Протокол маршрутизации rip реферат

Обновлено: 28.06.2024

На данный момент почти все люди знают, что такое интернет, но некоторые даже и приблизительно не представляют, как он работает и как за такое короткое время устройства находят друг друга. В этих статьях я решил разобрать основные протоколы маршрутизации, что они из себя представляют и как работают. Данная статья скорее для тех, кто только начал свой путь по сетям и стремится больше узнать о работе маршрутизаторов в небольших и средних локальных сетях (Для крупных чаще всего используется протокол OSPF). Первым разберем протокол RIP. Но сначала немного о маршрутизации…

Маршрутизация


Маршрутизация сама по себе — поиск маршрута доставки пакета между сетями через транзитные узлы — маршрутизаторы, которые позиционируют себя как многофункциональные устройства для разделения сетей. Вся сеть интернет разделена на крупные автономные системы (AS), которые связываются и узнают друг о друге с помощью внешних протоколов маршрутизации,

Этапы маршрутизации:

1. Изучение сети

Здесь и начинается самое интересное:) В более менее крупных сетях, где используется динамическая(адаптивная) маршрутизация, все изменение конфигурации сети автоматически отражаются в таблицах маршрутизации благодаря протоколам маршрутизации. Протоколы маршрутизации делятся на внешние протоколы (BGP) и внутренние (OSPF и RIP). Внешние протоколы маршрутизируют трафик среди автономных систем, грубо говоря, подсети провайдеров объединяют внешние протоколы, объединенные внешним маршрутизатором. А внутренние протоколы маршрутизации изучают сеть с помощью других протоколов, таких как OSPF или RIP (чаще всего используют OSPF).

Этап 4 — рассылка новой таблицы соседям. Сконфигурированную таблицу маршрутизатор снова отправляет всем своим соседям. В ней хранится информация не только о сетях, к которым маршрутизатор подключен напрямую, но и о удаленных, о которых он узнал от соседних маршрутизаторов на втором этапе. Думаю тут начинает становиться понятно, почему протокол RIP используется в основном в небольших сетях.

Этап 5 — получение таблиц и обработка полученной информации. Тут все, как на 3 этапе — маршрутизатор получает таблицу и сравнивает со своей, внося изменения.

2. Продвижение пакетов на маршрутизаторе

С этим все достаточно просто: пакет поступает на маршрутизатор, маршрутизатор проверяет свою таблицу маршрутизации и отправляет на указанный порт.

На этом в приницпе заканчиваются основные методы работы протокола RIP, oднако в сетях постоянно происходят изменения — меняются маршрутизаторы, перестраиваются линии связи, к тому же, могут создаваться новые сети, а старые могут выводиться из состава.

Для адаптации к изменениям в сети протокол RIP использует ряд механизмов.

Адаптация маршрутизаторов RIP к изменениям состояние сети.

Для уведомления о том, что данный маршрут недействителен, используются механизм истечения времени жизни маршрута.

Шестикратное время тайм-аута нужно для того, чтобы была точная уверенность, что маршрут недействителен, а не пакеты потерялись (ведь протокол использует транспортный протокол UDP).

В принципе я старался максимально просто объяснить протокола и надеюсь у меня это получилось:)

Этот протокол маршрутизации предназначен для сравнительно небольших и относительно однородных сетей. Протокол разработан в университете Калифорнии (Беркли), базируется на разработках фирмы Ксерокс и реализует те же принципы, что и программа маршрутизации routed, используемая в ОC UNIX (4BSD). Маршрут здесь характеризуется вектором расстояния до места назначения. Предполагается, что каждый маршрутизатор является отправной точкой нескольких маршрутов до сетей, с которыми он связан. С 1988 года RIP был повсеместно принят производителями персональных компьютеров для использования в их изделиях передачи данных по сети.

Решение, найденное по алгоритму Белмана-Форда, является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота и простота конфигурирования, а недостатками – увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.

В современных сетевых средах RIP – не самое лучшее решение для выбора в качестве протокола маршрутизации, так как его возможности уступают более современным протоколам, таким как EIGRP, OSPF. Присутствует ограничение на 15 хопов, которое не дает применять его в больших сетях.

RIP работает на основе UDP‑протокола и использует порт 520. На каждом хосте, использующем RIP, должно быть установлено программное обеспечение, обрабатывающее RIP‑пакеты. Настроить работу протокола на маршрутизаторе можно с помощью того же Hyper Terminal с рабочей станции, имеющей на это право и доступ. Настройки производится с помощью команд в соответствии с документацией к маршрутизатору.

Пример корректной работы протокола

img00010

(на рисунке: маршрутизаторы 1-6, сегменты сетей A..F; приведена изначальная информация в маршрутизаторе 2 и информация в нем после двух итераций обмена маршрутными пакетами RIP; после определенного числа итераций маршрутизатор будет знать о расстояниях до всех сегментов, а также альтернативные маршруты)

Пример неустойчивой работы по протоколу (отслеживание изменений в топологии)

img00011

(на рисунке: маршрутизаторы M1..M3; при работоспособном состоянии в таблице маршрутов каждого маршрутизатора есть запись о сети 1 и о соответствующем расстоянии до нее; далее рассмотрим случай обрыва линии связи между сетью 1 и маршрутизатором M1).

Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.

Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.

6_3

Пример неустойчивой работы по протоколу (возникновение циклических маршрутов – процедура split horizon).

В исходном состоянии все каналы передачи данных функционируют нормально и, поэтому, маршруты из узлов D и C к сети N лежат через маршрутизатор B и имеют метрику 2.

Предположим, что в некоторый момент времени канал, который связывает маршрутизаторы A и В, выходит из строя. Маршрутизатор B в этом случае перестает принимать update для сети N от маршрутизатора A и по истечении установленного интервала времени маршрутизатор B определяет сеть N в качестве недостижимой и исключает её из своих массивов update.

Однако из-за того, что эти массивы передаются в сети асинхронно вполне возможно, что вскоре после этого маршрутизатор C получит массивов update от маршрутизатора D, который пока ещё считает, что маршрут из B до сети N существует. Получив такую информацию, маршрутизатор C включит в свою таблицу маршрутизации новый маршрут до сети N – через маршрутизатор D с метрикой 3. После того, как истечет время существования исходного маршрута в маршрутизаторе D, эта ситуация повторится совершенно аналогичным образом.

Правило split horizon (предотвращение возникновения циклических маршрутов)

Алгоритм split horizon является неотъемлемой частью протокола маршрутизации RIP и предназначен для предотвращения появления циклических маршрутов в сети. Для предотвращения возникновения подобных ситуаций достаточно использовать следующее правило:

Маршрутизатор не должен направлять update для маршрутов в адрес их источника.

За этим правилом закрепилось название split horizon – расщепленный горизонт. Маршрутизатор, используя данное правило, разделяет свои маршруты на столько групп, сколько у него есть активных интерфейсов. При использовании правила split horizon, обновления для маршрутов, которые были получены через некоторый интерфейс, не должны передаваться через этот же интерфейс.

Правило split horizon with poisoned reverse

Пример неустойчивой работы по протоколу (процедура triggered update – управляемые модификации)

6_4

Использование процедуры Split horizon позволяет избежать появления зацикленного маршрута у двух шлюзов. Однако возможно возникновение ситуации, когда в циклическом маршруте участвуют три шлюза.

На рисунке приведен пример возникновения подобной ситуации. В приведенной сети при выходе из строя канала, который связывает узел А с сетью N, маршрутизатор B может принять от маршрутизатора С несуществующий маршрут до сети N, который якобы проходит через узел C. К тому моменту, когда маршрутизатор C определит, что он не имеет собственного маршрута до сети N, маршрутизатор B уже успеет передать информацию о наличии у него маршрута до этой сети марщрутизатору D.

Использование данной процедуры предписывает необходимость формирования мгновенных модификаций в том случае, когда происходит изменение состояния сети. Благодаря тому, что управляемые модификации передаются по сети с высокой скоростью, использование этого механизма может предотвратить появление циклических маршрутов. Однако, поскольку процесс передачи управляемых модификаций имеет вполне определенную конченую скорость, сохраняется возможность, что в процессе передачи регулярного update циклический маршрут все-таки возникнет.

Пример неустойчивой работы по протоколу
(счетчик времени timeout – timer)

Возможно возникновение ситуации, когда периодическое обновление будет просто потеряно в сети из-за возникновения краткосрочной перегрузки или временной неработоспособности канала передачи данных. Для того чтобы в этой ситуации маршруты не были ошибочно удалены из таблицы маршрутизации, каждому маршруту ставится в соответствие специальный счетчик времени, который называется timeout – timer. В тот момент времени, когда данный маршрут включается в таблицу маршрутизации, или когда для него приходит очередное обновление значение счетчика timeout – timer устанавливается равным Ttimeout max. = 180 секунд и этот счетчик начинает обратный отсчет времени. В том случае, если счетчик timeout – timer какого либо маршрута достигнет значения 0, этот маршрут должен быть исключен из числа активных маршрутов.

Протокол RIP не обеспечивает решение всех возможных проблем, которые могут возникнуть в процессе определения маршрута в сетях передачи данных. Как уже упоминалось выше, в первую очередь он предназначен для использования в качестве IGP в гомогенных сетях небольшого размера. Кроме того, использование данного протокола приводит к появлению специфических ограничений на параметры сети, в которой он может быть использован.

Ограничение максимальной длины маршрута

Использование протокола RIP целесообразно в сетях, самый длинный путь в которых составляет не более 15 переходов (hops). Данное ограничение определяется способом вычисления маршрута, который принят в данном алгоритме и не может быть преодолено.

· RFC‑1388. Протокол RIP‑2 (1993 год) является новой версией RIP, которая в дополнение к широковещательному режиму поддерживает мультикастинг; позволяет работать с масками субсетей.

· RFC‑1582. Расширение к RIP по требованиям к хостам к поддержке определённых параметров.

· RFC‑1721. Анализ протокола RIP версии 2.

· RFC‑1722 (STD 0057). Протокол RIP версии 2, предписание к применению.

· RFC‑1724. Протокол RIP версии 2, расширение по MIB (база управляющей информации – management information base).

· RFC‑2080. Спецификации протокола RIP для IPv6.

· RFC‑2092. Спецификация для автоматически запускающегося протокола RIP (triggered RIP).

· RFC‑2453 (STD 0056). Общее описание протокола второй версии.

· ответ (response) – рассылка вектора расстояний;

· запрос (request) – маршрутизатор (например, после своей загрузки) запрашивает у соседей их маршрутные таблицы или данные об определенном маршруте.

rip_packet

Дополнительно к полям версии 1 во второй версии определены следующие.

Работа протокола RIP

· проверяет, не превышает ли метрика (расстояние до сети) бесконечности;

· некорректный элемент игнорируется;

· если метрика меньше бесконечности, она увеличивается на 1;

· производится поиск сети, указанной в рассматриваемом элементе вектора расстояний, в таблице маршрутов;

· если искомая запись присутствует в таблице с метрикой больше, чем объявленная в полученном векторе, в таблицу вносятся новые метрика и, соответственно, адрес следующего маршрутизатора; таймер для этой записи перезапускается;

· во всех прочих случаях рассматриваемый элемент вектора расстояний игнорируется.

В каждую из сетей, подключенных к маршрутизатору, рассылается свой собственный вектор расстояний, построенный с учетом дополнения 1 (1А), сформулированного выше в п. 4.2.1. Там, где это возможно, адреса сетей агрегируются (обобщаются), то есть несколько подсетей с соседними адресами объединяются под одним, более общим адресом с соответствующим изменением маски.

В случае triggered response посылается информация только о тех сетях, записи о которых были изменены.

Информация о сетях с бесконечной метрикой посылается только в том случае, если она была недавно изменена.

Настройка протокола RIP (логи)

%May 12 16:08:13:801 2009 Quidway SHELL/5/LOGIN: Console login from con0

Routing Platform Software

Version AR28–10 8040V300R003B03D040 (COMWAREV300R002B60D021), RELEASE SOFTWARE

Compiled Apr 04 2006 14:35:29 by Houming

Checkzero is on Default cost: 1

Summary is on Preference: 100

Validate-source-address is on

Traffic-share-across-interface is off

Period update timer: 30

Timeout timer: 180

Garbage-collection timer: 120

User privilege level is 3, and only those commands can be used

whose level is equal or less than this.

Privilege note: 0‑VISIT, 1‑MONITOR, 2‑SYSTEM, 3‑MANAGE

System View: return to User View with Ctrl+Z.

%May 12 16:24:58:322 2009 Quidway PHY/2/PHY: Ethernet0/0: change status to up

%May 12 16:24:58:322 2009 Quidway IFNET/5/UPDOWN: Line protocol on the interface

Ethernet0/0 is UP

[Quidway] interface Ethernet 0/0

[Quidway-Ethernet0/0] display ip interface

Aux0 current state: Administratively DOWN

Line protocol current state:DOWN

Internet Address is 172.16.0.2/24

Broadcast address: 172.16.0.255

The Maximum Transmit Unit: 1500 bytes

ip fast-forwarding incoming packets state is Disabled

ip fast-forwarding outgoing packets state is Disabled

ip multicast-fast-forwarding packets state is Disabled

IP packets input number: 0, bytes: 0, multicasts: 0

IP packets output number: 0, bytes: 0, multicasts: 0

TTL invalid packet number: 0

ICMP packet input number: 0

Source quench: 0

Routing redirect: 0

Router advert: 0

Router solicit: 0

IP header bad: 0

Timestamp request: 0

Timestamp reply: 0

Information request: 0

Information reply: 0

Netmask request: 0

Netmask reply: 0

Ethernet0/0 current state:UP

Line protocol current state:UP

Internet Address is 192.168.1.5/24

Broadcast address: 192.168.1.255

The Maximum Transmit Unit: 1500 bytes

ip fast-forwarding incoming packets state is Enabled

ip fast-forwarding outgoing packets state is Enabled

ip multicast-fast-forwarding packets state is Disabled

IP packets input number: 15, bytes: 4920, multicasts: 0

IP packets output number: 0, bytes: 0, multicasts: 0

ARP packets input number: 35

Request packet: 35

Unknown packet: 0

TTL invalid packet number: 0

ICMP packet input number: 0

Source quench: 0

Routing redirect: 0

Router advert: 0

Router solicit: 0

IP header bad: 0

Timestamp request: 0

Timestamp reply: 0

Information request: 0

Information reply: 0

Netmask request: 0

Netmask reply: 0

[Quidway] ping 192.168.1.10

PING 192.168.1.10: 56 data bytes, press CTRL_C to break

Reply from 192.168.1.10: bytes=56 Sequence=1 ttl=64 time=2 ms

Reply from 192.168.1.10: bytes=56 Sequence=2 ttl=64 time=1 ms

Reply from 192.168.1.10: bytes=56 Sequence=3 ttl=64 time=2 ms

Reply from 192.168.1.10: bytes=56 Sequence=4 ttl=64 time=1 ms

Reply from 192.168.1.10: bytes=56 Sequence=5 ttl=64 time=2 ms

– 192.168.1.10 ping statistics –

Раздел: Информатика, программирование
Количество знаков с пробелами: 80511
Количество таблиц: 3
Количество изображений: 15

Похожие работы






. ) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях. Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией. Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются "соседями". Каждый маршрутизатор хранит информацию о том, в каком .









. офиса подразделения к сети главного офиса. Автостатические маршруты Автостатические маршруты — это статические маршруты, которые автоматически добавляются в таблицу маршрутизации маршрутизатора после запроса маршрутов с помощью протокола RIP для IP при подключении по требованию. Преимущество автостатических маршрутов заключается в том, что для недостижимых узлов маршрутизатор не подключается к .






. сигналов, поступающих от разных источников информации (телефонные сигналы от междугородней телефонной станции, телевизионные сигналы от междугородней телевизионной аппаратной и т.д.) в сигналы, передаваемые по радиорелейной линии, а также обратное преобразование сигналов, приходящих по РРЛ, в сигналы телерадиовещания или телефонии. Радиосигналы ОРС с помощью передающего устройства и антенны .

При проектировании сети в компании, которая хочет обеспечить быстродействии и функциональность работы всех it сервисов необходимо уделять должную долю внимания на настройку маршрутизации.

Протокол динамической маршрутизации позволяет отслеживать изменения в сети: он информирует об этих изменениях все остальные маршрутизаторы. Использование статической маршрутизации не оптимизирует процесс, а напротив, вынуждает системного администратора вручную менять настройки таблиц маршрутизации

Д. Дэвиса, Д. Барбера, В. Прайса, В. Вилингера, Д. Вильсона, Д. Рахсона и др. – все эти ученые занимались вопросами организации и построения компьютерных мобильных сетей, в том числе и вопросам маршрутизации, посвящены работы отечественных ученых

Доставление данных адресату происходит через транзитные узлы и их интерфейсов – это позволяет определить маршрут и его последовательность. Это очень сложная задача, которая требует бережного и внимательного отношения к себе, особенно, когда бывает несколько сетевых интерфейсов, которые создают множество путей. Чаще всего выбор останавливают на одном оптимальном по некоторому критерию маршруте.

Есть несколько критериев оценки оптимальности маршрутизации: загруженность каналов связи; номинальная пропускная способность и задержки, вносимые каналами; надежность каналов и транзитных узлов; количество промежуточных транзитных узлов.

Что такое динамическая маршрутизация. Это процесс протокола маршрутизации, определяющий взаимодействие устройства с соседними маршрутизаторами. Маршрутизатор будет обновлять сведения о каждой изученной им сети.

Протокол RIP – дистанционно векторный протокол внутренней маршрутизации. Он обрабатывает, получает и рассылает векторы IP-сетей, находящихся в области действия протокола.

Для достижения поставленной цели предполагается решить комплекс взаимосвязанных задач:

1. Исследовать, изучить научную литературу про протокол RIP.

2. Выявить, исследовать, изучить, рассмотреть основные определения и формулировки.

3. Применять полученную информацию на практике.

  • анализ специфики деятельности предприятия, основных направлений его работы;
  • анализ архитектуры локальной вычислительной сети;
  • анализ архитектуры информационной безопасности;
  • оценка использования систем виртуализации;
  • изучить настройку маршрутизации в сети с помощью протокола RIP.

1. ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ХАРАКТЕРИСТИКА ПРЕДМЕТНОЙ ОБЛАСТИ И ПРЕДПРИЯТИЯ

1.1 Характеристика предприятия и его деятельности

Международная ИТ-компания, поставщик ИТ-решений и сервисов, работающий на рынках России, восточной Европы, центральной Азии, Америки, Индии и Юго-Восточной Азии. Компания предлагает частные и публичные облачные решения, комплексные технологические решения, лицензирование программного обеспечения, поставку аппаратного обеспечения и сопутствующие услуги.

Компания является партнером более чем 3000 поставщиков программного и аппаратного обеспечения, имеет высочайшие партнерские статусы таких компаний, как Microsoft, Oracle, Adobe, Veeam, EMC, Cortado, Symantec, Dell, VMware, Citrix, Autodesk, Лаборатория Касперского, ITooLabs, Amby и других.

Компания основана в 1997 году в Москве как поставщик научного программного обеспечения.

Основной деятельностью компании являются продажи. Динамику и общие цифры можно посмотреть в таблице 1.

Наименование характеристики (показателя)

2015

2016

2017

2018

Объем продаж (ед.)

Число постоянных клиентов (компаний)

Прибыль (млн. руб.)

1.2. Современные методы построения сетей для решения сходных задач

  • гарантированную доставку обеспечивает протокол управления передачей (Transmission Control Protocol, TCP);
  • доставку по возможности, или с максимальными усилиями, обеспечивает протокол пользовательских дейтаграмм (User Datagram Protocol, UDP).

Для того чтобы обеспечить надежную доставку данных, протокол TCP предусматривает установление логического соединения, что позволяет ему нумеровать пакеты, подтверждать их прием квитанциями, в случае потери организовывать повторные передачи, распознавать и уничтожать дубликаты, доставлять прикладному уровню пакеты в том порядке, в котором они были отправлены. Благодаря этому протоколу объекты на хосте-отправителе и хосте-получателе могут поддерживать обмен данными в дуплексном режиме. TCP дает возможность без ошибок доставить сформированный на одном из компьютеров поток байтов на любой другой компьютер, входящий в составную сеть. Второй протокол этого уровня, UDP, является простейшим дейтаграммным протоколом, который используется тогда, когда задача надежного обмена данными либо вообще не ставится, либо решается средствами более высокого уровня — прикладным уровнем или пользовательскими приложениями. В функции протоколов TCP и UDP входит также исполнение роли связующего звена между прилегающими к транспортному уровню прикладным и сетевым уровнями. От прикладного протокола транспортный уровень принимает задание на передачу данных с тем или иным качеством прикладному уровню-получателю. Нижележащий сетевой уровень протоколы TCP и UDP рассматривают как своего рода инструмент, не очень надежный, но способный перемещать пакет в свободном и рискованном путешествии по составной сети.

Программные модули, реализующие протоколы TCP и UDP, подобно модулям протоколов прикладного уровня устанавливаются на хостах.

1.2.1 RIP версии 1 и RIP версия 2 и аутентификация

RIP v.1 не поддерживает маски, т. е. он распространяет между маршрутизаторами информацию только о номерах сетей и расстояниях до них, но не о масках этих сетей, считая, что все адреса принадлежат к стандартным классам A, B или С. RIP v.2 передает данные о масках сетей, поэтому он в большей степени соответствует современным требованиям.

RIP версии 1 не поддерживает аутентификацию. Если мы отправляем и получаем RIP Version2, мы можем включить проверку подлинности RIP на интерфейсе.

Ключевой блок (KeyChain) определяет набор ключей, которые можно использовать на интерфейсе. Если Ключевой блок не настроен проверка подлинности не выполняется на этом интерфейсе.

1.2.2 Методы борьбы с ложными маршрутами в протоколе RIP

Несмотря на то что протокол RIP не способен полностью исключить переходные состояния в сети, когда некоторые маршрутизаторы пользуются устаревшей информацией о несуществующих уже маршрутах, отчасти подобные проблемы решаются при помощи специальных методов.

Однако расщепление горизонта не помогает в тех случаях, когда петли образуют не два, а несколько маршрутизаторов.

Второй прием позволяет исключить подобные ситуации. Он связан с введением тайм-аута на принятие новых данных о только что ставшей недоступной сети и предотвращает принятие устаревших сведений о конкретном маршруте от тех из них, кто находится на некотором расстоянии от отказавшей связи и передает устаревшие сведения о ее работоспособности.

Предполагается, что в течение тайм-аута замораживания изменений эти маршрутизаторы вычеркнут данный маршрут из своих таблиц, так как не получат о нем новых записей и не будут распространять устаревшую информацию.

2. РАЗРАБОТКА ПРОЕКТНЫХ РЕШЕНИЙ

2.1. Разработка и обоснование структуры сети

Будучи простым в реализации, этот протокол чаще всего используется в небольших сетях. Для IP имеются две версии RIP — RIPvl и RIPv2. Протокол RIPvl не поддерживает масок. Протокол RIPv2 передает информацию о масках сетей, поэтому он в большей степени соответствует требованиям сегодняшнего дня.

Программная архитектура компании представлена на рисунке ниже (Рисунок 1)


Рисунок 1. Программная архитектура предприятия

Компьютерная сеть предприятия показана на рисунке 2.


Рисунок 2. Компьютерная сеть предприятия

2.2. Выбор и обоснование используемых протоколов

2.2.1 Обзор протокола RIP

Алгоритмы маршрутизации по вектору расстояний (distance vector routing) работают, опираясь на таблицы (то есть векторы), поддерживаемые всеми маршрутизаторами и содержащие сведения о кратчайших известных путях к каждому из возможных адресатов и о том, какое соединение следует при этом использовать. Для обновления данных этих таблиц производится обмен информацией с соседними маршрутизаторами. В результате маршрутизатор знает наилучший способ добраться до любого адреса назначения.

Алгоритм маршрутизации по вектору расстояний иногда называют по именам его создателей распределенным алгоритмом Беллмана—Форда (Bellman—Ford) (Bellman, 1957; Ford и Filkerson, 1962). Этот алгоритм изначально применялся в сети ARPANET и в Интернете был известен под названием RIP.

Маршрутизация служит для приема пакета от одного устройства и передачи его по сети другому устройству через другие сети. Если в сети нет маршрутизаторов, то не поддерживается маршрутизация. Маршрутизаторы направляют (перенаправляют) трафик во все сети, составляющие объединенную сеть (Рисунок 3).


Рисунок 3. Маршрутизация RIP протокола

Для маршрутизации пакета маршрутизатор должен владеть следующей информацией:

  • Адрес назначения
  • Соседний маршрутизатор, от которого он может узнать об удаленных сетях
  • Доступные пути ко всем удаленным сетям
  • Наилучший путь к каждой удаленной сети
  • Методы обслуживания и проверки информации о маршрутизации

Маршрутизатор узнает об удаленных сетях от соседних маршрутизаторов или от сетевого администратора. Затем маршрутизатор строит таблицу маршрутизации, которая описывает, как найти удаленные сети.

  • Циклические маршруты.
  • Для подавления нестабильностей RIP должен использовать малое значение максимально возможного числа шагов (не более 16).
  • Медленное распространение маршрутной информации по сети создает проблемы при динамичном изменении маршрутной ситуации (система не поспевает за изменениями). Малое предельное значение метрики улучшает сходимость, но не устраняет проблему.

Основное преимущество алгоритма вектора расстояний - его простота. Действительно, в процессе работы маршрутизатор общается только с соседями, периодически обмениваясь с ними копиями своих таблиц маршрутизации. Получив информацию о возможных маршрутах от всех соседних узлов, маршрутизатор выбирает путь с наименьшей стоимостью и вносит его в свою таблицу.

  • RIP не работает с адресами субсетей. Если нормальный 16-бит идентификатор ЭВМ класса B не равен 0, RIP не может определить является ли не нулевая часть cубсетевым ID, или полным IP-адресом.
  • RIP требует много времени для восстановления связи после сбоя в маршрутизаторе (минуты). В процессе установления режима возможны циклы.
  • Число шагов важный, но не единственный параметр маршрута, да и 15 шагов не предел для современных сетей.

2.2.3 Обзор протокола OSPF

Протокол OSPF (Open Shortest Path First — выбор кратчайшего пути первым) является последним (он принят в 1991 году) протоколом, основанном на алгоритме состояния связей, и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.


Рисунок 4. Граф сети, построенный протоколом OSPF

При работе протокола OSPF конвергенция таблиц маршрутизации к новому согласованному состоянию происходит достаточно быстро, быстрее, чем в сетях, в которых работают дистанционно-векторные протоколы. Это время состоит из времени распространения по сети объявления LSA и времени работы алгоритма Дейкстры, который обладает быстрой сходимостью.

Однако вычислительная сложность этого алгоритма предъявляет высокие требования к мощности процессоров маршрутизаторов. Когда состояние сети не меняется, то объявления о связях не генерируются, топологические базы данных и таблицы маршрутизации не корректируются, что экономит пропускную способность сети и вычислительные ресурсы маршрутизаторов.

Однако у этого правила есть исключение: каждые 30 минут маршрутизаторы OSPF обмениваются всеми записями базы данных топологической информации, то есть синхронизируют их для более надежной работы сети. Так как этот период достаточно большой, то данное исключение незначительно сказывается на загрузке сети.

Кроме того, известные положительные свойства протокола OSPF: устойчивое поведение при изменениях топологии сети, меньшие объемы служебного трафика по сравнению с протоколом RIP, а также возможность деления сети на области — полностью наследуются протоколом MOSPF, что делает его весьма привлекательным для применения в больших сетях.

2.3 Выбор и обоснование решений по техническому и программному обеспечению сети

В качестве сетевой операционной системы выбрана Windows Server 2016.

Администрирование сетевых служб связано с локальной сетью, приложениями, информационной безопасностью, доступам к данным.

Прежде чем вникать в подробности и особенности динамической маршрутизации обратим внимание на двухуровневую модель, в рамках которой рассматривается все множество машин Internet. В рамках этой модели весь Internet рассматривают как множество автономных систем (autonomous system - AS). Автономная система - это множество компьютеров, которые образуют довольно плотное сообщество, где существует множество маршрутов между двумя компьютерами, принадлежащими этому сообществу. В рамках этого сообщества можно говорить об оптимизации маршрутов с целью достижения максимальной скорости передачи информации. В противоположность этому плотному конгломерату, автономные системы связаны между собой не так тесно как компьютеры внутри автономной системы. При этом и выбор маршрута из одной автономной системы может основываться не на скорости обмена информацией, а надежности, безотказности и т.п.

Схема взаимодействия автономных систем


Сама идеология автономных систем возникла в тот период, когда ARPANET представляла иерархическую систему. В то время было ядро системы, к которому подключались внешние автономные системы. Информация из одной автономной системы в другую могла попасть только через маршрутизаторы ядра. Такая структура до сих пор сохраняется в MILNET.

На рисунке 4.1 автономные системы связаны только одной линией связи, что больше соответствует тому, как российский сектор подключен к Internet. В классических публикациях по Internet взаимодействие автономных частей чаще обозначают пересекающимися кругами, подчеркивая тот факт, что маршрутов из одной автономной системы в другую может быть несколько.

Внешние протоколы служат для обмена информацией о маршрутах между автономными системами.

Внутренние протоколы служат для обмена информацией о маршрутах внутри автономной системы.

В реальной практике построения локальных сетей, корпоративных сетей и их подключения к провайдерам нужно знать, главным образом, только внутренние протоколы динамической маршрутизации. Внешние протоколы динамической маршрутизации необходимы только тогда, когда следует построить закрытую большую систему, которая с внешним миром будет соединена только небольшим числом защищенных каналов данных.

К внешним протоколам относятся Exterior Gateway Protocol (EGP) и .

EGP предназначен для анонсирования сетей, которые доступны для автономных систем за пределами данной автономной системы. По данному протоколу шлюз одной AS передает шлюзу другой AS информацию о сетях из которых состоит его AS. EGP не используется для оптимизации маршрутов. Считается, что этим должны заниматься протоколы внутренней маршрутизации.

К внутренним протоколам относятся протоколы Routing Information Protocol (RIP), HELLO, Intermediate System to Intermediate System (ISIS), Shortest Path First (SPF) и Open Shortest Path First (OSPF).

Другая идея, которая призвана решить проблемы RIP, - это учет не числа hop'ов, а учет времени отклика. На этом принципе построен, например, протокол OSPF. Кроме этого OSPF реализует еще и идею лавинной маршрутизации. В RIP каждый маршрутизатор обменивается информацией только с соседями. В результате, информации о потере маршрута в сети, отстоящей на несколько hop'ов от локальной сети, будет получена с опозданием. Лавинная маршрутизация позволяет решить эту проблему за счет оповещения всех известных шлюзов об изменениях локального участка сети.

К сожалению, многовариантную маршрутизацию поддерживает не очень много систем. Различные клоны Unix и NT, главным образом ориентированы на протокол RIP. Достаточно посмотреть на программное обеспечение динамической маршрутизации, чтобы убедится в этом. Программа routed поддерживает только RIP, программа gated поддерживает RIP, HELLO, OSPF, EGP и BGP, в Windows NT поддерживается только RIP.

Этот протокол маршрутизации предназначен для сравнительно небольших и относительно однородных сетей (алгоритм Белмана-Форда). Протокол разработан в университете Калифорнии (Беркли), базируется на разработках фирмы Ксерокс и реализует те же принципы, что и программа маршрутизации routed, используемая в ОC UNIX (4BSD). Маршрут здесь характеризуется вектором расстояния до места назначения. Предполагается, что каждый маршрутизатор является отправной точкой нескольких маршрутов до сетей, с которыми он связан. Описания этих маршрутов хранится в специальной таблице, называемой маршрутной. Таблица маршрутизации RIP содержит по записи на каждую обслуживаемую машину (на каждый маршрут). Запись должна включать в себя:

IP-адрес места назначения. Метрика маршрута (от 1 до 15; число шагов до места назначения). IP-адрес ближайшего маршрутизатора (Gateway) по пути к месту назначения. Таймеры маршрута.

Циклические маршруты. Так как в протоколе нет механизмов выявления замкнутых маршрутов, необходимо либо слепо верить партнерам, либо принимать меры для блокировки такой возможности.

Для подавления нестабильностей RIP должен использовать малое значение максимально возможного числа шагов (

Команда Значение
1 Запрос на получение частичной или полной маршрутной информации;
2 Отклик, содержащий информацию о расстояниях из маршрутной таблицы отправителя;
3 Включение режима трассировки (устарело);
4 Выключение режима трассировки (устарело);
5-6 Зарезервированы для внутренних целей SUN Microsystem.

Инициализация, определение всех "живых" интерфейсов путем посылки запросов, получение таблиц маршрутизации от других маршрутизаторов. Часто используются широковещательные запросы.

Получен запрос. В зависимости от типа запроса высылается адресату полная таблица маршрутизации, или проводится индивидуальная обработка.

Получен отклик. Проводится коррекция таблицы маршрутизации (удаление, исправление, добавление).


Регулярные коррекции. Каждые 30 секунд вся или часть таблицы маршрутизации посылается всем соседним маршрутизаторам. Могут посылаться и специальные запросы при локальном изменении таблицы. RIP достаточно простой протокол, но, к сожалению не лишенный недостатков:

RIP не работает с адресами субсетей. Если нормальный 16-бит идентификатор ЭВМ класса B не равен 0, RIP не может определить является ли не нулевая часть cубсетевым ID, или полным IP-адресом.

RIP требует много времени для восстановления связи после сбоя в маршрутизаторе (минуты). В процессе установления режима возможны циклы.

Число шагов важный, но не единственный параметр маршрута, да и 15 шагов не предел для современных сетей.


Протокол OSPF (Open Shortest Pass First, RFC-1245-48, RFC-1583-1587, алгоритмы предложены Дикстрой) является альтернативой RIP в качестве внутреннего протокола маршрутизации. OSPF представляет собой протокол состояния маршрута (в качестве метрики используется - коэффициент качества обслуживания). Каждый маршрутизатор обладает полной информацией о состоянии всех интерфейсов всех маршрутизаторов (переключателей) автономной системы. Протокол OSPF реализован в демоне маршрутизации gated, который поддерживает также RIP и внешний протокол маршрутизации BGP.

Автономная система может быть разделена на несколько областей, куда могут входить как отдельные ЭВМ, так и целые сети. В этом случае внутренние маршрутизаторы области могут и не иметь информации о топологии остальной части AS. Сеть обычно имеет выделенный (designated) маршрутизатор, который является источником маршрутной информации для остальных маршрутизаторов AS. Каждый маршрутизатор самостоятельно решает задачу оптимизации маршрутов. Если к месту назначения ведут два или более эквивалентных маршрута, информационный поток будет поделен между ними поровну. Переходные процессы в OSPF завершаются быстрее, чем в RIP. В процессе выбора оптимального маршрута анализируется ориентированный граф сети. Ниже описан алгоритм Дикстры по выбору оптимального пути. На иллюстративном рисунке 4.7 приведена схема узлов (A-J) со значениями метрики для каждого из отрезков пути. Анализ графа начинается с узла A (Старт). Пути с наименьшим суммарным значением метрики считаются наилучшими.

Именно они оказываются выбранными в результате рассмотрения графа (“кратчайшие пути“).

Ниже дается формальное описание алгоритма. Сначала вводим некоторые определения.

Пусть D(v) равно сумме весов связей для данного пути.
Пусть C(i,j) равно весу связи между узлами с номерами i и j.

Далее следует последовательность шагов, реализующих алгоритм.

Устанавливаем множество узлов N = .

Для каждого узла v не из множества N устанавливаем D(v)= c(1,v).

Для каждого шага находим узел w не из множества N, для которого D(w) минимально, и добавляем узел w в множество N.

Актуализируем D(v) для всех узлов не из множества N
D(v)=min.

Повторяем шаги 2-4, пока все узлы не окажутся в множестве N.

Топология маршрутов для узла A приведена на нижней части

рисунке 4.7 В скобках записаны числа, характеризующие метрику отобранного маршрута согласно критерию пункта 3.

Иллюстрация работы алгоритма Дикстры

Таблица 4.2 - Реализация алгоритма

Таблица 4.2 может иметь совершенно иное содержимое для какого-то другого вида сервиса, выбранные пути при этом могут иметь другую топологию. Качество сервиса (QOS) может характеризоваться следующими параметрами:

пропускной способностью канала;

задержкой (время распространения пакета);

числом дейтограмм, стоящих в очереди для передачи;

числом шагов до цели;

возможностями промежуточных связей (например, многовариантность достижения адресата).

Таблица 4.3 - Коды поля тип


Поле сетевая маска соответствует маске субсети данного интерфейса. Например, если интерфейс принадлежит сети класса B и третий байт служит для выделения нужной субсети, то сетевая маска будет иметь вид 0xFFFFFF00.



Поля, начиная с тип канала, повторяются для каждого описания канала. Так как размер базы

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Читайте также: