Прохождение звука через границу сред разной плотности реферат

Обновлено: 30.06.2024

Отражение волн на границе двух сред при нормальном падении

Предположим, что имеются две среды I и II (рис. ), между которыми существует плоская граница раздела, нормальная к оси х и проходящая через начало координат. Удельное акустическое сопротивление первой среды пусть будет R 1 = р 1 с 1

а второй — R 2 = р 2 с 2 . Если из первой среды нормально к границе раздела падает на эту границу плоская волна, то часть энергии проходит во вторую среду также в виде плоской волны, а часть отражается от границы раздела и идет обратно в первую среду. Введем обозначения:

для первой среды:

Эти амплитуды могут быть комплексными, т. е. иметь различные фазы.
Можно написать следующие выражения для скорости частиц и звукового давления.

На границе двух сред (х = 0) значения скорости и давления должны непрерывно переходить из одной среды в другую, т. е. ни скорость, ни давление в любой момент времени не должны испытывать скачка на границе.
Возникновение скачка скорости означало бы также и появление скачка смещения, т. е. разрыв сплошности на границе сред, что следует считать невозможным. Наличие постоянно сохраняющегося скачка давления также физически невозможно, так как давление в двух бесконечно близких слоях двух сред должно мгновенно выравниваться. Скачок давления мог бы существовать, если бы на границе был расположен слой источников звука, а скачок скоростей — если бы на границе был слой диполей. Поскольку предполагать наличие на границе подобных источников нет никаких оснований, мы вправе считать, что давление и скорость частиц меняются при переходе границы непрерывно.
Таким образом, на границе будем иметь:

Между давлением и скоростью частиц существует известное соотношение причем знак плюс соответствует прямой волне, а знак минус — обратной. Для первой среды впадающей волне а в отраженной волне для второй среды

Подставляя эти выражения в граничное условие для скоростей и давлений, получим два уравнения:

Из этих уравнений можно определить отношения скоростей:

Для отношения давлений получим:

где отношение с 1 / с 2 — есть показатель преломления. В случае падения под косым углом при переходе из одной среды в другую, при соблюдении условия R 2 = R 1 (но р 2 ≠ р 1 ) будет происходить частичное отражение.
Коэффициентом проникновения энергии из одной среды в другую следует назвать отношение интенсивности проходящей волны к интенсивности падающей волны:

Так как формула (3, 5) симметрична относительно R 1 и R 2 , то коэффициент проникновения энергии будет одинаков независимо от того, идет ли волна из первой среды во вторую или из второй в первую. Например, при переходе из воды в воздух (или наоборот) т = 0,0011, т. е. 0,9989 всей падающей энергии отражается обратно от границы. Для воды и стали т = 0,013. Для воды и некоторых сортов дерева т ≈ 1, т. е. почти весь звук проникает из воды в дерево.

При отражении на границе двух слоев воздуха с разностью температур ∆θ легко найти, что . Если — происходит почти полное проникновение и отражается лишь звуковой энергии. Легко также найти отражение на границе сухого и насыщенного паром воздуха (при той же температуре), для которого плотность примерно на 1/220 меньше, а скорость звука на 1/440 больше. Отраженная звуковая энергия составит от падающей.
Обратим внимание, что даже при очень малом т, например, при переходе из воздуха в воду, звуковое давление в воде на основании уравнения (3,4) будет практически в два раза больше, чем в падающей из воздуха волне. Полное давление в воздухе и в воде на границе почти точно равно удвоенному давлению в падающей волне. Если в воздухе и в воде применяется один и тот же приемник давления (например, гидрофон), то в воде звук, приходящий из воздуха, будет воспринят как столь же сильный, несмотря на то что в воду проникает ничтожная часть звуковой энергии. При использовании приемника скорости, согласно соотношению (3,3), получим во второй среде очень малые величины.
Пусть отражение происходит от абсолютно твердой поверхности R 2 = ∞. В отраженной волне фаза скорости противоположна фазе скорости для падающей волны, а амплитуда ее равна амплитуде падающей волны, поэтому сумма скоростей на границе равна нулю:

Так как фаза давления не меняется, то на границе давление удваивается:

Таким образом, на твердой стенке при отражении будет узел стоячей волны и удвоенная амплитуда звукового давления. Этот случай имеет место практически только в том случае, если реализованы условия образования плоской отраженной волны, а именно, когда размеры плоской отражающей поверхности значительно больше длины волны, и дифракционные явления на краях не меняют существенно общую картину отражения. Если, наоборот, длина волны сильно превышает размеры отражающей поверхности, то благодаря дифракции звук огибает ее, плоская отраженная волна не возникает и связанного с ней увеличения давления на границе не происходит. По этой причине микрофон с жесткой диафрагмой (конденсаторный) при очень высоких частотах, когда диаметр диафрагмы микрофона гораздо больше длины волны, показывает в два раза большее давление, чем в бегущей волне; наоборот, при достаточно низких частотах он покажет истинное звуковое давление. Такого рода поправки необходимо делать при акустических измерениях.

Отражение от абсолютно твердой плоской поверхности при наклонном падении звука.

Пусть волна, падающая слева (рис) на абсолютно твердую поверхность под углом θ, за некоторый промежуток времени распространяется на отрезок АО = S.

Длину отрезка можно выразить через координаты х,у точки А:

Величина S играет теперь в уравнении волны роль фазового пути, которую раньше, например в формуле (3,1), играла координата х, причем за положительное направление S принято направление распространения волны. Для падающей волны потенциал скоростей будет:

Аналогично для отраженной волны отрезок ОА’ по ходу волны равен S’ = — х соs θ’ —у sin θ’, где θ’ — угол отражения, и потенциал скорости будет равен:

Сумма Ф 1 и Ф’ 1 двух решений (3,7) и (3,8) должна удовлетворять линейному дифференциальному уравнению волны, что следует из принципа суперпозиции. На границе (при х = 0) должно быть соблюдено при любых у равенство нулю нормальной компоненты скорости:

Этому условию мы удовлетворим, приняв

Следовательно, амплитуда отраженной волны равна амплитуде падающей и угол отражения равен углу падения. Итак, для потенциала скоростей получим:

В этом выражении множитель характеризует волну, бегущую вдоль оси у в отрицательном направлении (т. е. вниз — на рис). Скорость этого следа волны найдем из соотношения с’= w / (k sinθ), так как волновое число в данном случае равно k sinθ. Следовательно,

Пусть границей раздела двух сред является плоскость Х = 0 (на ниж. рис.) и на эту границу раздела падает под углом θ 1 плоская волна.

В первой среде возникает плоская, отраженная под углом θ 1 волна; во второй среде возникает преломленная под углом θ 2 волна. Удельное акустическое сопротивление первой среды обозначим через R 1 =p 1 c 1 , второй — R 2 =p 2 c 2 . Напишем отдельно волновые уравнения для каждой среды:

Давления и нормальные компоненты скорости на границе раздела с обеих сторон должны быть одинаковы. Поэтому граничные условия могут быть записаны так:

Потенциалы скоростей в I и II средах можно представить в виде:

Легко показать, что b 1 = b 2 = b. Действительно, скорости движения следа волны вдоль оси у в I и II средах, равные соответственно w / b 1 и w / b 2 , должны быть равны. В самом деле,
если вдоль границы с левой стороны движется максимум или минимум давления, то в силу непрерывности давления с правой стороны, параллельно ему, также должен двигаться максимум или минимум давления, равный по величине и с той же скоростью. Таким образом,

Мы получили закон Снеллиуса, который соблюдается не только для звука, но и для любых волновых процессов. Подставляя в граничные условия (3, 13) выражения (3, 14), получим:

Из этой системы уравнений можно определить отношения амплитуд:

Из этих формул при одинаковых плотностях двух сред (р 1 = р 2 ) после некоторых преобразований найдем:

Формулы (3,18) и (3,19) совпадают с формулами Френеля для коэффициента отражения света, поляризованного соответственно параллельно или перпендикулярно плоскости падения .
Подставляя а 1 и а 2 в уравнение (3,17) и используя закон преломления, получим:

Коэффициент отражения и коэффициент проникновения волны давления найдем, учитывая, что р = jwpФ:

Принимая во внимание, что на основании (3,14) амплитуды потенциалов скоростей связаны с соответствующими амплитудами Q скорости частиц соотношениями определим коэффициент отражения r q и коэффициент проникновения t q волны скорости частиц:

Из формулы (3,17) следует, что отраженной волны не будет при условии:

Учитывая закон преломления, получим:

Если то ctg θ 1 будет положителен и может быть найден некоторый угол θ 1 в пределах от 0 до 90°, при котором отсутствует отражение звука на границе двух сред. Например, для этилового спирта р 1 = 0,79; и и для хлороформа р2 = 1,49 и Для этих сред из уравнения (3,21) следует, что

Если скорость звука во второй среде гораздо меньше, чем в первой (с1 2 ≈ 0 и θ 2 ≈ 0. Таким образом, вторая среда может пропускать волны только в направлении нормали к границе раздела. Таким свойством обладает, например, модель, состоящая из тонких капилляров, перпендикулярных к границе раздела (модель Рэлея). При этих условиях

Вообще говоря, в этих случаях удельное сопротивление второй среды может быть комплексным и характеризоваться некоторым нормальным импедансом Z 2 (таким свойством обладают, например, многие пористые звукопоглощающие материалы применяемые в архитектурной акустике). Если среду, на которую падает звук, можно характеризовать нормальным импедансом Z 2 то коэффициент отражения

Полное внутреннее отражение звука на плоской границе двух сред.

Из закона преломления (3,16) следует, что sinθ 2 = ( c 2 / c 1 ) sinθ 2 если с 1 > с 2 и sinθ 1 > ( c 1 / c 2 ), то sinθ 2 > 1 и будет мнимым. Величина а 2 = k 2 cosθ 2 будет также мнимой и ее можно представить в виде:

Нетрудно показать, что угол преломления в данном случае является чисто мнимой величиной jθ’ 2 , определяемой из соотношения Относительная амплитуда отраженной волны получается на уравнения (3,17):

Так как числитель и знаменатель — сопряженные комплекс-
ные величины, то модуль А’ 1 / А 1 равен единице, т. е. амплитуда
отраженной волны равна амплитуде падающей (|r p | = 1) и происходит полное внутреннее отражение волны. Множитель указывает, что отраженная волна сдвинута по фазе на угол 2ε по отношению к падающей.

Во второй среде

Суммарная волна в первой среде, согласно уравнению (3,14), имеет вид:

Для волны во второй среде

Мы должны взять только отрицательный знак показателей при ах, так как при положительном знаке мы имели бы во второй среде безграничное нарастание амплитуды, что не имеет физического смысла.
Уравнение (3.23) представляет волну, бегущую вдоль отрицательной оси у, т. е. вдоль границы раздела, причем амплитуда ее убывает вдоль волновых фронтов по мере удаления от границы по закону . Такие волны можно назвать волнами, модулированными вдоль фронта.
Скорость убывания амплитуды волны определяется величиной а, которую мы найдем, учитывая связь между а 1 и а 2 вытекающую из волновых уравнений (3,11) и (3,12). Подставляя в них величины Ф 1 и Ф 2 из равенств (3,14), получим:

Так как b 1 = b 2 = b, то из этих соотношений следует, что

Подставляя значения а 1 и b из соотношения (3,15), найдем:

Отсюда видно, что при sin θ > (c 1 / c 2 ) получим для а 2 мнимое значение, модуль которого

При критическом угле, т. е. при sin θ = (c 1 / c 2 ), а=0. Следовательно, амплитуда вдоль фронта волны (во второй среде) затухать не будет, а возникает плоская волна, бегущая параллельно границе. Если же sin θ > (c 1 / c 2 ) т. е. θ 1 больше критического угла полного внутреннего отражения, то a > 0 и амплитуда вдоль фронта волны будет быстро уменьшаться.

При θ 1 = π/2 получается наибольшее значение а:

Когда аrcsin ( c 1 /c 2 ) 1 max .

Для случая падения звука из воздуха в воду

На длине λ / 2π волна во II среде ослабнет уже в е раз. На рис. представлен снимок ультразвуковых волн на границе раздела

вазелинового масла (сверху) и насыщенного раствора NаСl (снизу). Граница раздела точно соответствует нижнему краю темной горизонтальной полосы (полоса мениска). Во второй среде, поскольку θ1 > 55° (критический угол), ясно видны фронты волн, идущих параллельно границе раздела и постепенно ослабевающих по мере углубления во вторую среду.
Из уравнения (3,23) получим для звукового давления

и для компонент скоростей частиц по осям х и у

Таким образом, скорости частиц по осям х и у не совпадают по фазе: одна из них опережает другую на 90°. Это значит, что суммарное движение частиц во II среде происходит по эллипсам, лежащим в плоскости падения звукового луча (плоскость ху).

Прохождение звука через плоский слой

При косом падении звука (под углом θ 1 из среды I (рис.) с постоянными р 1 и c 1 на слой жидкости или газа с постоянными р 2 и с 2 (среда II) и толщиной d, за которым лежит снова бесконечная среда I, отраженные волны возникают как на первой, так и на второй границе; проходящая волна будет только одна — прямая.

В соответствии с этим намечается следующая схема решения задачи. Потенциал скоростей в первой среде (слева от слоя) выразится суммой двух членов (см. первое уравнение (3,14)), а во второй среде — аналогичной формулой, в которую вместо a 1 и b 1 , войдут величины а 2 = k 2 соs θ 2 и b 2 = k 2 соs θ 2 . На первой границе (х = 0) и на второй (х =d) должны выполняться условия непрерывности звукового давления и скорости частиц, которые дают 4 уравнения для определения относительных потенциалов скоростей отраженной волны A’ / A, проходящей через слой A 2 / A 1 , и двух (прямой и отраженной) волн во второй среде. Решая эти уравнения, можно найти коэффициент отражения (r p ) и проникновения (t p ) волны давления (через слой):

При δ=1, что соответствует условию (3,20), мы получим при некотором угле падения полное проникновение волн через слой без всякого отражения. Кроме того, полное проникновение будет наблюдаться при соблюдении условия сtga 2 d=∞, из которого следует:

Для очень тонкого слоя (или для длинных волн) при а 2 d 2 и b отражение от тонкого слоя прямо пропорционально частоте. Анализ выражения (3,24) показывает, что при углах падения θ 1 больших критического (а2 мнимое), уже не происходит полное внутреннее отражение на слое, как это имеет место на границе полупространства. Волны во второй среде, бегущие параллельно передней границе слоя, на задней границе будут иметь известную амплитуду, величина которой при достаточно малых толщинах слоя d или при углах падения, близких к критическому, может быть достаточно велика. Таким образом, вдоль второй (задней) границы будут двигаться волны сжатия и разрежения, что неизбежно вызовет возмущения в среде за слоем и приведет к возникновению проходящей волны во второй среде. Нетрудно показать, что в очень тонком слое почти вся энергия будет проходить через него даже при углах, больших критического. При углах падения, близких к 90°, волны во второй среде очень сильно ослабевают уже при проникновении на глубину одной волны. Отсюда ясно, что при скользящем падении на слой, толщина которого больше λ, получится очень малое проникновение звука через слой, т. е. почти полное отражение.

При падении под углом 0° формулы (3,24) и (3,25) примут вид:

При очень тонком слое или при очень низких частотах (к 2 d 2 > R 1 )

где М 2 = р 2 d —масса слоя на 1 см². Отношение энергии падающей волны к энергии волны прошедшей (коэффициент звукоизоляции слоя) будет приближенно равно:

Можно представить себе следующую электроакустическую аналогию для данного случая. Напряжение А 1 включается в цепь, содержащую последовательное соединение индуктивного сопротивления wM 2 и активного сопротивления 2R 1 . Сила тока (скорость) в цепи будет равна а падение напряжения на сопротивлении 2R 1 будет Отношение полной мощности цепи к мощности, расходуемой на сопротивлении 2R 1 (коэффициент звукоизоляции), равно (A 1 / A 2 )² , что приводит к формуле (3,27).
При нормальном падении мы вправе применить формулы (3, 26) и (3,27) к твердой стенке, например к некоторой монолитной перегородке. При прохождении звука через перегородки, находящиеся в воздухе, всегда и потому


Для воздуха р 1 c 1 = 41 и η≈1/170 M 2 ²f². Звукоизоляция перегородки в децибелах будет равна:

Для частот, меньших 2000 гц, первый член будет значительно меньше единицы η ≈ 1, т. е. звукоизоляция практически отсутствует; вся энергия проходит через железную пластину. При частоте
f ≈ 6000 гц, η ≈ 2, а при частоте f ≈ 125 000 гц (k 2 d= π /2) звукоизоляция достигает максимального значения, равного η ≈179 (22,5 дб). При f ≈ 250000 гц (k2d = π, d = λ 2 / 2) звукоизоляция снова равна единице. Вообще максимумы η будут получаться при f ≈ 125000 • (2n + 1 ) гц, а минимумы, равные единице, при f ≈ 125000 • (2n)гц (рис.).
Для слоя с акустическим сопротивлением R 2 , значительно меньшим, чем R 1 , например воздуха или губчатой резины (R 2 ≈ 40), между двумя слоями жидкости или твердого тела, из формулы (3, 26) получим коэффициент звукоизоляции:

Для воздушной прослойки в воде R 1 / 2R 2 = 1,83 * 10³. При очень
низких частотах или очень тонких слоях, когда k 2 d 2 / R 1 ) , первый член будет мал по сравнению со вторым, близким к единице и η≈1. С увеличением частоты η резко возрастает и при условии k 2 d = π / 2 , достигнет величины (1,83-10³)² (около 65 дб), затем начнет уменьшаться и при k 2 d = π , (d = λ 2 / 2) будет равен единице. Ход изменения η аналогичен изображенному на рис. . При низких частотах, когда k 2 d 1 — акустическое сопротивление среды за промежуточным слоем). Отношение токов (скоростей) в этих ветвяхбудет равно Абсолютная вели-чина отношения полного тока |q 1 |, протекающего через параллельное соединение R 2 / 2 и z v к току будет равна

Величина скорости |q v + q 2 | определяется давлением на входе, которое пропорционально амплитуде потенциала скоростей (А 1 ) в падающей волне, а величина |q 2 | пропорциональна амплитуде (A 2 ) волны, проходящей за слой. Коэффициент звукоизоляции, равный (A 1 / A 2 )² , определится тогда из выражения (3,28).

Прохождение звука через слой (среда II) между двумя различными средами (I и III)

Вывод формул для этого случая проводится по ранее изложенному методу. Для нормального падения звука (θ1 = 0) коэффициент звукоизоляции

где R 1 = р 1 c 1 , R 2 = p 2 c 2 и R 3 = p 3 c 3 — акустические сопротивления сред I, II и III. Эта формула может быть применена и для твердых тел. Когда k 2 d 2 > d, а также k 2 d≈πn, т. е. sin k 2 d≈0, получим:

Это соотношение совпадает с равенством (3,5) для случая прохождения через границу двух сред. Таким образом, для очень тонких слоев или очень низких частот, а также при условии звукоизоляция не зависит от свойств промежуточного слоя. Если sin k 2 d≠0, то присутствие промежуточного слоя увеличивает звукоизоляцию, когда R 2 лежит по величине между R 1 и R 3 , если этого нет, то наличие слоя уменьшает звукоизоляцию. Если sink 2 d = 1, т.е.

Приравнивая эту величину значению получим V 1 / V 2 ≈ 1 / 2.55 что соответствует 27% содержания пузырьков воздуха в общем объеме.

Мир, окружающий нас, можно назвать миром звуков. Звучат вокруг нас голоса людей и музыка, шум ветра и щебет птиц, рокот моторов и шелест листвы. С помощью речи люди общаются, с помощью слуха получают информацию об окружающем мире. Не меньшее значение звук имеет для животных. С точки зрения физики, звук - это механические колебания, которые распро­страняются в упругой среде: воздухе, воде, твёрдом теле и т.п.

Способность человека воспринимать упругие колебания, слу­шать их отразились в названии учения о звуке - акустика (от греческого akustikos - слуховой, слышимый). Вообще человече­ское ухо слышит звук только тогда, когда на слуховой аппарат уха действуют механические колебания с частотой не ниже 16 Гц но не выше 20 000 Гц. Колебания же с более низкими или с более высокими частотами для человеческого уха неслышимы.

Вопросы, которыми занимается акустика, очень разнооб­разны. Некоторые из них связаны со свойствами и особенностями нашего слуха.

Предметом физиологической акустики и является сам орган слуха, его устройство и действие.

Архитектурная акустика изучает распространение звука в помещениях, влияние на звук размеров и формы помещений, свойств материалов, покрывающих стены и потолки, и т.д. При этом опять имеется в виду слуховое восприятие звука.

Музыкальная акустика исследует музыкальные инструменты и условия их наилучшего звучания.

Физическая акустика занимается изучением самих звуковых колебаний, а за последнее время охватила и колебания, лежащие за пределами слышимости (ультраакустика). Она широко исполь­зует разнообразные методы для превращения механических коле­баний в электрические и обратно (электроакустика).

Применительно к звуковым колебаниям в число задач физиче­ской акустики входит и выяснение физических явлений, обуслов­ливающих те или иные качества звука, различаемые на слух.

Историческая справка

Звуки начали изучать ещё в далёкой древности. Первые на­блюдения по акустики были проведены в VI веке до нашей эры. Пифагор установил связь между высотой тона и длиной струны или трубы издавающей звук.

В IV в. до н.э. Аристотель первый правильно представил, как распространяется звук в воздухе. Он сказал, что звучащее тело вызывает сжатие и разрежение воздуха и объяснил эхо отражением звука от препятствий.

В XV веке Леонардо да Винчи сформулировал принцип незави­симости звуковых волн от различных источников.

В 1660 году в опытах Роберта Бойля было доказано, что воздух является проводником звука (в вакууме звук не распро­страняется).

В 1700 - 1707 гг. вышли вышли мемуары Жозефа Савёра по акустике, опубликованные Парижской Академией наук. В этих мемуарах Савёр рассматривает явление, хорошо известное конст­рукторам органов: если две трубы органа издают одновременно два звука, лишь немного отличающиеся по высоте, то слышны периодические усиления звука, подобные барабанной дроби. Савёр объяснил это явление периодическим совпадением колеба­ний обоих звуков. Если, например, один из двух звуков соот­ветствует 32 колебаниям в секунду, а другой - 40 колебаниям , то конец четвёртого колебания первого звука совпадает с концом пятого колебания второго звука и, таким образом проис­ходит усиление звука. От органных труб Савёр перешёл к экcпи­рементальному исследованию колебаний струны, наблюдая узлы и пучности колебаний (эти названия, существующие и до сих пор в науке, введены им), а также заметил, что при возбуждении струны наряду с основной нотой звучат и другие ноты, длина волны которых составляет 1/2, 1/3, 1/4, . от основной. Он назвал эти ноты высшими гармоническими тонами, и этому назва­нию суждено было остаться в науке. Наконец, Савёр первый пытался определить границу восприятия колебаний как звуков: для низких звуков он указал границу в 25 колебаний в секунду, а для высоких - 12 800.

За тем, Ньютон, основываясь на этих экспериментальных ра­ботах Савёра, дал первый расчет длины волны звука и пришел к выводу, хорошо известному сейчас в физике, что для любой открытой трубы длина волны испускаемого звука равна удвоенной длине трубы. "И в этом состоят главнейшие звуковые явления".

После экспериментальных исследований Савёра к математиче­скому рассмотрению задачи о колеблющейся струне в 1715 г. приступил английский математик Брук Тейлор, положив этим начало математической физике в собственном смысле слова. Ему удалось рассчитать зависимость числа колебаний струны от её длины, веса, натяжения и местного значения ускорения силы тяжести. Эта задача сразу же стала широко известна и при­влекла внимание почти всех математиков XVIII века, вызвав долгую и плодотворную дискуссию. Ею занимались среди прочих Иоганн Бернулли и его сын Даниил Бернулли, Риккати и Даламбер. Последний нашел уравнения в частных производных, определяющие малые колебания однородной струны, и проинтегри­ровал их методом, применяемым и поныне. Но наиболее существенный вклад внес Эйлер. Ему мы обязаны полной теорией колебаний струны, начало построению которой было положено в 1739 году в его труде "Опыт новой теории музыки" и продолжа­лось в многочисленных последующих докладах. В частности, из теории Эйлера вытекало, что скорость распространения волны по струне не зависит от длины волны возбуждаемого звука. Эйлер производил также теоретические исследования колебаний стерж­ней, колец, колоколов, но полученные результаты не совпали с результатами экспериментальной проверки, предприня­той немецким физиком Эрнестом Флоресом Фридрихом Хладни, которого считают отцом экспериментальной акустики. Хладни первым точно исследовал колебания камертона и в 1796 году установил законы колебаний стержней.

Фактическое объяснение эха, явления довольно капризного, также принадлежит Хладни, по крайней мере в существенных частях. Ему мы обязаны и новым экспериментальным определением верхней границы слышимости звука, соответствующей 20 000 колебаний в секунду. Эти измерения, многократно повторяемые физиками до сих пор, весьма субъективны и зависят от интен­сивности и характера звука. Но особенно известны опыты Хладни в 1787 году по исследованию колебаний пластин, при которых образуются красивые "акустические фигуры", носящие названия фигур Хладни и получающиеся, если посыпать колеблющуюся пластинку песком. Эти экспериментальные исследования поста­вили новую задачу математической физики - задачу о колебаниях мембраны.

Хладни начал исследования продольных волн в твердых телах и сопоставил продольные и поперечные колебания стержня при различных способах возбуждения (ударом, трением и др.). Исследование продольных волн были продолжены экспериментально Саваром, а теоретически - Лапласом и Пуассоном.

В XVIII веке было исследовано много других акустических явлений (скорость распространения звука в твердых телах и в газах, резонанс, комбинационные тона и др.). Все они объясня­лись движением частей колеблющегося тела и частиц среды, в которой распространяется звук. Иными словами, все акустиче­ские явления объяснялись как механические процессы.

В 1787 году Хладни, основоположник экспериментальной аку­стики открыл продольные колебания струн, пластин, камертонов и колоколов. Он первый достаточно точно измерил скорость распространения звуковых волн в различных газах. Доказал, что в твёрдых телах звук распространяется не мгновенно, а с конечной скоростью, и в 1796 году определил скорость звуковых волн в твёрдых телах по отношению звука в воздухе. Он изобрёл ряд музыкальных инструментов. В 1802 году вышел труд Эрнеста Хладни "Акустика", где он дал систематическое изложение акустики.

После Хладни французский учёный Жан Батист Био в 1809 году измерял скорость звука в твёрдых телах.

В 1800 году английский учёный Томас Юнг открыл явление интерференции звука и установил принцип суперпозиции волн.

В 1816 году французский физик Пьер Симон Лаплас вывел формулу для скорости звука в газах.

В 1827 году Ж. Колладон и Я. Штурм провели опыт на Женев­ском озере по определению скорости звука в воде, получив значение 1435 м/с.

В 1842 году австрийский физик Христиан Доплер предположил влияние относительного движения на высоту тона (эффект Доп­лера). А в 1845 году Х. Бейс-Баллот экспериментально обнару­жил эффект Допплера для акустических волн.

В 1877 году американский учёный Томас Алва Эдисон изобрёл устройство для записи и воспроизведения звука, который потом сам же в 1889 году усовершенствовал. Изобретённый им способ звукозаписи получил название механического.

В 1880 году французские учёные братья Пьер и Поль Кюри сделали открытие, которое оказалось очень важным для аку­стики. Они обнаружили, что, если кристалл кварца сжать с двух сторон, то на гранях кристалла появляются электрические заряды. Это свойство - пьезоэлектрический эффект - для обна­ружения не слышимого человеком ультразвука. И наоборот, Если к граням кристалла приложить переменное электрическое напря­жение, то он начнёт колебаться, сжимаясь и разжимаясь.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

План.

1. Распространение звука в пространстве и его воздействие на органы слуха человека.

2. Свойства звука и его характеристики.

3. Шум. Музыка. Речь.

4. Законы распространения звука.

5. Инфразвук, ультразвук, гиперзвук.

Предисловие.

Звук – это распространяющиеся в упругих средах – газах, жидкостях и твёрдых телах – механические колебания, воспринимаемые органами слуха.

В первом случае звук действительно представляет собой поток энергии, текущей подобно речному потоку. Такой звук может изменить среду, через которую он проходит, и сам изменяется ею. Во втором случае под звуком мы понимаем те ощущения, которые возникают у слушателя при воздействии звуковой волны через слуховой аппарат на мозг. Слыша звук, человек может испытывать различные чувства. Самые разнообразные эмоции вызывает у нас тот сложный комплекс звуков, который мы называем музыкой. Звуки составляют основу речи, которая служит главным средством общения в человеческом обществе. И, наконец, существует такая форма звука, как шум. Анализ звука с позиций субъективного восприятия более сложен, чем при объективной оценке.

Распространение звука в пространстве и его воздействие на органы слуха человека.

При достижении звуковой волной какой-либо точки пространства, частицы вещества, до того не совершавшие упорядоченных движений, начинают колебаться. Любое движущееся тело, в том числе и колеблющееся, способно совершать работу, то есть оно обладает энергией. Следовательно, распространение звуковой волны сопровождается распространением энергии. Источником этой энергии является колеблющееся тело, которое и излучает в окружающее пространство(вещество) энергию.

Органы слуха человека способны воспринимать колебания с частотой от 15-20 герц до 16-20 тысяч герц. Механические колебания с указанными частотами называются звуковыми или акустическими(акустика – учение о звуке)

Итак, звук – это волновой колебательный процесс, происходящий в упругой среде и вызывающий слуховое ощущение. Однако восприимчивость человека к звукам избирательна, поэтому мы говорим о слышимых и неслышимых звуках. Совокупность тех и других в общем напоминает спектр солнечных лучей, в котором есть видимая область – от красного до фиолетового цвета и две невидимые – инфракрасная и ультрафиолетовая. По аналогии с солнечным спектром звуки, которые не воспринимаются человеческим ухом, называются инфразвуками, ультразвуками и гиперзвуками.

Что же происходит в органах слуха с различными системами и процессами преобразования слуха? Рассмотрим строение слухового аппарата человека.

Наружное ухо состоит из ушной раковины и слухового прохода, соединяющих её с барабанной перепонкой. Основная функция наружного уха – определение направления на источник звука. Слуховой проход представляющий сужающуюся внутрь трубку длиной в два сантиметра, предохраняет внутренние части уха и играет роль резонатора. Слуховой проход заканчивается барабанной перепонкой – мембраной, которая колеблется под действием звуковых волн. Именно здесь, на внешней границе среднего уха, и происходит преобразование объективного звука в субъективный. За барабанной перепонкой расположены три маленьких соединённых между собой косточки: молоточек, наковальня и стремя, с помощью которых колебания передаются внутреннему уху.

Там, в слуховом нерве, они преобразуются в электрические сигналы. Малая полость, где находится молоточек, наковальня и стремя, наполнена воздухом и соединена с полостью рта евстахиевой трубой. Благодаря последней поддерживается одинаковое давление на внутреннюю и внешнюю сторону барабанной перепонки. Обычно евстахиева труба закрыта, а открывается лишь при внезапном изменении давления(при зевании, глотании) для выравнивания его. Если у человека евстахиева труба закрыта, например, в связи с простудным заболеванием, то давление не выравнивается, и человек ощущает боль в ушах.

Далее колебания передаются от барабанной перепонки к овальному окну, которое является началом внутреннего уха.

Сила, действующая на барабанную перепонку, равна произведению давления на площадь барабанной перепонки.

Но настоящие таинства слуха начинаются с овального окна. Звуковые волны распространяются в жидкости (перилимфе), которой наполнена улитка. Этот орган внутреннего уха, по форме напоминающий улитку, имеет длину три сантиметра и по всей длине разделён перегородкой на две части. Звуковые волны доходят до перегородки, огибают её и далее распространяются по направлению почти к тому же месту, где они впервые коснулись перегородки, но уже с другой стороны.

Перегородка улитки состоит из основной мембраны, очень толстой и тугой. Звуковые колебания создают на её поверхности волнообразную рябь, при этом гребни для разной частоты лежат в совершенно определённых участках мембраны.

Механические колебания преобразуются в электрические в специальном органе(органе Корти), размещённом над верхней частью основной мембраны.

Над органом Корти расположена текториальная мембрана. Оба эти органа погружены в жидкость – эндолимфу и отделены от остальной части улитки мембраной Рейснера. Волоски, растущие из органа Корти почти пронизывают текториальную мембрану, и при возникновении звука они соприкасаются – происходит преобразование звука, теперь он закодирован в виде электрических сигналов.

Заметную роль в усилении нашей способности к восприятию звуков играет кожный покров и кости черепа, что обусловлено их хорошей проводимостью. Например, если приложить ухо к рельсу, то движение приближающегося поезда можно обнаружить задолго до его появления.

Свойства звука и его характеристики.

Основные физические характеристики звука – частота и интенсивность колебаний. Они и влияют на слуховое восприятие людей.

Периодом колебания называется время, в течение которого совершается одно полное колебание. Можно привести в пример качающийся маятник, когда он из крайнего левого положения перемещается в крайнее правое и возвращается обратно в исходное положение.

Частота колебаний – это число полных колебаний(периодов)за одну секунду. Эту единицу называют герцем (Гц). Чем больше частота колебаний, тем более высокий звук мы слышим, то есть звук имеет более высокий тон. В соответствии с принятой международной системой единиц, 1000 Гц называется килогерцем (кГц), а 1.000.000 – мегагерцем (МГц).

Распределение по частотам: слышимые звуки – в пределах 15Гц-20кГц, инфразвуки – ниже 15Гц; ультразвуки – в пределах 1,5•104 – 109 Гц; гиперзвуки - в пределах 109 – 1013Гц.

Ухо человека наиболее чувствительно к звукам с частотой от 2000 до 5000 кГц. Наибольшая острота слуха наблюдается в возраст 15-20 лет. С возрастом слух ухудшается.

С периодом и частотой колебаний связано понятие о длине волны. Длиной звуковой волны называется расстояние между двумя последовательными сгущениями или разрежениями среды. На примере волн, распространяющихся на поверхности воды, - это расстояние между двумя гребнями.

Вторая основная характеристика – амплитуда колебаний. Это наибольшее отклонение от положения равновесия при гармонических колебаниях. На примере с маятником – максимальное отклонение его в крайнее левое положение, либо в крайнее правое положение. Амплитуда колебаний определяет интенсивность(силу) звука.

Сила звука, или его интенсивность, определяется количеством акустической энергии, протекающей за одну секунду через площадь в один квадратный сантиметр. Следовательно, интенсивность акустических волн зависит от величины акустического давления, создаваемого источником в среде.

С интенсивностью звука в свою очередь связана громкость. Чем больше интенсивность звука, тем он громче. Однако эти понятия не равнозначны. Громкость – это мера силы слухового ощущения, вызываемого звуком. Звук одинаковой интенсивности может создавать у различных людей неодинаковое по своей громкости слуховое восприятие. Каждый человек обладает своим порогом слышимости.

Звуки очень большой интенсивности человек перестаёт слышать и воспринимает их как ощущение давления и даже боли. Такую силу звука называют порогом болевого ощущения.

Шум. Музыка. Речь.

С точки зрения восприятия органами слуха звуков, их можно разделить в основном на три категории: шум, музыка и речь. Это разные области звуковых явлений, обладающие специфической для человека информацией.

Шум – это бессистемное сочетание большого количества звуков, то есть слияние всех этих звуков в один нестройный голос. Считается, что шум – это категория звуков, которая мешает человеку или раздражает.

Люди выдерживают лишь определённую дозу шума. Но если проходит час – другой, и шум не прекращается, то появляется напряжение, нервозность и даже боль.

Звуком можно убить человека. В средние века существовала даже такая казнь, когда человека сажали под колокол и начинали в него бить. Постепенно колокольный звон убивал человека. Но это было в средние века. В наше время появились сверхзвуковые самолёты. Если такой самолёт пролетит над городом на высоте 1000-1500 метров, то в домах лопнут стёкла.

Музыка – это особое явление в мире звуков, но, в отличие от речи, она не передаёт точных смысловых или лингвистических значений. Эмоциональное насыщение и приятные музыкальные ассоциации начинаются в раннем детстве, когда у ребёнка ещё словесного общения. Ритмы и напевы связывают его с матерью, а пение и танцы являются элементом общения в играх. Роль музыки в жизни человека настолько велика, что в последние годы медицина приписывает ей целебные свойства.

С помощью музыки можно нормализовать биоритмы, обеспечить оптимальный уровень деятельности сердечно-сосудистой системы.

А ведь стоит лишь вспомнить, как солдаты идут в бой. Испокон веков песня была непременным атрибутом солдатского марша.

Законы распространения звука.

К основным законам распространения звука относятся законы его отражения и преломления на границах различных сред, а также дифракция звука и его рассеяние при наличии препятствий и неоднородностей в среде и на границах раздела сред.

На дальность распространения звука оказывает влияние фактор поглощения звука, то есть необратимый переход энергии звуковой волны в другие виды энергии, в частности, в тепло. Важным фактором является также направленность излучения и скорость распространения звука, которая зависит от среды и её специфического состояния.

От источника звука акустические волны распространяются во все стороны. Если звуковая волна проходит через сравнительно небольшое отверстие, то она распространяется во все стороны, а не идёт направленным пучком. Например, уличные звуки, проникающие через открытую форточку в комнату, слышны во всех её точках, а не только против окна.

Характер распространения звуковых волн у препятствия зависит от соотношения между размерами препятствия и длиной волны. Если размеры препятствия малы по сравнению с длиной волны, то волна обтекает это препятствие, распространяясь во все стороны.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального направления, то есть преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды в какую проникает звук. Если скорость звука во второй среде больше, то угол преломления будет больше угла падения, и наоборот.

Встречая на своём пути препятствие, звуковые волны отражаются от него по строго определённому правилу – угол отражения равен углу падения – с этим связано понятие эха. Если звук отражается от нескольких поверхностей, находящихся на разных расстояниях, возникает многократное эхо.

Звук распространяется в виде расходящейся сферической волны, которая заполняет всё больший объём. С увеличением расстояния, колебания частиц среды ослабевают, и звук рассеивается. Известно, что для увеличения дальности передачи звук необходимо концентрировать в заданном направлении. Когда мы хотим, например, чтобы нас услышали, мы прикладываем ладони ко рту или пользуемся рупором.

Большое влияние на дальность распространения звука оказывает дифракция, то есть искривление звуковых лучей. Чем разнороднее среда, тем больше искривляется звуковой луч и, соответственно, тем меньше дальность распространения звука.

Инфразвук, ультразвук, гиперзвук.

Инфразвук – упругие колебания и волны с частотами, лежащими ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвукового диапазона принимают 15-4- Гц; такое определение условно, поскольку при достаточной интенсивности слуховое восприятие возникает и на частотах в единицы Гц, хотя при этом исчезает тональный характер ощущения, и делаются различимыми лишь отдельные циклы колебаний. Нижняя частотная граница инфразвука неопределённа. В настоящее время область его изучения простирается вниз примерно до 0,001 Гц. Таким образом диапазон инфразвуковых частот охватывает около 15-ти октав.

Инфразвуковые волны распространяются в воздушной и водной среде, а также в земной коре( в этом случае их называют сейсмическими и их изучает сейсмология). К инфразвукам относятся также низкочастотные колебания крупногабаритных конструкций, в частности транспортных средств, зданий.

Основная особенность инфразвука, обусловленная его низкой частотой, - это малое поглощение. При распространении в глубоком море и в атмосфере на уровне земли инфразвуковые волны частоты 10-20 Гц затухают на расстоянии 1000 км не более чем на несколько Дб (децибелл). Из-за большой длины волны на инфразвуковых частотах мало и рассеяние звука в естественных средах; заметное рассеяние создают лишь очень крупные объекты – холмы, горы, крупные здания и др.. Вследствие малого поглощения и рассеяния инфразвук может распространяться на очень большие расстояния. Известно, что звуки извержения вулканов, атомных взрывов могут многократно обходить вокруг земного шара, сейсмические волны могут пересекать всю толщу Земли. По этим же причинам инфразвук почти невозможно изолировать, и все звукопоглощающие материалы теряют свою эффективность на инфразвуковых частотах.

Источниками инфразвука, связанными с человеческой деятельностью, являются взрывы, орудийные выстрелы, ударные волны от сверхзвуковых самолётов, акустическое излучение реактивных двигателей и др.. Всякий очень громкий звук несёт с собой, как правило, и инфразвуковую энергию. Характерно, что излучением инфразвука сопровождается процесс речеобразования. Существенный вклад в инфразвуковое загрязнение среду дают транспортные шумы как аэродинамического, так и вибрационного происхождения.

Установлено, что инфразвук с высоким уровнем интенсивности(120Дб и более) оказывает вредное влияние на человеческий организм. Ещё более вредными являются инфразвуковые вибрации, поскольку при их воздействии могут возникать опасные резонансные явления отдельных органов. Мощный инфразвук может вызывать разрушение и повреждение конструкций, оборудования. Вместе с тем инфразвук вследствие большой дальности распространения находит полезное практическое применение при исследовании океанической среды, верхних слоёв атмосферы, при определении места извержения или взрыва. Инфразвуковые волны, излучаемые при подводных извержениях, позволяют предсказать возникновение цунами.

Ультразвук – упругие волны с частотами приблизительно от (1,5 – 2)•104Гц (15 – 20 кГц) до 109 Гц(1ГГц); область частотных волн от 109 до 1012 – 1013 Гц принято называть гиперзвуком. По частоте ультразвук удобно подразделять на 3 диапазона: ультразвук низких частот(1,5•104 – 105Гц), ультразвук средних частот(105 – 107Гц), область высоких частот ультразвука(107 – 109Гц). Каждый из этих диапазонов характеризуется своими специфическими особенностями генерации, приёма, распространения и применения.

По физической природе ультразвук представляет собой упругие волны, и в этом он не отличается от звука, поэтому частотная граница между звуковыми и ультразвуковыми волнами условна. Однако благодаря более высоким частотам и, следовательно, малым длинам волн, имеет место ряд особенностей распространения ультразвука.

Ввиду малой длины волны ультразвука, характер его определяется прежде всего молекулярной структурой среды. Ультразвук в газе, и в частности в воздухе, распространяется с большим затуханием. Жидкости и твёрдые тела представляют собой, как правило, хорошие проводники ультразвука, - затухание в них значительно меньше. Поэтому области использования ультразвука средних и высоких частот относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и в газах применяют ультразвук только низких частот.

Ультразвуковым волнам было найдено больше всего применения во многих областях человеческой деятельности: в промышленности, в медицине, в быту, ультразвук использовали для бурения нефтяных скважин и т.д. От искусственных источников можно получить ультразвук интенсивностью в несколько сотен Вт/см2.

Ультразвуки могут издавать и воспринимать такие животные, как собаки, кошки, дельфины, муравьи, летучие мыши и др. Летучие мыши во время полёта издают короткие звуки высокого тона. В своём полёте они руководствуются отражениями этих звуков от предметов, встречающихся на пути; они могут даже ловить насекомых, руководствуясь только эхом от своей мелкой добычи. Кошки и собаки могут слышать очень высокие свистящие звуки (ультразвуки).

Гиперзвук – это упругие волны с частотами от 109 до 1012 – 1013 Гц. По физической природе гиперзвук ничем не отличается от звуковых и ультразвуковых волн. Благодаря более высоким частотам и, следовательно, меньшей, чем в области ультразвука, длинам волн значительно более существенными становятся взаимодействия гиперзвука с квазичастицами в среде – с электронами проводимости, тепловыми фононами и др.. Гиперзвук также часто представляют как поток квазичастиц – фононов.

Область частот гиперзвука соответствует частотам электромагнитных колебаний дециметрового, сантиметрового и миллиметрового диапазонов(так называемые сверхвысокие частоты).Частота 109 Гц в воздухе при нормальном атмосферном давлении и комнатной температуре должна быть одного порядка с длиной свободного пробега молекул в воздухе при этих же условиях. Однако упругие волны могут распространяться в среде только при условии, что их длина волны заметно больше длины свободного пробега частиц в газах или больше межатомных расстояний в жидкостях и твёрдых телах. Поэтому в газах ( в частности в воздухе) при нормальном атмосферном давлении гиперзвуковые волны распространяться не могут. В жидкостях затухание гиперзвука очень велико и дальность распространения мала. Сравнительно хорошо гиперзвук распространяется в твёрдых телах – монокристаллах, особенно при низкой температуре. Но даже в таких условиях гиперзвук способен пройти расстояние лишь в 1, максимум 15 сантиметров.

Список использованной литературы.

Пусть плоская волна падает нормально на плоскую границу между двумя однородными средами. В первой среде возникает отраженная волна а во второй — прошедшая

Мы увидим сейчас, непосредственно произведя расчет, что отражение и прохождение всегда правильные. Отраженную и прошедшую волны можно записать в виде

где определяются свойствами сред и не зависят от формы волны. Для гармонических волн падающую, отраженную и

прошедшую волны можно записать в виде

Величины коэффициента отражения V и коэффициента прохождения нужно подобрать так, чтобы были удовлетворены граничные условия. Граничных условий два: равенство давлений и равенство скоростей частиц по обе стороны границы. Со стороны первой среды берется суммарное поле падающей и отраженной волны, со стороны второй — поле прошедшей волны.

Условие равенства давлений по обе стороны границы, или, что то же, непрерывность давления при переходе через границу, реально выполняется всегда. Нарушение этого условия вызвало бы бесконечное ускорение границы, так как сколь угодно тонкий слой сколь угодно малой массы, включающий внутри себя границу, находился бы тогда под действием конечной разности давлений по обеим сторонам слоя. В результате разность давлений выравнялась бы мгновенно.

Условие равенства скоростей выражает неразрывность среды на границе: среды не должны отдаляться друг от друга или проникать взаимно друг в друга. Это требование может на практике оказаться нарушенным, например, при кавитации, когда внутри жидкости образуются разрывы (разрывы возникают легче на границе двух сред, чем внутри одной среды). Будем считать, что нарушения граничных условий не происходит. В противном случае нижеследующий расчет неприменим, а отражение и прохождение окажутся неправильными.

Скорости частиц в падающей, отраженной и прошедшей волнах даются формулами

Граничные условия можно написать так:

Подставляя сюда соответственные выражения для давлений и скоростей частиц, найдем, сокращая на

Число граничных условий равно числу возникающих (помимо падающей) волн — отраженной и прошедшей, так что, подбирая соответственным образом оставшиеся пока неопределенными множители всегда можно удовлетворить обоим граничным условиям, причем единственным образом. И это правило общее. В других акустических задачах число граничных условий может оказаться другим. Тогда возникнет и другое число волн, но оно снова равно числу граничных условий.

В исключительных случаях удается удовлетворить граничным условиям меньшим числом волн (например, коэффициент отражения может обратиться в нуль), но никогда не бывает, чтобы при данном числе граничных условий падающая волна вызывала бы возникновение большего числа различных волн: так как равным числом волн уже можно удовлетворять граничным условиям, то получилось бы, что при одной и той же падающей волне и одних и тех же препятствиях могут возникнуть различные волновые поля, а это противоречит принципу причинности.

Система (43.1) имеет единственное решение:

Это — так называемые формулы Френеля (для нормального падения). Мы видим, что коэффициенты отражения и прохождения зависят только от волновых сопротивлений сред, и если эти сопротивления равны для обеих сред, то для нормального падения плоской волны среды акустически неразличимы: отражение от границы отсутствует и волна проходит во вторую среду целиком, как если бы все пространство было заполнено только первой средой. Для такого полного прохождения вовсе не требуется, чтобы плотности обеих сред и скорости звука в них равнялись друг другу в отдельности, т. е. чтобы совпадали механические свойства сред: достаточно равенства произведений плотности на скорость звука.

В вопросах статики более жесткой средой естественно называть среду с меньшей сжимаемостью. Поведение таких сред ближе к поведению абсолютно жесткого тела, чем поведение сред с большей сжимаемостью. В акустике сжимаемость еще не определяет того, ведет ли себя данная среда по отношению к падающей на нее волне как податливая или как жесткая граница. В акустике следует сравнивать волновые сопротивления сред, т. е. отношения плотности к сжимаемости: та из двух сред жестче, для которой это отношение больше. Это обстоятельство снова подчеркивает своеобразие волновых задач сравнительно с задачами механики тел.

Меняя местами найдем коэффициенты отражения и прохождения и для волны, падающей из второй среды на границу с первой: абсолютная величина коэффициента отражения будет та же, что и при падении из первой среды, но знак его изменится на обратный. Коэффициент прохождения изменится в отношении волновых сопротивлений сред. По абсолютной величине коэффициент отражения всегда меньше единицы (что следует и прямо из закона сохранения энергии); он положителен, если волна падает из среды с меньшим волновым сопротивлением, и отрицателен в обратном случае. Коэффициент прохождения всегда положителен и не превосходит 2.

Таким образом, отраженная и прошедшая волны равны:

Давление и скорость на границе (безразлично, с какой стороны от границы) равны:

Отношение давления к скорости частиц на границе оказывается равным волновому сопротивлению второй среды Это можно было предвидеть, и не делая расчета, поскольку во второй среде имеется только бегущая волна.

Рис. 43.1. Зависимость коэффициента отражения от относительного волнового сопротивления сред . Для следует снять с графика значение для и считать коэффициент отражения положительным.

Из формул Френеля видно, что коэффициенты отражения и прохождения зависят не от самих значений волнового сопротивления сред, а от их отношения. Отношение волновых сопротивлений первой и второй среды называют относительным волновым сопротивлением. Формулы Френеля выражаются через относительное волновое сопротивление следующим образом:

На рис. 43.1 дан график зависимости коэффициента отражения от . Согласно последним формулам можно обойтись участком графика для (где ). Значения коэффициента прохождения получаются прибавлением единицы к коэффициенту отражения. При коэффициент отражения равен нулю и волна, нормально падающая на границу раздела двух сред, проходит из первой среды во вторую целиком, не отражаясь. Картина в первой среде в этом случае такая, как если бы волна полностью поглощалась границей. В этом случае достаточно возникновения только одной волны (прошедшей), чтобы, совместно с падающей, удовлетворить обоим граничным условиям. При коэффициент отражения положителен и при стремится к единице. Значения поля на границе, отнесенные к полю в падающей волне, равны

Эти величины всегда положительны, и их полусумма равна единице. При очень малом (вторая среда акустически очень мягкая по сравнению с первой, как, например, при отражении подводного звука от поверхности моря) давление стремится к нулю,

а скорость частиц стремится к удвоенной скорости в падающей волне. При очень большом (например, отражение воздушного звука от поверхности моря) к нулю стремится скорость частиц на границе, а удваивается давление. Предельный переход к нулю и к бесконечности соответствует переходу к абсолютно мягкой и абсолютно жесткой границе.

Для иллюстрации сказанного приведем реальные (округленные) соотношения для прохождения звука из воздуха в воду и обратно при нормальном падении плоской волны. Для воды см/сек (морская вода), для воздуха . При падении звука из воздуха в воду При падении звука из воды в воздух . Отношение же потока энергии, проходящей через границу раздела, к потоку энергии в падающей волне составляет в обоих случаях 0,00114.

Отношения медленностей звука во второй и в первой среде (обратное отношение скоростей звука) называют коэффициентом преломления второй среды относительно первой; будем обозначать это отношение через Отношение плотностей сред обозначим через Очевидно, Формулы Френеля выразятся через эти относительные величины так:

Формулы (43.3) приобретают особенно симметричный вид:

Свободную поверхность и абсолютно жесткую стенку можно рассматривать как границу двух сред при определенных предельных свойствах второй среды. Так, свободную поверхность можно рассматривать как предельный случай стремления к нулю плотности или скорости звука, что равносильно предельному переходу или Абсолютно жесткая поверхность явится предельным случаем для стремления к бесконечности плотности или скорости звука во второй среде, что равносильно предельному

переходу или Отметим, что второе условие соответствует переходу к абсолютно жесткой поверхности только для нормального падения волны; остальные три варианта предельных переходов дадут требуемые граничные условия и для наклонного падения (см. § 55).

Если скорости звука в обеих средах равны, то

При равных плотностях обеих сред

При малом различии волновых сопротивлений сред часто можно пользоваться приближенными выражениями для коэффициентов отражения и прохождения. Пусть, например, где . Тогда, как легко видеть из (43.4), с точностью до малых первого порядка относительно 8

Если близки друг к другу не только волновые сопротивления, но и плотности и скорости звука в обеих средах в отдельности: , где то

Приведем еще несколько видов записи формул Френеля. Через статические характеристики сред — плотность и сжимаемость — коэффициенты отражения и прохождения выражаются так:

При отражении от границы двух разных газов, находящихся при одинаковом давлении,

где отношение отношений теплоемкостей для обоих газов, отношение молекулярных весов газов.

При отражении от границы между двумя объемами одного и того же газа, находящимися при одинаковом давлении, но при разных абсолютных температурах (Т и Т),

Если разность температур мала, то

Теперь рассмотрим энергетические соотношения при отражении и прохождении волны. Так как отраженная волна имеет ту же форму, что и падающая, а знак на энергию не влияет, то для отношения плотности потока мощности в отраженной волне к плотности потока в падающей получаем

В силу закона сохранения энергии, отношение плотности потока в прошедшей волне к плотности потока в падающей должно равняться

Это легко проверить и непосредственно, подсчетом потоков мощности.

Плотность потока мощности падающей волны распределяется между отраженной и прошедшей волнами в отношении

При почти вся энергия отражается, и прошедшая энергия относится к падающей приблизительно как

При снова почти вся энергия отражается, и отношение равно

Напротив, если близко к единице, то почти вся энергия проходит во вторую среду, и отношение отраженной энергии к падающей оказывается равным приближенно

Все эти соотношения между долями отраженной и прошедшей энергии сохраняются, как уже было сказано, и при обращении падения волны — при падении из второй среды на первую.

На рис. 43.2 даны графики зависимости величин от . Сумма ординат кривых все время равна единице, что выражает закон сохранения энергии. Кривые расположены симметрично относительно прямой, проведенной параллельно оси абсцисс ординате 0,5. Энергия делится пополам между отраженной и прошедшей волнами при относительном волновом сопротивлений т. е. при , равном приближенно 5,83, и при .

В заключение этого параграфа выясним, как меняется частота гармонических волн при отражении и прохождении на границ? двух сред, движущейся относительно самих сред, остающихся

в покое. Примером такой акустической ситуации является отражение и прохождение волн на фронте ударной волны в газе, где акустические характеристики среды по обе стороны фронта различны. Другой пример распространение звука в стержне, наполовину погруженном в жидкость, при изменении уровня воды: на погруженном участке стержня акустические свойства стержня несколько изменяются в результате реакции окружающей среды, так что граница между участками с разными свойствами перемещается относительно среды вместе с уровнем.

Рис. 43.2. Зависимость от отношений отраженной и прошедшей энергии к падающей энергии.

Рассматриваемая задача вариант известного из общего курса физики вопроса о допплеровском сдвиге частоты — изменении частоты принимаемого звука при движении источника или приемника относительно среды. Напомним формулы для этого сдвига частоты для случая движения источника или приемника вдоль соединяющей их прямой. Обозначим частоту колебаний источника звука через , а скорость приемника или источника — через, (положительной будем считать скорость, увеличивающую расстояние между источником и приемником) Тогда, как легко получить из чисто кинематических соображений, при движении приемника принимаемая частота Окажется равной

а при движении источника звука — равной

Здесь через обозначено число Маха для движения источника или приемника звука. Различие в сдвиге частоты при одинаковой относительной скорости источника и приемника вызвано тем, что оба случая различные по отношению к абсолютной акустической системе координат (см § 1)

Для нахождения сдвигов частот при отражении и прохождении напишем граничные условия равенства давлений и скоростей частиц на движущейся границе для гармонической падающей волны считая пока неизвестными частоты отраженной и прошедшей волны:

Для того чтобы граничные условия оставались выполненными в любой момент времени, требуется, чтобы экспоненты тождественно равнялись друг другу для Выполняя эту подстановку, найдем

где числа Маха для движущейся границы относительно первой и относительно второй среды. На величине коэффициентов отражения и прохождения движение границы при неподвижности самих сред не сказывается.

Читайте также: