Протоколы маршрутизации rip и ospf реферат

Обновлено: 02.07.2024

Интернет – это комбинация сетей, соединяемых с помощью маршрутизаторов. Когда дейтаграмма идет от источника к пункту назначения, она, вероятнее всего, проходит много маршрутизаторов, пока достигает маршрутизатора, закрепленного за сетью пункта назначения. Маршрутизатор получает пакет от сети и передает его другой сети. Маршрутизатор обычно закрепляется за несколькими сетями. Когда он получает пакет, он должен решить две задачи:

  1. к какой сети он должен его передать;
  2. по какому пути.

Последнее решение основано на выборе оптимального пути. Какой доступный путь является оптимальным путем? Это обычно определяется метрикой. Метрика – это условная стоимость передачи по сети. Полное измерение конкретного маршрута равно сумме метрик сетей, которые включают в себя маршрут . Маршрутизатор выбирает маршрут с наименьшей метрикой. Метрика назначается для интерфейса сети в зависимости от типа протокола. Некоторые простые протоколы, подобно протоколу маршрутной информации ( RIP – Routing Information Protocol ), рассматривают все сети как одинаковые. Тогда стоимость прохождения через каждую сеть — одна и та же, и для определения метрики подсчитываются участки. Так, если пакет, чтобы достигнуть конечного пункта, проходит через 10 сетей, полная стоимость составляет 10 участков.

Другие протоколы, такие как "первоочередное открытие наикратчайших путей" ( OSPF — Open Shortest Path First ), позволяют администратору назначить стоимость для передачи через сеть , основанную на типе требуемого обслуживания. Маршрут через сеть может иметь различную стоимость (метрику). Например, если для типа сервиса желательна максимальная производительность , спутниковый канал имеет меньшую метрику, чем оптическая линия. С другой стороны, если типу сервера желательна минимальная задержка, оптическая линия имеет меньшую метрику, чем спутниковый канал. OSPF позволяет каждому маршрутизатору иметь таблицу последовательностей маршрутов, основанную на требуемом типе сервиса.

Другие протоколы определяют метрику различно. В протоколе пограничной маршрутизации ( BGP — Border Gateway Protocol ) критерий — это политика, которую может устанавливать администратор . Политика — это принцип, по которому определяется путь .

В любой метрике маршрутизатор должен иметь таблицы маршрутизации, чтобы консультироваться при дальнейшей передаче пакета. Таблица маршрутизации задает оптимальный путь для пакета. Таблица может быть либо статическая, либо динамическая . Статическая таблица — одна из тех, которые часто не меняются. Динамическая таблица — одна из тех, которая обновляется автоматически, когда имеются изменения где-либо в Интернете. Сегодня Интернет нуждается в динамических таблицах. Таблицы нужно обновлять по мере появления изменений в Интернете. Например, их нужно обновить, когда маршрут вышел из строя, или они должны быть обновлены всякий раз, когда создается лучший маршрут .

Протоколы маршрутизации созданы для отображения требований таблиц динамической маршрутизации . Протокол маршрутизации — комбинация правил и процедур, которые позволяют в Интернете маршрутизаторам информировать друг друга об изменениях. Протоколы маршрутизации также включают процедуры для комбинирования информации, полученной от других маршрутизаторов.

В этой лекции мы поговорим об однонаправленных протоколах маршрутизации. Многонаправленные протоколы маршрутизации мы обсудим в следующей лекции.

Внутренняя и внешняя маршрутизация

Сегодня Интернет — громадная сеть , так что один протокол маршрутизации не может обрабатывать задачу обновления таблиц всех маршрутизаторов. По этой причине Интернет разделяется на автономные системы. Автономная система (Autonomous System – AS) — группа сетей и маршрутизаторов под управлением одного администратора. Маршрутизация внутри автономной системы отнесена к внутренней маршрутизации. Маршрутизация между автономными системами отнесена к внешней маршрутизации. Каждая автономная система может выбрать протокол внутренней маршрутизации для того, чтобы обрабатывать маршрутизацию внутри автономной системы. Однако для обработки маршрутизации между автономными системами выбирается только один протокол маршрутизации .

Разработано несколько внутренних и внешних протоколов. В этой лекции мы коснемся только наиболее популярных из них — внутренних протоколов RIP и OSPF и одного внешнего протокола BGP . RIP и OSPF используются для обновления таблиц маршрутизации внутри автономной системы. Протокол BGP применяется в обновлении таблиц маршрутизации для маршрутизаторов, которые объединяют вместе автономные системы.

Протокол маршрутной информации (RIP)

Протокол маршрутной информации ( RIP – Routing Information Protocol ) — внутренний протокол маршрутизации , используется внутри автономной системы. Это очень простой протокол, основанный на применении дистанционного вектора маршрутизации. В этом разделе сначала рассмотрим принцип дистанционного вектора маршрутизации, так как он применяется в RIP , а затем обсудим сам протокол RIP .

Вектор расстояния маршрутизации

Используя вектор расстояния маршрутизации, каждый маршрутизатор периодически делится своей информацией о входах в Интернет со своими соседями. Ниже приводятся три основных принципа этого процесса, для того чтобы понять, как работает алгоритм.

  1. Распределение информации о входе в автономную систему. Каждый маршрутизатор распределяет информацию о входе соседним автономным системам. Вначале эта информация может быть не подробной. Однако объем и качество информации не играют роли. Маршрутизатор посылает, во всяком случае, все что имеет.
  2. Распределение только соседям. Каждый маршрутизатор посылает свою информацию только к соседям. Он посылает информацию, которую получает через все интерфейсы.
  3. Распределение через регулярные интервалы. Каждый маршрутизатор посылает свою информацию соседней автономной системе через фиксированные интервалы, например, каждые 30 с.

Таблицы маршрутизации

  • адрес сети пункта назначения,
  • кратчайший путь для того, чтобы достичь пункта назначения, отсчитываемый в участках,
  • следующий участок (следующий маршрутизатор), к которому должен быть доставлен пакет по пути к своему конечному пункту назначения,
  • счетчик участков – это число сетей, которые пакет пересечет для достижения своего конечного пункта назначения.

Таблица может содержать другую информацию, такую как маску подсети (или префикс ) или время, когда этот вход был обновлен. Табл. 8.1. показывает пример таблицы маршрутизации.

Разработка и использование протокола маршрутизации RIP в небольших и сравнительно однородных сетях. Причины неустойчивой работы по протоколу, их устранение. Применения протокола Hello для обнаружения соседей и установления с ними отношений смежности.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 06.06.2009
Размер файла 264,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ

Курсовая работа

Москва 2009

Внутренний протокол маршрутизации RIP (Routing Information Protocol)

Назначение

Этот протокол маршрутизации предназначен для сравнительно небольших и относительно однородных сетей. Протокол разработан в университете Калифорнии (Беркли), базируется на разработках фирмы Ксерокс и реализует те же принципы, что и программа маршрутизации routed, используемая в ОC UNIX (4BSD). Маршрут здесь характеризуется вектором расстояния до места назначения. Предполагается, что каждый маршрутизатор является отправной точкой нескольких маршрутов до сетей, с которыми он связан. С 1988 года RIP был повсеместно принят производителями персональных компьютеров для использования в их изделиях передачи данных по сети.

Решение, найденное по алгоритму Белмана-Форда, является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота и простота конфигурирования, а недостатками - увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.

В современных сетевых средах RIP - не самое лучшее решение для выбора в качестве протокола маршрутизации, так как его возможности уступают более современным протоколам, таким как EIGRP, OSPF. Присутствует ограничение на 15 хопов, которое не дает применять его в больших сетях.

Архитектура

RIP работает на основе UDP_протокола и использует порт 520. На каждом хосте, использующем RIP, должно быть установлено программное обеспечение, обрабатывающее RIP_пакеты. Настроить работу протокола на маршрутизаторе можно с помощью того же Hyper Terminal с рабочей станции, имеющей на это право и доступ. Настройки производится с помощью команд в соответствии с документацией к маршрутизатору.

Пример корректной работы протокола

(на рисунке: маршрутизаторы 1-6, сегменты сетей A..F; приведена изначальная информация в маршрутизаторе 2 и информация в нем после двух итераций обмена маршрутными пакетами RIP; после определенного числа итераций маршрутизатор будет знать о расстояниях до всех сегментов, а также альтернативные маршруты)

Пример неустойчивой работы по протоколу (отслеживание изменений в топологии)

(на рисунке: маршрутизаторы M1..M3; при работоспособном состоянии в таблице маршрутов каждого маршрутизатора есть запись о сети 1 и о соответствующем расстоянии до нее; далее рассмотрим случай обрыва линии связи между сетью 1 и маршрутизатором M1).

Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.

Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.

Пример неустойчивой работы по протоколу (возникновение циклических маршрутов - процедура split horizon).

В исходном состоянии все каналы передачи данных функционируют нормально и, поэтому, маршруты из узлов D и C к сети N лежат через маршрутизатор B и имеют метрику 2.

Предположим, что в некоторый момент времени канал, который связывает маршрутизаторы A и В, выходит из строя. Маршрутизатор B в этом случае перестает принимать update для сети N от маршрутизатора A и по истечении установленного интервала времени маршрутизатор B определяет сеть N в качестве недостижимой и исключает её из своих массивов update.

Однако из-за того, что эти массивы передаются в сети асинхронно вполне возможно, что вскоре после этого маршрутизатор C получит массивов update от маршрутизатора D, который пока ещё считает, что маршрут из B до сети N существует. Получив такую информацию, маршрутизатор C включит в свою таблицу маршрутизации новый маршрут до сети N - через маршрутизатор D с метрикой 3. После того, как истечет время существования исходного маршрута в маршрутизаторе D, эта ситуация повторится совершенно аналогичным образом.

Правило split horizon (предотвращение возникновения циклических маршрутов)

Алгоритм split horizon является неотъемлемой частью протокола маршрутизации RIP и предназначен для предотвращения появления циклических маршрутов в сети. Для предотвращения возникновения подобных ситуаций достаточно использовать следующее правило:

Маршрутизатор не должен направлять update для маршрутов в адрес их источника.

За этим правилом закрепилось название split horizon - расщепленный горизонт. Маршрутизатор, используя данное правило, разделяет свои маршруты на столько групп, сколько у него есть активных интерфейсов. При использовании правила split horizon, обновления для маршрутов, которые были получены через некоторый интерфейс, не должны передаваться через этот же интерфейс.

Правило split horizon with poisoned reverse

Пример неустойчивой работы по протоколу (процедура triggered update - управляемые модификации)

Использование процедуры Split horizon позволяет избежать появления зацикленного маршрута у двух шлюзов. Однако возможно возникновение ситуации, когда в циклическом маршруте участвуют три шлюза.

На рисунке приведен пример возникновения подобной ситуации. В приведенной сети при выходе из строя канала, который связывает узел А с сетью N, маршрутизатор B может принять от маршрутизатора С несуществующий маршрут до сети N, который якобы проходит через узел C. К тому моменту, когда маршрутизатор C определит, что он не имеет собственного маршрута до сети N, маршрутизатор B уже успеет передать информацию о наличии у него маршрута до этой сети марщрутизатору D.

Использование данной процедуры предписывает необходимость формирования мгновенных модификаций в том случае, когда происходит изменение состояния сети. Благодаря тому, что управляемые модификации передаются по сети с высокой скоростью, использование этого механизма может предотвратить появление циклических маршрутов. Однако, поскольку процесс передачи управляемых модификаций имеет вполне определенную конченую скорость, сохраняется возможность, что в процессе передачи регулярного update циклический маршрут все-таки возникнет.

Пример неустойчивой работы по протоколу
(счетчик времени timeout - timer)

Возможно возникновение ситуации, когда периодическое обновление будет просто потеряно в сети из-за возникновения краткосрочной перегрузки или временной неработоспособности канала передачи данных. Для того чтобы в этой ситуации маршруты не были ошибочно удалены из таблицы маршрутизации, каждому маршруту ставится в соответствие специальный счетчик времени, который называется timeout - timer. В тот момент времени, когда данный маршрут включается в таблицу маршрутизации, или когда для него приходит очередное обновление значение счетчика timeout - timer устанавливается равным Ttimeout max. = 180 секунд и этот счетчик начинает обратный отсчет времени. В том случае, если счетчик timeout - timer какого либо маршрута достигнет значения 0, этот маршрут должен быть исключен из числа активных маршрутов.

Протокол RIP не обеспечивает решение всех возможных проблем, которые могут возникнуть в процессе определения маршрута в сетях передачи данных. Как уже упоминалось выше, в первую очередь он предназначен для использования в качестве IGP в гомогенных сетях небольшого размера. Кроме того, использование данного протокола приводит к появлению специфических ограничений на параметры сети, в которой он может быть использован.

Ограничение максимальной длины маршрута

Использование протокола RIP целесообразно в сетях, самый длинный путь в которых составляет не более 15 переходов (hops). Данное ограничение определяется способом вычисления маршрута, который принят в данном алгоритме и не может быть преодолено.

Спецификации

· RFC_1388. Протокол RIP_2 (1993 год) является новой версией RIP, которая в дополнение к широковещательному режиму поддерживает мультикастинг; позволяет работать с масками субсетей.

· RFC_1582. Расширение к RIP по требованиям к хостам к поддержке определённых параметров.

· RFC_1721. Анализ протокола RIP версии 2.

· RFC_1722 (STD 0057). Протокол RIP версии 2, предписание к применению.

· RFC_1724. Протокол RIP версии 2, расширение по MIB (база управляющей информации - management information base).

· RFC_2080. Спецификации протокола RIP для IPv6.

· RFC_2092. Спецификация для автоматически запускающегося протокола RIP (triggered RIP).

· RFC_2453 (STD 0056). Общее описание протокола второй версии.

Реализация протокола.

· ответ (response) - рассылка вектора расстояний;

· запрос (request) - маршрутизатор (например, после своей загрузки) запрашивает у соседей их маршрутные таблицы или данные об определенном маршруте.

Дополнительно к полям версии 1 во второй версии определены следующие.


Основы

Крупные сети, такие как Internet, организованы как множество автономных систем (autonomous system – AS). Каждая из них обычно администрируется как отдельная сетевая структура, поэтому использование одного протокола маршрутизации в таких сетях маловероятно. Как мы уже знаем маршрутизатор, исходя из IP-адреса, указанного в заголовке пакета, в соответствии с своей таблицей маршрутизации определяет путь для передаваемых данных.
Таблицы маршрутизации задаются как вручную (статическая маршрутизация), так и динамически (динамическая маршрутизация).

Статическая маршрутизация

Так как статические маршруты настраиваются вручную, то любые изменения сетевой топологии требуют участия администратора для корректировки таблиц маршрутизации. В рамках маленькой сети такие изменения незначительны и происходят крайне редко. И наоборот, в крупных сетях корректировка таблиц маршрутизации может потребовать огромных затрат времени.
Если доступ к сети может быть получен только по одному направлению, то указание статического маршрута может оказаться вполне достаточным. Такой тип сети носит название тупиковой сети (stub network). Для настройки статической маршрутизации на роутере необходимо внести запись о сети, которую может достигнуть пакет, отправленный в определенный интерфейс.
Для этого необходимо в конфигурационном режиме ввести команду ip route, в которой указываем IP-адрес и маску сети назначения, тип и номер интерфейса, через который эта сеть может быть достигнута

Пример: Для сети, изображенной на рисунке необходимо настроить маршрутизацию таким образом, чтобы роутер (R1) пересылал пакеты в сети 92.154.228.0/22 и 92.154.232.0/22


Решением будет указанием 2 команд:

Для проверки конфигурации набираем команду show ip route

Как видно из вывода команды кроме подсоединенных сетей появились 2 записи по которым роутер будет все пришедшие к нему пакеты для сетей 92.154.228.0/22 и 92.154.232.0/22 маршрутизировать на интерфейс Serial1/0.

Для того чтобы пакеты из этих сетей уходили обратно необходимо подобным образом настроить роутеры R2 и R3

Еще настроить статическую маршрутизацию можно указав в команде ip route IP-адрес интерфейса следующего транзитного маршрутизатора вместо типа и номера интерфейса роутера, через который может быть достигнута сеть назначения. Например конфигурация роутера R1 для нашего примера будет:

Для отмены статического маршрута используется команда no ip route

Динамическая маршрутизация

При динамической маршрутизации происходит обмен маршрутной информацией между соседними маршрутизаторами, в ходе которого они сообщают друг другу, какие сети в данный момент доступны через них. Информация обрабатывается и помещается в таблицу маршрутизации. К наиболее распространенным внутренним протоколам маршрутизации относятся:
RIP (Routing Information Protocol) — протокол маршрутной информации
OSPF (Open Shortest Path First) — протокол выбора кратчайшего маршрута
EIGRP (Enhanced Interior Gateway Routing Protocol) — усовершенствованный протокол маршрутизации внутреннего шлюза
IGRP (Interior Gateway Routing Protocol) — протокол маршрутизации внутреннего шлюза

Протокол динамической маршрутизации выбирается исходя из множества предпосылок (скорость конвергенции, размер сети, задействование ресурсов, внедрение и сопровождение и др.) поэтому прежде всего, во внимание принимаются такие характеристики, как размер сети, доступная полоса пропускания, аппаратные возможности процессоров маршрутизирующих устройств, модели и типы маршрутизаторов.
Большинство алгоритмов маршрутизации может быть отнесено к одной из двух категорий: дистанционно-векторные протоколы (RIPv1, RIPv2, RIPng, IGRP, EIGRP, EIGRP for IPv6) и протоколы с учетом состояния канала (OSPFv2, OSPFv3, IS-IS, IS-IS for IPv6).

Routing Information Protocol (RIP)

Протокол RIP является дистанционно-векторным протоколом маршрутизации. Протоколы динамической маршрутизации определяют оптимальный путь к необходимой сети на основании значения, которое называется метрикой. В качестве метрики в протоколе RIP используется количество транзитных устройств или переходов (hop count – прыжок пакета) из одной сетевой структуры в другую. Максимальное число таких переходов равно 15. А все сети, число переходов до которых превышает 15, считаются недостижимыми. Маршрутизаторы, на которых настроен протокол RIP, периодически (по умолчанию каждые 30 с) пересылают полные анонсы маршрутов, в которых содержится информация обо всех известных им сетях.

Работа протокола RIP

Рассмотрим процесс обработки маршрутизатором R1 маршрута к сети 172.30.22.0 Протокол RIP настроен на обоих роутерах R1 и R2 во все непосредственно подсоединенные сети.


Сеть 172.30.22.0 напрямую подключена к маршрутизатору R2, поэтому счетчик переходов для нее равен 0
Когда R2 пересылает анонс маршрута к такой сети, он устанавливает значение счетчика равным 1. Получив анонс от R2, маршрутизатор R1 заносит маршрут к сети 172.30.22.0 в свою таблицу маршрутизации и считает этот маршрут оптимальным, поскольку других маршрутов у него нет.
В качестве исходящего интерфейса для нового маршрута R1 использует S0/0, поскольку анонс был получен через него.
В качестве адреса следующего транзитного устройства на маршруте использует 172.30.1.2, поскольку анонс маршрутизации был получен от отправителя с этим IP-адресом.

Из анонсов маршрутов исключаются некоторые маршруты для того чтобы исключить кольцевые маршруты и зацикливание пакетов. Кольцевой маршрут образуется когда два или более маршрутизаторов пересылают друг другу пакеты по замкнутому пути при котором пакеты не достигают нужного получателя. Кольцевой маршрут будет действовать до тех пор, пока маршрутизаторы в сети не обновят свои таблицы маршрутизации. Для избежания кольцевых маршрутов, маршрутизаторы рассылают информацию об отказавшем маршруте со специальной метрикой, равной бесконечности (для протокола RIP это значение равно 16). Такая рассылка называется корректировкой маршрута.
Еще один механизм предотвращения кольцевых маршрутов – таймер хранения информации. Когда устройство получает откорректированный маршрут (с максимальной метрикой), свидетельствующий о том, что этот маршрут недоступен, запускается таймер для такого маршрута. Стандартное значение таймера хранения информации равно 180 с. До тех пор пока не истечет таймер, новая информация о маршруте не принимается устройством, но информация от соседнего маршрутизатора, который ранее анонсировал исчезнувший маршрут, принимается и обрабатывается до истечения таймера хранения информации.

Пример сети и ее настройки с использованием протокола RIP


Для настройки на маршрутизаторе протокола RIP необходимо ввести команду router rip. Далее в режиме конфигурирования протокола маршрутизации нужно ввести команду network, содержащую номер сети, подключенной непосредственно к роутеру, информацию о которой следует разглашать в рассылках. Если используется бесклассовая адресация, необходимо включить 2 версию протокола RIP командой version 2

Проверяем таблицу маршрутизации командой

92.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
R 92.154.228.0/22 [120/1] via 92.154.252.2, 00:00:20, Serial1/0
R 92.154.232.0/22 [120/2] via 92.154.252.2, 00:00:20, Serial1/0
R 92.154.252.4/30 [120/1] via 92.154.252.2, 00:00:20, Serial1/0

Следует заметить, что соседние роутеры будут обмениваться таблицами маршрутизации RIP только в том случае, если протокол RIP настроен с обеих сторон.

Протокол OSPF является протоколом маршрутизации с учетом состояния каналов. В этом классе протоколов в качестве метрики используется стоимость маршрута, которая рассчитывается на основе пропускной способности каждого канала на пути от маршрутизатора до необходимой сети. Поэтому процесс работы протокола OSPF условно можно разделить на три этапа: обнаружение соседних маршрутизаторов, обмен базами маршрутов и расчет оптимальных маршрутов.
Устройства, подключенные к одному каналу и участвующие в процессе обмена информацией протокола OSPF называются соседними маршрутизаторами. Для обнаружения OSPF-устройств маршрутизаторы рассылают многоадресатные Hello-пакеты через все интерфейсы, на которых настроен протокол OSPF. В запросе содержится следующая информация:
идентификатор маршрутизатора-отправителя Router ID – RID,
идентификатор зоны OSPF Area ID,
Hello-интервал,
интервал обнаружения неработоспособности устройства (dead interval),
приоритет маршрутизатора (router priority),
идентификатор RID выделенного маршрутизатора (designated router DR),
идентификатор RID резервного выделенного маршрутизатора (backup designated router BDR)
список соседних устройств, обнаруженных маршрутизатором-отправителем.

Каждому маршрутизатору присваивается уникальный номер – идентификатор маршрутизатора RID. Он представляет собой 32-битное число, поэтому для удобства в качестве идентификатора используют IP-адрес. Протоколом автоматически выбирается самый старший IP-адрес из всех адресов на интерфейсах устройства (в т.ч. виртуальных).


Рассмотрим пример настройки протокола OSPF для сети, изображенной выше.

92.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
O 92.154.228.0/22 [110/65] via 92.154.252.2, 00:00:26, Serial1/0
O 92.154.232.0/22 [110/846] via 92.154.252.2, 00:00:26, Serial1/0
O 92.154.252.4/30 [110/845] via 92.154.252.2, 00:00:26, Serial1/0

Для просмотра списка соседних маршрутизаторов на которых настроен протокол OSPF, и информации о них используется команда show ip ospf neighbor

Для функционирования протокола OSPF важно чтобы хотя бы один интерфейс маршрутизатора, включенный в таблицу маршрутизации протокола OSPF, должен находиться в поднятом (up) состоянии. В противном случае OSPF отключится и последующее включение возможно будет только вручную. Для избежания такой проблемы в сети необходимо настроить и включить в протокол OSPF виртуальный интерфейс loopback.
Для настройки интерфейса loopback используется команда interface loopback, после указывается номер виртуального интерфейса, например:

Типы маршрутизаторов OSPF

Четыре различных типа маршрутизаторов OSPF соответствуют иерархической структуре маршрутизации, применяемой в OSPF. Каждый маршрутизатор в этой иерархии выполняет уникальную роль и обладает набором свойственных только ему характеристик. На схеме показана типичная сеть OSPF, в которой несколько областей содержат маршрутизаторы OSPF разных типов.


Граничные маршрутизаторы области

Маршрутизаторы ABR подключены к нескольким областям OSPF, поэтому количество маршрутизаторов в сети зависит от количества областей. Маршрутизатор ABR имеет по одной базе данных для каждой области, информацию которой он суммирует, а затем передает в опорную область для распределения по другим областям.

Граничные маршрутизаторы автономной системы

Маршрутизаторы ASBR соединены с несколькими автономными системами и обмениваются маршрутной информацией с маршрутизаторами, находящимися в другой автономной системе. В маршрутизаторах ASBR одновременно эксплуатируются протокол OSPF и другой маршрутизирующий протокол, такой как RIP или ВGР. Маршрутизаторы ASBR обрабатывают информацию о внешних маршрутах.

Маршрутизаторы опорной области

Маршрутизаторами опорной области (Backbone Router — BR) называются маршрутизаторы, интерфейсы которых соединяют их только с опорной областью. Они не имеют интерфейсов, подключенных к другим областям OSPF.

Sheldon

Протокол RIP и протокол OSPF - это два протокола внутреннего шлюза (IGP), которые интенсивно используются в компьютерных сетях для определения наилучших маршрутов передачи данных. RIP (Routing Information Protocol) - один из старейших используемых протоколов маршрутизации, тогда как OSPF (Open Shortest Path First) служит наиболее широко используемым протоколом IGP для крупных корпоративных сетей. Сетевые менеджеры могут оказаться перед дилеммой при выборе между RIP и OSPF. Итак, в этом блоге будет представлено подробное описание этих двух протоколов маршрутизации и основные различия между протоколами RIP и OSPF.

RIP vs OSPF:Что такое протокол RIP в сети?

RIP (Routing Information Protocol) является примером векторной маршрутизации для локальных сетей. RIP обеспечивает доставку всей таблицы маршрутизации на все активные интерфейсы каждые 30 секунд. В протоколе RIP количество переходов - единственная метрика, определяющая наилучший путь к удаленной сети. Давайте рассмотрим пример, чтобы увидеть, как работает протокол RIP: Предположим, у нас есть два пути от источника к месту назначения. Понятно, что путь 2 будет выбран протоколом RIP, поскольку он имеет меньшее количество переходов.

Плюсы и минусы протокола RIP

Плюсы:

Протокол RIP отлично подходит для небольших сетей - его легко понять и настроить.

Маршрутизация RIP гарантированно поддерживает почти все маршрутизаторы.

RIP не требует обновления каждый раз при изменении топологии сети.

Минусы:

RIP может создать узкое место в трафике, поскольку он передает свои обновления каждые 30 секунд. Поскольку любое обновление маршрутизации в RIP требует большой пропускной способности, ресурсы для критически важных ИТ-процессов ограничены.

Количество переходов RIP ограничено 15 переходами, поэтому любой маршрутизатор за пределами этого расстояния считается бесконечным и следовательно недоступным.

Скорость сходимости низкая. Когда какое-либо соединение обрывается, выбор альтернативных маршрутов занимает много времени.

RIP не поддерживает несколько путей на одном маршруте, что может создавать больше петель маршрутизации. При использовании показателей фиксированного количества переходов для выбора наилучших маршрутов RIP не работает, когда маршруты сравниваются на основе данных в реальном времени. Это вызывает потерю пакетов и перегрузку сетевых операций из-за повторяющихся процессов.

RIP vs OSPF: что такое OSPF в сети?

OSPF (Open Shortest Path First), протокол маршрутизации на основе состояния канала, широко применяется в крупных корпоративных сетях. Протокол маршрутизации OSPF собирает информацию о состоянии канала от маршрутизаторов в сети и определяет информацию таблицы маршрутизации для пересылки пакетов. Это происходит путем создания карты топологии сети. В отличие от RIP, OSPF обменивается маршрутной информацией только при изменении топологии сети. Протокол OSPF лучше всего подходит для сложных сетей, состоящих из нескольких подсетей, работающих для упрощения администрирования сети и оптимизации трафика. Когда происходит изменение, он эффективно вычисляет кратчайший путь с минимальным сетевым трафиком.


Рис: Дизайн и терминология OSPF

Плюсы и минусы протокола OSPF

Плюсы:

Протокол маршрутизации OSPF полностью знает топологию сети, что позволяет маршрутизаторам рассчитывать маршруты на основе входящих запросов.

Протокол OSPF не имеет ограничений по количеству переходов, в отличие от протокола RIP, который имеет не более 15 переходов. Таким образом, OSPF сходится быстрее, чем RIP, и обеспечивает лучшую балансировку нагрузки.

OSPF выполняет многоадресную рассылку обновлений состояния каналов и отправляет обновления только при изменении в сети.

Минусы:

Протокол OSPF требует глубоких знаний о сложных сетях, что делает его не таким легким для изучения, как некоторые другие протоколы.

Маршрутизация OSPF не масштабируется при добавлении дополнительных маршрутизаторов в сеть. Отсутствие масштабируемости в протоколе OSPF делает его непригодным для маршрутизации через Интернет.

Протокол OSPF поддерживает несколько копий маршрутной информации, увеличивая объем необходимой памяти.

RIP vs OSPF:В чем разница?

RIP и OSPF - это протоколы внутреннего шлюза, информация о маршрутизации которых внутри автономной системы, а также RIP и OSPF различаются во многих аспектах.

Характеристики RIP протокол OSPF протокол
Тип протокола маршрутизации Протокол дистанционно-векторной маршрутизации (использует расстояние или счетчик переходов для определения пути передачи) Протокол маршрутизации состояния канала (анализирует различные источники, такие как скорость, стоимость и загруженность пути, определяя кратчайший путь)
Конструкция сетевого стола Маршрутизатор объединяет таблицу маршрутизации с соседних устройств для создания собственной таблицы маршрутизации и отправляет ее соседним устройствам через равные промежутки времени. Маршрутизатор консолидирует таблицу маршрутизации, получая только необходимую информацию от соседних устройств, но никогда не получает всю таблицу маршрутизации.
Метрика по умолчанию На основе количества переходов На основе пропускной способности
Ограничение количества переходов Протокол RIP допускает только до 15 переходов Протокол OSPF не имеет такого ограничения
Административное расстояние 120 110
Используемый алгоритм Bellman-Ford алгоритм Dijkstra алгоритм
Классификация сети В RIP сети классифицируются как области и таблицы. В OSPF сети классифицируются как области, подобласти, автономные системы и магистральные области.
Уровень сложности относительно проще намного сложнее
Сетевое приложение RIP лучше подходит для небольших сетей, так как он имеет ограничения на количество переходов. OSPF отлично подходит для больших сетей
Дизайн Плоская сеть Возможна иерархическая сеть
Время конвергенции Медленный Быстрый
Требования к ресурсам устройства Намного меньше памяти и CPU, чем OSPF Память и CPU интенсивны
Требования к сетевым ресурсам Потребление полосы пропускания; отправляется вся таблица маршрутизации Меньше, чем RIP; отправляются только небольшие обновления

Таблица: Ключевые различия между RIP и OSPF

Коммутаторы с поддержкой RIP и OSPF

RIP и OSPF, два типа протоколов динамической маршрутизации, обеспечивают повышенную масштабируемость по сравнению со статическими альтернативами и возможность автоматической адаптации к топологическим изменениям сети, таким как отказавший компонент; автоматическое перенаправление трафика по альтернативным путям с минимальными нарушениями. Если вы находите коммутаторы, поддерживающие RIP и OSPF, коммутаторы FS могут стать вашим экономичным выбором. FS корпоративный коммутатор (например, полностью управляемый Pro 10G коммутатор L3) поддерживает полную маршрутизацию IPv4 / IPv6, такую как протокол маршрутизации RIP/OSPF/BGP/ECMP. FS также предлагает мощные и доступные коммутаторы для ЦОД, гигабитные PoE коммутаторы и медные коммутаторы для клиентов по всему миру.



Заключение

После сравнения различий между протоколами RIP и OSPF становится ясно, что протокол RIP идеально подходит для небольших сетей, которые являются простыми и неиерархическими, тогда как протокол OSPF лучше всего подходит для крупных и иерархических корпоративных сетей. В сложной сети может одновременно работать несколько протоколов маршрутизации. Надеюсь, вы получите лучшую конфигурацию для своей сети.

Также ищите для RIP vs OSPF vs EIGRP vs BGP? Вот несколько статей по теме:

Читайте также: