические пол оже ния и понятия, изве стн ые из теории формулы, а также приведены примеры расчетов различных фильтров.

При выполнении курс овой работы след ует руководствоватьс я сле дующим.

Требуемые расчеты в работе долж ны приводить ся достаточно подробно, с кратким словесным пояснением при расче те каждой величины. При эт ом дол жны приводиться промежуточные чис ловые значения.

Курс овые работы, в которых вычисления производятся крайне с окращенно, к з ащите не допус каются и возвращаются с тудентам на переработку.

Работа должна быть написана аккуратно, чернилами или шариковой ручкой на одной стороне листа формата А4 (размером 296x204 мм). Листы должны быть сшиты и пронумерованы. В конце курс овой работы необходимо ук азать использованную литературу, поставить дату и подпись. Курс овая работа регистрируется в деканате заочного факультета и передается на кафедру ТЭЦ для проверки не позднее, чем за неде л ю до срока защиты.

Опрос при защите курсовой работы проводится по вопрос ам для подгот овки к защите курсовой работы, которые приведены на 48 c.

1. Задание на курсовую работу

Задание на курсовую работу составлено по 100-вариантной системе. Вариант задания определяется двумя последними цифрами в номере зачетной книжки студента. Курсовая работа включает в себя три задачи :

1. Расчет пассивного LC-фильтра верхних частот (ФВЧ) Баттерворта или Чебышева c использованием таблиц.

2. Расчет симметричного полосового LC фильтра (ПФ) Баттерворта или Чебышева с использованием таблиц.

3. Расчет активного RC-фильтра нижних частот (ФНЧ) Баттерворта или Чебышева аналитическим методом.

Задача 1. Рассчитать двухсторонне нагруженный LC ФВЧ Баттерворта или Чебышева по данным: в полосе пропускания (ПП) ослабление не должно превышать , а в полосе задерживания (ПЗ) ослабление должно быть не менее . Сопротивления генератора и нагрузки одинаковы, . Данные вариантов приведены в таблице 1. Для вариантов 01-25 и 51-75 кОм, для вариантов 26-50 и 76-100 Ом.

T ребуется

1. Определить порядок ФНЧ – прототипа (ФНЧП).

2. По таблицам определить нормированные значения параметров элементов ФНЧП.

3. Начертить схему LC ФНЧП и схему рассчитываемого LC ФВЧ.

4. Вычислить номинальные (истинные) значения парметров элементов ФВЧ.

5. Рассчитать ослабление A(f) ФВЧ на частотах: 0,2, 0,5, , , , где - частота, соответствующая ослаблению 3 дБ фильтра Баттерворта.

6. Начертить график зависимости ослабления от частоты . По графику выполнить проверку правильности расчета фильтра.

3адача 2. Рассчитать симметричный LC ПФ Баттерворта или Чебышева, нагруженный двусторонне по данным: границы ПП нижняя , верхняя (или или ширина ПП ), ослабление в этой полосе должно быть не более , а при частоте ослабление должно быть не менее . Сопротивления генератора и нагрузки фильтра . Для вариантов 01-25 и 51-75 сопротивления кОм, для вариантов, 26-50 и 76-100 Ом. Данные всех вариантов приведены в табл. 2.

1. Определить порядок n ФНЧП.

2. По таблицам определить нормированные значения элементов ФНЧП.

3. Начертить схему LC ФНЧП и ПФ.

4. Вычислить номинальные значения элементов ПФ.

5. Рассчитать ослабление A(f) на частотах , , , , , 1,5 , 2 .

6. Начертить график зависимости ослабления от частоты . По графику выполнить проверку правильности расчета фильтра.

Задача 3. Рассчитать ARC ФНЧ Баттерворта или Чебышева по данным: в ПП ослабление не должно превышать , а при частоте и более высоких ослабление должно быть не менее . Значения емкости равны , при этом =0,1 мкФ и для вариантов 01-50, и =0,08 мкФ для вариантов 51-100. Данные всех вариантов приведены в таблице 3.

T ребуется

1. Рассчитать порядок n ФНЧП, число звеньев первого и второго порядков;

3. Найти выражения нормированных трехчленов каждого звена второго порядка.

4. Определить выражение нормированной передаточной функции всего фильтра.

5. Найти выражение операторной передаточной функции для каждого звена .

6. Определить значения сопротивлений и коэффициента усиления K для каждого звена второго порядка.

Всем доброго времени суток. Сегодня продолжение темы про выпрямители и поговорим мы о сглаживающих фильтрах выпрямителей. Сглаживающие фильтры включаются между выпрямителем и нагрузкой для уменьшения переменных составляющих (пульсаций) выпрямленного напряжения. Эти фильтры выполняются из индуктивных элементов – дросселей и из ёмкостных элементов – конденсаторов. Простейший сглаживающий фильтр может состоять только из одного элемента, например дросселя или конденсатора. В малогабаритной аппаратуре сравнительно малой мощности индуктивные элементы фильтра могут быть заменены активными (резисторами).

Сглаживающие фильтры, прежде всего, характеризуются коэффициентом сглаживания q, представляющим собой отношение коэффициентов пульсаций на входе S0 и выходе S0H фильтра:

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.


Индуктивный сглаживающий фильтр

Применяется в маломощных выпрямителях, но может входить в состав сложных многозвенных фильтров. Параметры дросселя следует выбирать так, чтобы активное сопротивление обмотки rдр было много меньше сопротивления нагрузки (rдр > Rн). В этом случае почти вся постоянная составляющая напряжения будет приложена к нагрузке, а переменная составляющая – к дросселю.

L1_filtr

По заданному коэффициенту сглаживания q можно рассчитать необходимую индуктивность сглаживающего фильтра


Индуктивный фильтр прост, дешев, имеет малые потери мощности; коэффициент сглаживания фильтра растёт с увеличением индуктивности дросселя, числа фаз питающего напряжения и с уменьшением сопротивления нагрузки. Поэтому индуктивные фильтры обычно применяются совместно с многофазными мощными выпрямителями. При отключении нагрузки или скачкообразном изменении ее сопротивления возможно возникновение перенапряжений; в этом случае параллельно обмотке дросселя необходимо включать защитные устройства, например разрядники. В маломощных однофазных выпрямителях индуктивный фильтр может являться звеном более сложного фильтра.

Eмкостной сглаживающий фильтр

Емкостной сглаживающий фильтр состоит из конденсатора Сф, подключённого параллельно сопротивлению нагрузки Rн. Принцип действия заключается в накоплении электрической энергии конденсатором фильтра и последующей отдачи этой энергии в нагрузку. Заряд и разряд конденсатора фильтра происходит с частотой пульсаций fп выпрямленного напряжения.

C1_filtr

Для расчёта ёмкости конденсатора сглаживающего фильтра можно воспользоваться следующей формулой


, где

результируещее значение ёмкости выражено в микрофарадах,
SOH – коэффициент пульсаций в процентах, %;
RH – сопротивление нагрузки в омах, Ом;
fc – частота сети в герцах, Гц;
m – число используемых при выпрямлении полупериодов за период напряжения сети,m = 1 – для однополупериодных, m = 2 – для двухполупериодных.

Емкостной фильтр целесообразней всего применять совместно с однофазными и маломощными схемами выпрямления.

Сглаживающий LC фильтр

Сглаживание пульсаций выпрямленного напряжения будет более эффективным, если в совместить два предыдущих фильтра: индуктивный и емкостной фильтры. Данные типы сглаживающих фильтров называют LC фильтрами

LC_filtr

Простейший Г-образный индуктивно-емкостный фильтр рассчитывают такким образом, чтобы параметры элементов подходили под следующие условия


Коэффициент сглаживания Г-образного фильтра связан с произведением индуктивности и емкости следующим образом:


Сглаживающие RC фильтры

В схемах выпрямления малой мощности дроссель фильтра может быть заменён резистором RФ. Такие типы фильтров называют RC фильтрами

RC_filtr

Расчёт сглаживающего RC фильтра должен вестись с учётом следующих условий


Коэффициент сглаживания фильтра


Сопротивление резистора RФ обычно задаются в пределах RФ = (0,15…0,5)RH; КПД резистивно-емкостного фильтра сравнительно мал и обычно составляет 0,6…0,8, причем при ηф = 0,8 RФ = 0,25RH. Емкость Cф (в микрофарадах), обеспечивает требуемый коэффициент сглаживания q при частоте сети fC = 50 Гц, находят из выражения


Преимущества резистивно-емкостных фильтров: малые габариты, масса и стоимость; недостаток – низкий КПД.

Многозвенные сглаживающие фильтры

Если с помощью индуктивно-емкостного фильтра необходимо обеспечить коэффициент сглаживания пульсаций более 40…50, то вместо однозвенного фильтра целесообразнее использовать двухзвенный сглаживающий фильтр.

P_LC_filtr

Фильтры с тремя и более звеньями на практике применяются редко. В общем случае коэффициент сглаживания многозвенного фильтра равен произведению коэффициентов сглаживания отдельных звеньев: q = q’q’’q’’’ …

2P_LC_filtr

Сглаживающие индуктивно-емкостные фильтры достаточно просты и эффективны в выпрямительных устройствах средней и большой мощностей. Однако масса и габариты таких фильтров весьма значительны, коэффициент сглаживания снижается с ростом тока нагрузки, фильтры малоэффективны при появлении медленных изменений сетевого напряжения. Индуктивные элементы фильтра являются источниками магнитных полей рассеяния, а совместно с паразитными емкостными элементами создают колебательные контуры, способствующие появлению переходных процессов.

Транзисторный сглаживающий фильтр

Транзисторные фильтры по сравнению с индуктивно-емкостными сглаживающими фильтрами имеют меньшие габариты, массу и более высокий коэффициент сглаживания пульсаций.

Фильтры могут быть выполнены по схемам с последовательным или параллельным включением силового транзистора по отношению к сопротивлению нагрузки, а также с включением нагрузки RH в цепь коллектора или эмиттера транзистора. Недостатком фильтров с нагрузкой в цепи коллектора является большое изменение выходного напряжения при изменении сопротивления нагрузки. Поэтому чаще используют фильтры, в которых сопротивление нагрузки включено в цепь эмиттера силового транзистора.

Фильтр с последовательным транзистором

Транзисторный сглаживающий фильтр с последовательным включением транзистора и нагрузкой в цепи эмиттера эквивалентен П-образному LC фильтру. Принцип действия его основан на том, что коллекторный и эмиттерный токи транзистора в режиме усиления практически не зависит от напряжения коллектор-эмиттер. Если выбрать рабочую точку транзистора на горизонтальном участке выходной вольт-амперной характеристики, то его сопротивление для переменного тока будет значительно большим, чем для постоянного тока.

posled_A


Транзисторный фильтр

В схеме базовый ток транзистора VT задается резистором Rб. Конденсатор Сб достаточно большой емкости устраняет напряжение пульсаций на переходе эмиттер-база. Поэтому переменная составляющая напряжения пульсаций прикладывается к переходу база-коллектор и выделяется на транзисторе VT. В коллекторном и эмиттерном токе переменная составляющая практически отсутствует, поэтому пульсации в нагрузке RH также очень малы.

Коэффициент сглаживания транзисторного фильтра тем больше, чем больше коэффициент передачи тока транзистора VT и чем больше значение отношений


то есть чем меньше напряжение пульсаций на переходе эмиттер-база силового транзистора.

posled_B


Составной транзистор

Для более успешного выполнения этих соотношений конденсатор Сб может быть заменён одно- или двухзвенным RC сглаживающим фильтром, а для увеличения коэффициента передачи тока транзистор VT можно выполнить составным

posled_C


Транзисторный фильтр со стабилитроном

Еще эффективней работает транзисторный фильтр, у которого в цепь базы транзистора включен стабилитрон

Коэффициент полезного действия транзисторного фильтра будет тем больше, чем меньше падание постоянного напряжения на силовом транзисторе. Однако амплитуда переменной составляющей напряжения на транзисторе не должна превышать значение постоянного напряжения на нём, иначе фильтр потеряет свою работоспособность.

Фильтр с параллельным транзистором

posled_D



Фильтр с балластным резистором и параллельным включением транзистора

posled_E



Фильтр с балластным резистором и последовательным включением транзистора

Транзисторные фильтры с балластным резистором Rбл и параллельным включением транзистора относительно нагрузки, в отличие от схем с последовательным включением, применяется при сравнительно небольшом выпрямленном напряжении (десятки вольт). Режим работы транзистора VT – минимальное значение тока IK.min – устанавливается соответствующим выбором сопротивлений R1 и R2. Переменная составляющая напряжения в этой схеме прикладывается к переходу эмиттер-база транзистора VT, усиливается и выделяется на балластном резисторе Rбл. Эта составляющая оказывается в противофазе с переменной составляющей напряжения, выделяющейся на Rбл при непосредственном протекании тока нагрузки. Выбором Rбл и IK.min можно добиться их полной компенсации. Амплитуда переменной составляющей тока транзистора VT должна быть меньше протекающего постоянного тока IK.min, иначе схема будет неработоспособна. Ток IK.min, не должен быть очень малым, так как иначе потребуется увеличение сопротивления Rбл, что приведёт к снижению КПД фильтра. Слишком большой ток также нецелесообразен, так как увеличивается мощность потерь на транзисторе и снижается КПД.

Коэффициент сглаживания параллельного транзисторного фильтра будет тем больше, чем больше сопротивление Rбл, емкость конденсаторов С1 и С2, крутизна вольт-амперной характеристики транзистора. Недостатком транзисторного фильтра с параллельным включением транзистора является значительное изменение среднего значения коллекторного тока транзистора, при изменении среднего значения выпрямленного напряжения, поступающего на вход фильтра. Это приводит к снижению КПД фильтра.

Следует помнить, что транзисторные фильтры не обеспечивают стабилизацию постоянной составляющей выпрямленного напряжения, а при изменении тока нагрузки, температуры окружающей среды и воздействия других дестабилизирующих факторов вносят дополнительную нестабильность выпрямленного напряжения.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ

Читайте также: