Радиогалактики как источники мощного радиоизлучения реферат

Обновлено: 04.07.2024

Особый интерес представляют галактики с резко повышенной светимостью в радиоизлучении. Их принято называть радиогалактиками.

Наиболее выдающаяся радиогалактика - Лебедь А. Это мощнейший дискретный источник радиоизлучения. В том месте неба, где он находится, никаких оптически ярких объектов нет. Лебедь А - это двойная галактика с чрезвычайно тесно расположенными друг к другу компонентами. Эта галактика ввиду ее слабости в каталог NGC, конечно, не попала. Ее называют Лебедь А, потому что в созвездии Лебедя она является самым интенсивным источником радиоизлучения.

Расстояние до радиогалактики Лебедь А составляет 200 Мпс. Лебедь А - сверхгигантская галактика, превосходящая по светимости даже нашу галактику. Она излучает в оптическом диапазоне частот 2*1037 Дж/с, а в радиодиапазоне 3*1037 Дж/с. Это единственный случай для галактик, когда сравнение энергии показало преобладание энергии радиоволн над энергией оптического излучения.

Галактика Лебедь А не единственный объект такого рода во Вселенной. Другие такие объекты находятся на еще больших расстояниях. Поток проходящего от них радиоизлучения ввиду большего расстояния слабее, чем от источника Лебедь А, но все-таки радиотелескопы могут их обнаруживать.

Есть все основания думать, что среди большого числа дискретных источников радиоизлучения, не поддающихся до сих пор отождествлению с оптическими объектами, часть является чрезвычайно далекими галактиками, подобному объекту Лебедь А. Современные радиотелескопы способны обнаруживать дискретные источники радиоизлучения, поток энергии которых в 8000 раз слабее, чем у галактики Лебедь А, и находящиеся на расстоянии в 90 раз большем, чем Лебедь А. Отношение расстояний на самом деле не столь велико, так как интенсивность излучения ослабляется также значительным на столь больших расстояниях красным смещением спектров источников радиоизлучения. Расстояния этих слабых источников радиоизлучения (если они имеют такую же природу, как источник Лебедь А) можно оценить в 4000 Мпс. Радиоизлучение от этих возможных объектов должно путешествовать к нам около 12 млрд. лет!

Американские астрономы Бааде и Минковский выдвинули гипотезу природы излучения радиогалактик. Они предположили, что Лебедь А - это встретившиеся и проникающие друг в друга спиральные галактики. При столкновении спиралей на большой скорости встречаются диффузные массы. Происходит их разогрев и начинается свечение, в котором ввиду не очень высокой температуры значительную долю занимает радиоизлучение. Эта точка зрения может получить развитие, если предполагать, что при встрече диффузных масс значительная доля их кинетической энергии столкновения переходит в энергию относительно небольшого числа так называемых релятивистских частиц, т.е. частиц, движущихся с огромными скоростями. Релятивистские частицы, проходя через магнитные поля, замедляют свое движение, их кинетическая энергия уменьшается и при этом излучается энергия преимущественно в виде радиоволн, но также и в оптическом диапазоне. Возникшее таким образом излучение принято называть синхронным, потому что оно было обнаружено в ускорителе элементарных частиц - синхротроне.

Несколько ярких галактик, входящих в каталог NGC, также отнесены к разряду радиогалактик потому, что их радиоизлучение аномально сильное, хотя оно значительно уступает по энергии световому излучению. Из этих галактик NGC 1275, NGC 5128, NGC 4782 и NGC 6166 также являются двойными. Бааде и Минковский считали, что эти факты подтверждают их гипотезу случайного образования радиогалактик при столкновениях звездных систем, содержащих в себе диффузную материю.

Существует и другая точка зрения на природу радиоизлучения радиогалактик. Так В.А.Амбарцумян считает, что радиогалактики являются результатом процесса разделения первоначального тела на два тела - две удаляющиеся друг от друга галактики. Стадия деления - переход материи из более плотного состояния в менее плотное - вызывается взрывными процессами, которые сопровождаются интенсивным радиоизлучением.

Радиогалактика, следовательно, есть стадия, через которую проходит каждая галактика в самый ранний период своего развития. В гипотезе деления естественно объясняется тесное и взаимно центральное расположение компонентов двойных радиогалактик. Однако не вполне раскрытым остается механизм образования радиоизлучения. Но нужно иметь в виду, что мы не знаем аналогов такого грандиозного процесса, как возможный процесс разделения галактик в результате взрыва, и потому неудивительно, что сам механизм взрыва и сопровождающие его процессы пока остаются неясными. Однако можно предполагать, что при взрыве радиогалактики образуется большое количество частиц, летящих с огромными скоростями в магнитных полях и порождающих синхронное излучение. Это излучение, по-видимому, составляет главную часть оптического излучения и полностью определяет радиоизлучение радиогалактики. Характерно, что районы радиоизлучений обычно простираются далеко за пределы оптически наблюдаемой области радиогалактики.

Однако не все радиогалактики являются двойными системами. NGC 2623 и NGC 4486 - одиночные объекты.

Особенно интересна сверхгигантская радиогалактика NGC 4486. Она обладает самой большой из известных масс галактик и окружена самой богатой системой шаровых скоплений. Но у этой галактики имеется еще одна замечательная особенность. Фотография ее центральной части, выполненная на 5-метровом телескопе при значительном увеличении и сравнительно небольшой экспозиции, показывает, что NGC 4486 имеет маленькое ядро, из которого выброшена прямая тонкая струя светящейся материи. У этого светящегося выброса, имеющего длину 22" или в линейной мере около 1000 пс, спектр излучения такой, какой должен создаваться релятивистскими частицами, движущимися в магнитных полях. Это подтверждает наличие быстрых движений и то предположение, что наблюдаемая полоса есть выброс, который может быть произведен только из ядра галактики. Таким образом, мы встречаемся с явлением активности ядер галактики, причем активность носит характер взрывного процесса.

Поскольку NGC 4486 и NGC 2623 - это одиночные объекты, объяснить их радиоизлучение при помощи гипотезы столкновения нельзя. Это серьезный аргумент против гипотезы Бааде - Минковского и в пользу гипотезы В.А.Амбарцумяна, которая рассматривает явление мощного радиоизлучения в некоторых галактиках как результат взрывных процессов космического масштаба.

Среди радиогалактик большая часть является эллиптическими галактиками. Это сверхгиганты с необыкновенно сильным радиоизлучением. Интересно, что среди нормальных галактик самым слабым, трудно обнаруживаемым радиоизлучением обладают именно эллиптические галактики. Почему эллиптические галактики являются носителями самого сильного и самого слабого радиоизлучения в мире галактик, сказать пока трудно.

Так как радиогалактика в радиодиапазоне излучает в тысячи раз больше, чем нормальная галактика, то можно предположить, что радиоизлучение, исходящее от скопления галактик, определяется скорее всего, одной оказавшейся в скоплении радиогалактикой, чем совокупным действием всех остальных галактик скопления. Радиогалактики встречаются очень редко, их не может быть много в одном скоплении.

В нескольких скоплениях галактик удалось отождествить ту галактику, которая создает все или почти все радиоизлучение скопления, - является радиогалактикой. Каждый раз это оказывается эллиптическая галактика, имеющая слабое сжатие, почти круглая и расположенная у самого центра скопления. Каждый раз это сверхгигант - первая по светимости и по размерам галактика скопления.

Все галактики в той или иной степени являются источниками радиоволн, однако большинство обычных галактик затрачивают на радиоизлучение лишь ничтожную долю всей своей мощности. В то же время существуют и такие галактики, поток радиоволн от которых можно сравнить с мощностью их собственного оптического излучения, то есть в тысячи и иногда и в десятки тысяч раз больше, чем у обычных галактик.

1

Такие галактики ученые назвали радиогалактиками. Данный термин был введен в 1949 году для обозначения далеких галактик, являющихся мощным источником космического радиоизлучения, однако в астрономической литературе 70-х годов ХХ века иногда под этим термином понимались любые внегалактические радиоисточники.

6


Ярчайшим примером очень мощной радиогалактики является галактика, связанная с одним из источников синхротронного (или магнитотормозного) радиоизлучения в созвездии Лебедя, так называемым объектом Лебедь А. Два его компонента окружают слабую галактику, пересеченную широкой темной полосой. Объект Лебедь А находится на расстоянии 170 Мпс или примерно 600 миллионов световых лет, и является самым мощным источником радиоизлучения для своего созвездия, превышающего в шесть раз мощность оптического излучения, значительная часть которого приходится на эмиссионные линии. Именно огромная разница мощности радиоизлучения этого объекта и ближайшей к нам галактики М31 (туманность Андромеды) впоследствии привела к разделению галактик на два типа – нормальные галактики и радиогалактики. На данный момент учеными открыто несколько сотен радиогалактик, которые удалось отождествить с гигантскими оптическими объектами - чаще всего эллиптическими галактиками. Наиболее известные из них – объекты Лебедь А, Дева А (М87), Центавр А (ближайшая радиогалактика NGC 5128), Печь А (NGC 1316), с которых началось исследование данного типа объектов.

2


Область, откуда приходят радиоволны, чаще всего гораздо больше, чем сами галактики в оптических лучах. Иногда источники радиоизлучения выглядят двойными, при этом даже максимумы яркости расположены по обе стороны от связанной с ними галактики. Это обстоятельство говорит в пользу гипотезы, согласно которой источниками радиоизлучения могут являться два облака быстрых частиц, образовавшиеся в результате взрыва, подобного облакам, наблюдаемым во взрывающихся галактиках. Энергия таких взрывов может достигать 1060 эрг, что в миллиарды раз больше, чем энергия вспышки сверхновой. В этом случае радиоволны излучают релятивистские электроны, движение которых тормозят магнитные поля. Вследствие торможения электронов интенсивность излучения со временем, ослабевает, причем в большей степени для более коротких волн. Область спектра, в которой начинается резкое уменьшение интенсивности, зависит от того, как давно произошел взрыв, то есть, сколько времени происходило высвечивание электронов. Как оказалось, возраст многих известных источников составляет всего несколько миллионов лет, если считать, что релятивистские электроны после взрыва больше не возникают.

3

4


Выделение радиогалактик в отдельный класс достаточно условно, так как любая галактика является источником радиоволн разной мощности. Кроме того, многие квазары, также являющиеся радиоисточниками и представляющие собой звездные системы, могут быть отнесены к радиогалактикам. Квазары, или квазизвездные радиоисточники, очень похожи на радиогалактики по многим параметрам - например, по радиоизображениям практически невозможно определить, к какому именно классу объектов принадлежит его источник. Кроме того, в настоящее время к радиогалактикам астрономы относят и те галактики, радиоизлучение в которых связано не со вспышками звездообразования, а с активностью ядра. Таким образом, радиогалактики можно причислить к классу Активных галактик, или галактик с активным ядром.

Радиогалактики отличаются от обычных галактик также, как квазары – от звезд. В оптическом диапазоне вроде бы ничего не обычного, но в радиодиапазоне такие галактики буквально сияют, их радиоизлучение не идет ни в какое сравнение с радиоизлучением обычных галактик и порой превышает оптическую светимость.

Согласно самым последним теориям эти объекты входят в класс активных галактических ядер, имея общие характеристики с некоторыми квазарами. Подсчитано, что примерно одна галактика на миллион является радиогалактикой.

Радиогалактики в большинстве своем связаны с гигантскими эллиптическими галактиками, с довольно компактным ядром размерами меньше парсека (у “обычных” галактик ядро простирается на десятки, а то и тысячи парсеков). Радиотелескопы обнаруживают у таких галактик излучение большой интенсивности в длинноволновом диапазоне, которое от 1000 до нескольких миллионов раз выше мощности, испускаемой в этом диапазоне всем Млечным Путем.

Радиогалактики и квазары

Надо отметить, что само название “радиогалактика” – довольно условно, ведь среди их представителей нет единства в характеристиках и мощности излучения, к тому же, многие квазары, являющиеся радиоисточниками, также представляют собой звёздные системы и потому, свободно могут называться радиогалактиками. Тем более, что радиогалактики и квазары очень похожи по многим параметрам. Например, по радиоизображениям практически невозможно сказать, к какому из этих двух классов объектов принадлежит источник.

В настоящее время радиогалактиками принято считать только те галактики, радиоизлучение в которых связано с активностью ядра, а не со вспышками звездообразования, например в диске. Радиогалактики, таким образом, являются частью класса галактик с активным ядром.

Снимок радиогалактики Центавр А

Снимок радиогалактики Центавр А, полученный совмещением фотографий в трех диапазонах – оптическом, радио и инфраксрасном. Цвета

Что является источником радиоизлучения в радиогалактиках

Механизм возникновения радиоизлучения иной, здесь отличается от того, что имеет место быть при при световом излучении. Речь идет о синхротронном излучении. В большинстве случаев в радиогалактиках обнаруживаются два источника интенсивного радиоизлучения, так называемые доли, расположенные симметрично на противоположных сторонах галактики.

В некоторых случаях размеры этих долей составляют миллионы световых лет. Было замечено, что в ядре радиогалактики, где, как и у других галактик с активными ядрами, быстро образуются сверхкрупные черные дыры, происходит значительное высвобождение энергии. Эта энергия в дальнейшем подкармливает доли вбросами электронов с высокой энергией.

Классическим примером радиогалактики служит Лебедь А

Классическим примером радиогалактики служит Лебедь А. В оптическом диапазоне Лебедь А едва различим, а вот в радиодиапазоне, не заметить его невозможно, т.к. он является одним из ярчайшим объектов на звездном небе

Примеры радиогалактик

Наиболее яркими примерами радиогалактик на сегодняшний день являются Лебедь А, Центавр A, Дева А, Печь А (буква А указывает на то, что объект – мощнейший источник радиоизлучения в своем созвездии):

Радиогалактики- галактики, являющиеся источниками мощного эл.-магн. излученияв радиодиапазонею Термин "Р." возник в результате отождествления в 50-х гг. 20 в. ряда мощных источников космич. радиоизлучения с относительно слабыми источниками оптич. излучения - далекими галактиками. Выделение Р. как особого класса галактик в известной степени условно, поскольку в настоящее время установлено, что практически все галактики излучают в радиодиапазоне (правда, с большим различием в мощности - от 1037 до 1044 эрг/с).

Работа содержит 1 файл

Радиогалактики.docx

Радиогалактики- галактики, являющиеся источниками мощного эл.-магн. излученияв радиодиапазонею Термин "Р." возник в результате отождествления в 50-х гг. 20 в. ряда мощных источников космич. радиоизлучения с относительно слабыми источниками оптич. излучения - далекими галактиками. Выделение Р. как особого класса галактик в известной степени условно, поскольку в настоящее время установлено, что практически все галактики излучают в радиодиапазоне (правда, с большим различием в мощности - от 1037 до 1044 эрг/с).

С другой стороны, есть все основания полагать, что квазары, являющиеся наиболее мощными радиоисточниками (1043 - 1045 эрг/с), по-видимому, также представляют собой далекие звездные системы - галактики (см. Ядра галактик и Квазары). Т.о., собственно к Р. можно отнести радиоисточники с мощностью радиоизлучения в диапазоне 1042 - 1044 эрг/с, что характерно для массивных (1012 - 1013 масс Солнца) гигантских эллиптич. галактик (типа E, см. классификацию морфологич. типов галактик в статье Галактики). По особенностям структуры, выявленным на основе наблюдений в оптич. лучах, Р. делят дополнитеотно на неск. типов. Наиболее мощными радиоисточниками явл. т.н. D-галактики - E-галактики с протяженными оптическими оболочками (коронами).

Существуют Р. промежуточных типов: Р. типа DE занимают промежуточное положение между D- и читсым E-типами; Р. типа DB обладают св-вами D-галактик, н оотличаются еще тем, что их центральные области выглядят раздвоенными. Это раздвоение в ряде случаев связано с проецированием на центраную область галактики мощного газо-пылевого диска. Наконец, сравнительно редкую группу Р. образуют т.н. N-галактики с ярким звездообразным ядром, обнаруживающим переменность блеска. В скоплениях галактик самые мощные радиоисточники всегда отождествляются с их ярчайшими и массивнейшими членами - с т.н. cD-галактиками.

Эллиптич. E-галактики, как правило, довольно бедны межзвездным газом. Однако в оптич. спектрах ядер Р. всегда присутствуют интенсивные эмиссионные линии различных хим. элементов межзвездной среды. По-видимому, наличие не связанного в звезды газа в ядрах и околоядерных областях E-галактик играет важную роль в энерговыделении, приводящем к образованию Р. Ширины эмиссионных линий (водорода, углерода и др. химических элементов) свидетельствуют о больших скоростях внутренних движений газа в ядрах - от 300-600 км/с до нескольких тыс. и даже десятков тыс. км/с.

Открытие далеких радиоисточников

Философы и историки любят выделять в каждой отрасли науки золотые моменты, когда особенно значительный поворот событий открывает совершенно новые перспективы. Таким событием в радиоастрономии было открытие в начале 1950-х годов радиогалактик, так как оно превратило увлекательную боковую ветвь астрономии в дисциплину огромной важности. Уже более 20 лет радиогалактики озадачивают теоретиков, потому что в этих объектах значительная доля массы превращена в экзотическую форму вещества, называемую релятивистской плазмой. Они очаровали также космологов, потому что благодаря огромной испускаемой энергии их радиоизлучение можно обнаружить, даже если они недоступны оптическим телескопам. Это позволяет изучать свойства очень далеких галактик, то есть ранние стадии эволюции Вселенной, и исследовать структуру Вселенной в удаленных областях.

На расстоянии около 16 млн световых лет от нас, в созвездии Центавра, находится эллиптическая галактика, имеющая обозначение NGC 5128. Это самая близкая к нам галактика с мощным радиоизлучением. С ней связан один из наиболее ярких радиоисточников на небе — Центавр А. Галактика NGC 5128 была хорошо известна и до открытия этого радиоисточника. Обычно в эллиптических галактиках мало пыли и газа, а вот NGC 5128 как бы рассечена на две части широкой темной полосой пыли и содержит многочисленные газовые облака. Астрономы считают, что в далеком прошлом здесь могло произойти столкновение гигантской эллиптической галактики с другой звездной системой, содержавшей большое количество межзвёздного газа. Вероятнее всего, эллиптическая галактика разрушила спиральную. Обогащение эллиптической галактики газом, принесенным спиральной галактикой, и обеспечивает функционирование радиогалактики Центавр А.

На радиоизображениях Центавр А предстает в виде центрального источника (он совпадает с ярким облаком в самом центре галактики на оптической фотографии) и двух огромных радиовыбросов, выходящих далеко за пределы оптического изображения. Виден также тонкий мост, связывающий ядро и радиовыбросы.

Что же там происходит?

Большинство радиогалактик имеет двойную структуру и компактный источник в центре. Напрашивается объяснение, что центральная галактика посредством какого-то механизма выбрасывает два противоположно направленных потока релятивистских заряженных частиц и они двигаясь в магнитном поле, генерируют синхротронное радиоизлучение. Откуда же испускаются направленные потоки релятивистских частиц, и что является источником их энергии? В пульсарах, например, источником энергии служит вращение магнитной нейтронной звезды. Предполагается, что в радиогалактиках энергию генерирует так называемая чёрная дыра — массивный и весьма компактный объект, образовавшийся в центре гигантской галактики. Для нескольких галактик получены косвенные свидетельства существования чёрных дыр: очень быстрое вращение газа в самом центре галактики, которое требует присутствия компактного массивного тела, не излучающего света.

Межзвёздный газ, находящийся около такой вращающейся чёрной дыры, будет, падая на нее, вовлекаться во вращение. Взаимодействие между частицами газа — вязкое трение — приведет к образованию плотного газового диска. По мере приближения к чёрной дыре газ должен нагреваться до миллиардов градусов.

Падающий газ несет в себе магнитное поле, которое становится очень сильным вблизи чёрной дыры. Его взаимодействие с горячим, быстро движущимся газом в мощном гравитационном поле чёрной дыры приводит к сложным плазменным эффектам, сопровождающимся ускорением заряженных частиц (протонов, электронов) и их выбросом из ядра, а затем и из галактики в форме двух узконаправленных потоков. Возникающее при этом синхротронное излучение электронов и превращает галактику с активным ядром в радиогалактику.

Оптические свойства радиогалактик

Сильные радиогалактики, типичным представителем которых часто считают Лебедь А, как правило, характеризуются необычными свойствами, которые астрономы связывают с резкими возмущениями того или иного рода. В спектрах большинства радиогалактик видны яркие эмиссионные линии высоковозбуждённого газа, такого, как ионизованный кислород или азот. В некоторых случаях оптическое ядро либо двойное, либо пересечено непрозрачной полосой пыли: по-видимому, это справедливо и для галактик, отождествлённых с Центавром А и Лебедем А. Другие объекты имеют необычные хвосты и струи газа; здесь мы можем снова вспомнить пекулярные галактики: M 82 совпадающую с радиоисточником ЗС 231, и М 87, отождествлённую с ЗС 274. Ядро Лебедя А, по-видимому, плотнее, горячее, больше и энергичнее, чем ядро любой сейфертовской галактики.
Для классификации радиогалактик необходимо расширить классическую схему, предложенную Хабблом. Радиогалактики относят к следующим добавочным типам:

1. Тип D — эллиптические галактики, окружённые протяжёнными оболочками.
2. Тип DE — промежуточный между типами D и Е.
3. Тип DB. Некоторые ядра радиогалактик, таких, как Лебедь А и Центавр A (NGC 5128), по-видимому, двойные; их относят к типу DB, потому что их форма похожа на гантели (от английского dumb-bell — гантели).
4. N-галактики, характеризующиеся ярким звёздообразным ядром, хотя их внешние структуры иногда легче различить, чем у сейфертовских галактик.

Почти всегда мощные радиогалактики связаны с гигантскими эллиптическими галактиками. Во многих случаях радиоисточник отождествляется с ярчайшей эллиптической галактикой в скоплении. Поскольку нормальные эллиптические галактики обычно почти лишены газа, яркие оптические спектры эллиптических радиогалактик, характерные для газовых туманностей, указывают, что образование сильного радиоизлучения может быть обусловлено возбужденным газом в ядре. Ширины эмиссионных линий указывают на избыток кинетической энергии в ядре; наблюдаемой ширине линий в Лебеде А соответствуют скорости движений около 400 км/с.

Из приведённого изложения проблем, связанных с радиогалактиками, видно, что перед учёными, разрабатывающими модели, предстаёт множество сбивающих с толку альтернатив. На какое-то время может завоевать популярность некоторый конкретный сценарий, но он будет популярен только до тех пор, пока не появится новая идея, продвигающая некоторые из других альтернатив. Вероятно, на решение таких сложных проблем уйдут многие годы упорного труда. Вряд ли тут поможет озарение, которое обычно находит на учёного в ванной — этом традиционном источнике великих научных открытий!

Среди наиболее известных радиогалактик следует упомянуть Лебедь А, Центавр А, Дева А, Печь А, с которых и началось исследование этого класса объектов.

Содержание

Лебедь А

Лебедь А — самый мощный внегалактический источник радиоизлучения, расположенный в созвездии Лебедя. Отождествлен в 1951 г. с эллиптической галактикой 16-ой звездной величины. Красное смещение галактики z=0.057. Газово-пылевой слой в центре галактики обусловливает характерное раздвоение ее оптического изображения. Оптическими методами обнаружено излучение сильноионизованной плазмы в области ядра галактики. Галактика вращается вокруг оси, лежащей в картинной плоскости и направленной вдоль прямой, соединяющей два ярких компактных компонента радиоизлучения. Угловое расстояние между яркими областями компонентов двойной структуры около 2' (приблизительно 80 кпк). Верхний предел скорости разлета компонентов равен 0.02 скорости света. В ядре галактики обнаружен компактный радиоисточник с плоским спектром. Полная радиосветимость доминирующей в радиоизлучении двойной структуры — порядка 3x10 44 эрг/с и сравнима с радиосветимостью двойных структур многих квазаров.

Центавр А


Центавр А(NGC 5128) — радиоисточник в созвездии Центавра, ближайшая к нам радиогалактика (расстояние до нее около 4 Мпк). Галактика имеет сфероидальную форму, разделенную поглощающим свет звезд газово-пылевым диском, наблюдаемым практически с ребра. Радиоизображение галактики показывает, что Центавр А содержит протяженный радиоисточник, который представляет собой старую, сильно расширившуюся структуру. Общая протяженность источника вдоль большой оси около 500кпк. Помимо протяженного источника в центральной области (в пределах оптического изображения галактики), обнаружена сравнительно компактная двойная радиоструктура с расстоянием между компонентами около 12 кпк. В самом центре галактики (в ее ядре) находится очень компактный радиоисточник, интенсивность излучения которого резко растет с уменьшением длины волны в сантиметровом и миллиметровом диапазонах. Радиосветимость протяженного радиоисточника — около 10 42 эрг/с, а заключенная в нем энергия — около 10 59 эрг.

Орбитальный телескоп "Чандра" получил снимок гигантских плазменных струй, выбрасываемых из центра галактики Центавр А, где находится сверхмассивная черная дыра. Такие струи образованы из вещества аккреционного диска вокруг сверхмассивной черной дыры и ориентированы вдоль оси ее вращения. Подробнее

Дева А

Печь А

Морфологические особенности радиогалактик

Ядро — это компактный компонент, неразрешимый при наблюдениях на угловых масштабах до 0.1 сек. дуги и совпадающий с ядром оптического объекта. Ядро обычно имеет плоский или сложный радиоспектр, что в последнем случае указывает на синхротронное самопоглощение. С помощью интерферометров со сверхдлинными базами (VLBI) ядро может разрешаться на отдельные субкомпоненты, часто состоящие из неразрешенного ядра, имеющего плоский спектр, и джетоподобную структуру, в которой может быть более чем один узел. Кроме того, встречаются также компактные источники с крутыми радиоспектрами и компактные двойные. Ядра хорошо определяются на гигагерцовых частотах, потому что они часто имеют плоские спектры, в то время как протяженные компоненты имеют крутые спектры. Ядра найдены почти во всех радиоквазарах и в ~80 % радиогалактик. Вклад ядра в полную радиосветимость источника меняется от одного процента у некоторых объектов до почти 100 % у ряда квазаров.

Протяженные структуры

Джеты

Джеты (струи) — тонкие вытянутые структуры, которые связывают компактное ядро с внешними областями. Джет может интерпретироваться как радиоизлучение вдоль луча, переносящего энергию от AGN к протяженным областям. Радиоджет существует на масштабах от парсека до килопарсека и может быть гладким или иметь узельную структуру. Джеты называют двусторонними, когда они наблюдаются с обеих сторон от центрального источника.

Горячие пятна

Читайте также: