Проблемы обеспечения радиационной безопасности на аэс реферат

Обновлено: 07.07.2024

На тему: Радиационная опасность и проблемы использования АЭС.

____________ /Петрова И.Г./ ____________ /Федоровых Е.И./

3 Основные термины и единицы измерения ……………………………………..

4 Источники радиационного излучения ………………………………………….

4.1 Естественные источники радиации ………………………………………….

4.2 Источники радиации, созданные человеком (техногенные) ………………..

4.3 Эффекты воздействия радиации на человека ……………………………….

5 АЭС и проблемы их использования …………………………………………….

5.1 Воздействие атомных станций на окружающую среду ……………………..

Список использованных источников ……………………………………………..

Радиация имеет большую роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику. В это же время стали всё сильнее проявляться негативные стороны свойств радиоактивных элементов. Выяснилось, что воздействие радиационного излучения на организм производит отрицательный эффект. Чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности.

Радиоактивность следует воспринимать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно оценить опасность и возможные последствия использования ядерной энергии.

Наиболее опасные последствия представляют собой аварийные ситуации на атомных станциях. Печальный пример катастрофы на Чернобыльской атомной электростанции, в результате которой в настоящее время целые регионы некогда благополучные, оказываются широкой полосой отчуждения, полностью лишенной населения.

Основываясь на вышесказанном: основная цель данной реферативной работы состоит в том, чтобы: охарактеризовать основные понятия об опасности радиации, а также описать потенциальные негативные последствия работы атомных электростанций.

Что такое радиация

Радиация существовала всегда. Радиоактивные элементы входили в состав Земли с начала ее существования и присутствуют до настоящего времени. Однако само явление радиоактивности было открыто чуть больше века назад.

В 1896 году французский ученый Анри Беккерель случайно обнаружил, что после продолжительного соприкосновения с образцом минерала, содержащего уран, на фотографических пластинках, после проявки, появились следы излучения.

Рассмотрение предпосылок и последствий радиоактивного заряжения. Обеспечение безопасности опасных объектов АЭС. Радиоактивные компоненты и их свойства. Проблемы глобального загрязнения окружающей среды. Исследование мероприятий радиационной защиты.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид контрольная работа
Язык русский
Дата добавления 19.05.2015
Размер файла 21,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

Институт нефти, химии и нанотехнологий

Факультет наноматериалов и нанотехнологий

Проверил: Дряхлов О. В.

Прогрессирующее загрязнение окружающей среды сделало экологическую безопасность важной составляющей национальной безопасности в целом.

радиоактивный заряжение глобальный

1. Радиоактивное заражение

Радиоактивное заражение -- загрязнение местности и находящихся на ней объектов радиоактивными веществами. Радиоактивное заражение происходит при:

выпадении радиоактивных веществ из облака ядерного взрыва и наведённой радиации, обусловленной образованием радиоактивных изотопов в окружающей среде под воздействием мгновенного нейтронного и гамма-излучений ядерного взрыва; поражает людей и животных главным образом в результате внешнего гамма- и (в меньшей степени) бета-облучения, а также в результате внутреннего облучения (в основном альфа-активными нуклидами) при попадании радиоизотопов в организм с воздухом, водой и пищей.

техногеных авариях (утечках из ядерных реакторов, утечках при перевозке и хранении радиоактивных отходов, случайных утерях промышленных и медицинских радиоисточников и т. д.) в результате рассеяния радиоактивных веществ; характер заражения местности зависит от типа аварии. [ 1 ]

2. Радиоактивные компоненты и их свойства

Особую опасность для людей и окружающей среды составляют радиационно опасные объекты

К ним относятся: атомные электростанции (АЭС), предприятия по изготовлению и переработке ядерного топлива, предприятия захоронения радиоактивных отходов, научно-исследовательские организации, работающие с ядерными ними реакторами; ядерные энергетические установки на объектах транспорта.

Основные загрязняющие радиоактивные компоненты :

Йод-131 -- является бета- и гамма-радиоактивным, период полураспада -- около 8 суток. В связи с бета-распадом, 131 вызывает мутации и гибель клеток, в которые он проник, а также -- окружающих тканей на глубину нескольких миллиметров. Концентрируется в основном в щитовидной железе.

Стронций-90 -- период полураспада -- примерно 28,8 лет. В окружающую среду 90Sr попадает преимущественно при выбросах с АЭС и ядерных взрывах. Крайне опасен. Откладывается, в основном, в костных тканях (костях).

Цезий-137 -- период полураспада -- 30 лет . Один из главных компонентов радиоактивного загрязнения биосферы. Выброс 137Cs в окружающую среду происходит в основном в результате аварий на предприятиях атомной энергетики и испытаний ядерного оружия.

Кобальт-60 -- период полураспада примерно равен 5,3 года.

Америций-241 -- период полураспада примерно равен 433 года.

Вклад указанных радиоактивных компонентов при Чернобыльской аварии составил (приблизительно):

йода-131 -- 1,8·1018 Бк,

цезия-137- 8,5·1016 Бк,

стронция-90 -- 1·1016 Бк.

3. Последствия аварий на радиационно-опасных объектах

Радиоактивные компоненты очень опасны, у человечества есть горький опыт в этой сфере. Например, авария на атомной электростанции Фукучима-1 в Японии 2011 года. Тогда был нанесен ущерб экологии в масштабе всей планеты. Так как повышение уровня радиации наблюдалось во всех концах света. Радиоактивная вода проникала в море и облучение получали все живые организмы находящиеся в ней, а после зараженные виды рыб находили и в других концах океана. Жители Японии, которые больше всех были подвержены радиации стали чаще болеть раком. У некоторых видов птиц наблюдается мутация. В связи с этим к объектам род деятельности которых связан с радиоактивными компонентами предъявляются повышенные требования по безопасности. По критерию надежности работы АЭС Россия вышла на второе место в мире среди стран с развитой атомной энергетикой, опередив такие развитые государства, как США, Великобритания и Германия.

4. Обеспечение радиационной безопасности опасных объектов

Высокая степень безопасности АЭС России обеспечена множеством факторов. Основные из них - это принцип самозащищенности реакторной установки, наличие нескольких барьеров безопасности и многократное дублирование каналов безопасности. Необходимо отметить также применение активных (то есть требующих вмешательства человека и наличия источника энергоснабжения) и пассивных (не требующих вмешательства оператора и источника энергии) систем безопасности. Кроме того, на всех станциях действует культура безопасности на всех этапах жизненного цикла: от выбора площадки (обязательно только в тех в местах, где отсутствуют запрещающие факторы) до вывода из эксплуатации. Во многом благодаря сочетанию этих элементов опыт стабильной эксплуатации водо-водяных реакторов ВВЭР составляет уже более 1400 реакторо-лет.

На российских атомных ледоколах надежность функционирования реакторной установки обеспечена целой системой технических и организационных мер. Она включает использование свойств внутренней самозащищенности реактора, применение концепции глубокоэшелонированной защиты, а также систем безопасности, построенных на основе принципов дублирования, пространственного и физического разделения.

Основными критериями, влияющими на безопасность установки во время эксплуатации ледокола, являются надежность управления и контроля за цепной реакцией, а также сохранение непрерывности отвода тепла от активной зоны. Надежность управления и контроля за цепной реакцией деления обеспечивается конструктивными и физическими характеристиками активных зон, применяемых в транспортной энергетике и системами автоматики, обслуживающими реакторную установку. Надежность обеспечения теплоотвода от активной зоны определяется развитой системой энергоснабжения энергетической установки и элементами активной и пассивной систем аварийного расхолаживания. Так, на ледоколах проекта 10580 ("Вайгач" и "Таймыр") в состав энергетической установки входят три вспомогательных дизель-генератора мощностью 2360 кВт каждый и два аварийных дизель-генератора мощностью 200 кВт каждый. Любой из указанных дизель-генераторов может полноценно обеспечить безопасность реакторной установки.

Основным источником охлаждения работающих главных и вспомогательных механизмов служит забортная вода, которая поступает в систему энергетической установки из ледовых ящиков. Ледовые ящики необходимы в арктических условиях, когда температура морской воды опускается до -2о С, и для доведения забортной воды до необходимой рабочей температуры (10о С) необходим ее подогрев. Ледовые ящики имеют 100 % резервирование: для нормальной работы энергетической установки необходимы три ледовых ящика из шести.

Ситуации, связанные с нарушениями поступления забортной воды в систему, крайне редки. Однако иногда в условиях ледового плавания случается, что ледовый ящик забивается ледяной крошкой (шугой). В таких случаях во избежание срыва поступления воды осуществляется переход на резервный ледовый ящик, выполняемый с помощью системы автоматики. При отказе автоматики переход на резервный ледовый ящик может быть выполнен оператором энергетической установки вручную.

Стоит отметить, что системы, обеспечивающие охлаждение, могут длительное время обходиться и без поступления забортной воды. В этом случае их охлаждение проводится из креново-балластного танка большой емкости. Таким образом, надежность работы реакторной установки обеспечена различными способами, с высокой степенью резервирования. [ 2 ]

5. Мероприятия радиационной защиты

Мероприятия радиационной защиты, как правило, осуществляются заблаговременно, а в случае возникновения радиационных аварий, при обнаружении локальных радиоактивных загрязнений -- в оперативном порядке.

В превентивном порядке проводятся следующие мероприятия радиационной защиты:

разрабатываются и внедряются режимы радиационной безопасности;

создаются и эксплуатируются системы радиационного контроля за радиационной обстановкой на территориях атомных станций, в зонах наблюдения и санитарно-защитных зонах этих станций;

разрабатываются планы действий по предупреждению и ликвидации радиационных аварий;

накапливаются и содержатся в готовности средства индивидуальной защиты, йодной профилактики и дезактивации;

поддерживаются в готовности к применению защитные сооружения на территории АЭС, противорадиационные укрытия в населенных пунктах вблизи атомных станций;

проводятся подготовка населения к действиям в условиях радиационных аварий, профессиональная подготовка персонала радиационно опасных объектов, личного состава аварийно-спасательных сил и др.

К мероприятиям, способам и средствам, обеспечивающим защиту населения от радиационного воздействия при радиационной аварии, относятся:

обнаружение факта радиационной аварии и оповещение о ней;

выявление радиационной обстановки в районе аварии;

организация радиационного контроля;

установление и поддержание режима радиационной безопасности;

проведение при необходимости на ранней стадии аварии йодной профилактики населения, персонала аварийного объекта и участников ликвидации последствий аварии;

обеспечение населения, персонала, участников ликвидации последствий аварии необходимыми средствами индивидуальной защиты и использование этих средств;

укрытие населения в убежищах и противорадиационных укрытиях;

дезактивация аварийного объекта, других объектов, технических средств и др;

эвакуация или отселение населения из зон, в которых уровень загрязнения или дозы облучения превышают допустимые для проживания населения.

В силу своих физико-химических свойств углеродные адсорбенты (активные угли) являются уникальными и идеальными сорбционными материалами, которые позволяют решать большой круг вопросов обеспечения химической и биологической безопасности человека, окружающей среды и инфраструктуры. Активные угли - это высокопористые углеродные материалы, имеющие чрезвычайно развитую внутреннюю поверхность (1000-2000 м2/г). Последняя обусловлена развитой внутренней пористостью, состоящей из макро-, мезо- и микропор. Такие фильтры используются в средствах индивидуальной и коллективной защиты, а также очистных сооружениях предприятий.

Список использованных источников

Подобные документы

Прогнозирование обстановки при землетрясении. Режимы функционирования РСЧС. Декларирование безопасности потенциально опасных объектов. Оценка радиационной и химической обстановки. Определение режимов радиационной защиты населения в условиях заражения.

курсовая работа [1,1 M], добавлен 10.12.2013

Источники ионизирующего излучения лучевых досмотровых установок: рентгеновские и инспекционно-досмотровые ускорительные комплексы. Требования к организации по обеспечению радиационной безопасности. Контроль индивидуальных доз внешнего облучения персонала.

реферат [20,6 K], добавлен 19.10.2014

Основные виды ионизирующих излучений. Основные правовые нормативы в области радиационной безопасности. Обеспечение радиационной безопасности. Радиационное воздействие и биологические эффекты. Последствия облучения людей ионизирующим излучением.

реферат [28,0 K], добавлен 10.04.2016

Правовые основы безопасности жизнедеятельности. Проблема предотвращения возникновения катастроф, смягчения их последствий и ликвидации. Режимы радиационной защиты населения, рабочих и служащих. Оценка радиационной обстановки при аварии на АЭС.

реферат [51,4 K], добавлен 31.10.2008

Изучение нормативно-технической документации, обеспечивающей выполнение требований охраны труда. Требования радиационной безопасности, действующие на заводе. Организация работ с высоким уровнем риска. Порядок обращения с твердыми радиоактивными отходами.

отчет по практике [39,8 K], добавлен 16.10.2012

Принципы организации радиационной безопасности на атомных электростанциях. Основные задачи дозиметрии. Ведущие направления радиационного контроля. Технические средства, предназначенные для удержания радиоактивных веществ. Средства биологической защиты.

контрольная работа [33,6 K], добавлен 19.11.2010

Радиоактивные превращения ядер. Некоторые выводы из строения атома и атомного ядра. Явление радиоактивности, основные виды радиоактивного распада. Закон радиоактивного распада. Удельная, поверхностная и объемная активность, методики их расчета.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Введение.

Наверное, ни для кого не секрет, что вступление в 21 век немыслимо без такого источника энергии, каковым является атомное ядро. Для человечества те огромные запасы энергии, которые заключены внутри ядер являются практически неисчерпаемыми. Если в условиях современного роста населения Земли не будет произведен скорейший переход на ядерный источник энергии, то, в конце концов, настанет тот день, когда в топках и печах догорит последняя капля, горсть природного топлива, и с этого рокового дня история человечества начнет стремительно продвигаться к своему логическому завершению (а может быть все начнется сначала, как в первобытные времена и. ).

Для того чтобы оценить все “плюсы” и “минусы”, которых вероятно столько же сколько и “плюсов”, но возникающих в совершенно других условиях, необходимо посмотреть на настоящее положение дел в области использования атомной энергии.

Атомная энергия широко применяется в большинстве отраслей промышленности. Контроль качества изделий, производящийся без их разрушения, может быть успешно осуществлен при использовании данного вида энергии. Получение новых полимеров, определение структуры и дефектов сплавов, исследование смазочных материалов в трущихся частях машин, холодная стерилизация перевязочных материалов и лекарственных средств, анализ жидких и газовых сред осуществляется с наибольшим успехом при непосредственном участии ядерной энергии.

Атомная энергия может быть переработана в другие виды, например, в электрическую (АЭС), энергию движения ледоколов или подводных лодок. Благодаря наличию ядерного реактора на борту ледокола имеется возможность круглогодичного плавания и, следовательно, навигации в северных широтах без частых дозаправок природным топливом [1].

Медицина также широко и успешно использует достижения в области атомной энергетики в лечении различных болезней таких, как злокачественные новообразования и неопухолевые заболевания. При лечении рака энергия, возникающая при распаде радионуклидов, используемых в медицине, поражает генетический аппарат трансформированных клеток, тем самым останавливает их рост [2].

При исследовании механизмов реакций в органической и неорганической химии используется метод меченых атомов. Этот метод сыграл немаловажную роль в обнаружении новых закономерностей в физике, медицине, металлургии, биологии [1]. Возможность определения генетического кода возникла после появления радиоавтографического анализа.

Обзор только позитивных аспектов использования атомной энергии рисует весьма радужную картину, но для оценки реальной ситуации, сложившейся в настоящий момент нельзя упускать из виду те негативные моменты, которые могут возникнуть при определенных условиях и привести к не всегда предсказуемым последствиям.

Наиболее чудовищное и смертельно опасное применение энергии ядер для всего человечества является развязывание атомной войны. Достаточно вспомнить, что когда ядерный смерч разбушевавшейся материи уничтожил одномоментно 300 тыс. людских жизней, по данным прессы, при бомбардировке Хиросимы и Нагасаки в 1945 году, то становится понятным опасение мировой общественности перед лицом этой грозной силы. Очевидно, что чем больше энергия используемая во благо, тем больше ее может быть использовано во зло.

Количество несчастных случаев, связанных с атомной энергетикой, на АЭС, значительно меньше, чем в других областях человеческой деятельности [3]. Тем не менее, несколько лет назад происшедшая авария в Чернобыле заставляет пересмотреть наше отношение к организации безопасности работы АЭС и защиты от неконтролируемого развития ядерной реакции. Необходимо дальнейшее снижение вероятности возникновения аварийных ситуаций, хотя вероятно, полностью избежать их никогда не удастся. Все же количество жертв на ЧАЭС удалось значительно снизить, благодаря самоотверженной работе спасателей, которые под час не жалея своей жизни шли на риск, ради того, чтобы обеспечить нормальную жизнь населению, проживавшему поблизости с местом трагедии.

Стремительное развитие техники и технологии, по всей видимости, остановить нельзя, несмотря на мрачные вехи истории прогресса, такие как авария на химическом заводе в Бхопале, унесшая 2.5 тыс. человек, взрыв емкостей со сжиженным газом под Мехико (400 чел. погибло и более 4000 получили ранения), авария летательных аппаратов “Челленджер”, “Титан”, “Дельта”. Все выше сказанное подводит к тому, что внедрение атомной энергетики является неизбежным процессом в рамках настоящего исторического развития общества. Замена органического топлива ядерным решит еще одну глобальную экологическую проблему, связанную с нарастающим загрязнением окружающей среды, уменьшением доли кислорода в воздухе и парниковым эффектом, возникшей при использовании в качестве топлива нефти, мазута, угля [3].

Для того чтобы внедрение атомной энергетики и использование радиоактивности в народном хозяйстве не принесло большего ущерба, чем тот, который наносится природе в настоящий момент существует специальная дисциплина, именующаяся радиационной безопасностью, рассмотрение определения, целей и задач, а так же физических основ которой будет осуществлено в следующем разделе.

Физические основы радиационной безопасности.

Цели и задачи.

Радиационная безопасность - новая научно практическая дисциплина, возникшая с момента создания атомной промышленности, решающая комплекс теоретических и практических задач, связанных с уменьшением возможности возникновения аварийных ситуаций и несчастных случаев на радиационно-опасных объектах. Ниже освящается весь комплекс задач, стоящих перед радиационной безопасностью.

Первой задачей радиационной безопасности является разработка критериев:

а) для оценки ионизирующего излучения как вредного фактора воздействия на отдельных людей, популяцию в целом и объекты окружающей среды;

б) способов оценки и прогнозирования радиационной обстановки, а также путей приведения ее в соответствие с выработанными критериями безопасности на основе создания комплекса технических, медико-санитарных и административно-организационных мероприятий, направленных на обеспечение безопасности в условиях применения атомной энергии в сфере человеческой деятельности.

Для разработки критериев используются многолетние наблюдения за людьми, работающими на объектах с уровнем радиации, превышающим фон, а также эксперименты с животными, искусственно подвергаемыми облучению. Развертывание радиационной обстановки при аварийных ситуаций прогнозируется на основе математических расчетов и данных, полученных при изучении случившихся аварий за весь период развития атомной промышленности и энергетики [3].

В настоящий момент существует разработанная система допустимых пределов воздействия ионизирующего излучения на человеческий организм, оформленная в виде законодательных документов Норм Радиационной Безопасности (НРБ) [4].

Второй немаловажной задачей радиационной безопасности является разработка систем радиационного контроля. Различные условия эксплуатации радиационных установок, набор используемых радиоактивных веществ, экономия материальных средств диктуют необходимость осознанного выбора средств и частоты измерения уровня радиации, концентрации радиоактивных веществ. Так, при эксплуатации g-дефектоскопов достаточно ограничиться контролем уровня g- излучения, а на радиохимических предприятиях наряду с указанным контролем необходимо проводить измерения концентрации радиоактивных газов в воздухе и уровень загрязнения рабочих помещений с целью не допустить пере облучение сотрудников.

Радиационная безопасность, кроме перечисленных выше задач, решает еще две функциональные задачи:

1) Снижение уровня облучения персонала и населения ниже (в крайнем случае, до) регламентируемого предела на основе следующих мероприятий: технических (создание защитных ограждений, автоматизация технологического процесса, очистка выбросов от радиоактивных веществ), медико-санитарных (обеспечение персонала средствами индивидуальной защиты-СИЗ, снабжение местных штабов ГО средствами защиты населения), организационных (создание специального графика работы в условиях пере облучения).

2)Создание эффективных систем радиационного контроля, позволяющих оперативно регистрировать изменения в радиационной обстановке.

Наконец необходимо отметить, что надежность систем радиационной безопасности намного выше, чем систем защиты других отраслей промышленности. Это объясняется тем, что впервые использованная атомная энергия привела к серьезнейшим разрушениям и жертвам и тем самым вызвала относительно предвзятое отношение к ней, что пошло на пользу радиационной безопасности [3].

Теперь целесообразно перейти к вопросам воздействия ионизирующего излучения на вещество, видам облучения организма, а также расчету доз, получаемых организмом.

Ионизирующее излучение.

Излучение, взаимодействие которого со средой вызывает образование электрических зарядов называется ионизирующим [3]. Ионизирующее излучение представляет собой поток частиц, обладающих дискретным или непрерывным спектром энергии. Данные частицы могут иметь(a- частицы и электроны) или не иметь(g- кванты, нейтроны) электрического заряда.

При прохождении через вещество заряженных частиц происходит передача ими своей энергии, расходующейся на возбуждение и ионизацию атомов и молекул. Для количественного определения переданной веществу энергии вводят понятие линейной передачи энергии S:

где dE-энергия, теряемая заряженной частицей в среде при прохождении элемента пути dl.

Заряженные частицы проходят разное расстояние в веществе в зависимости от их энергии и свойств мишени. Для количественного определения этого расстояния вводят понятие длины свободного пробега частицы. Можно показать, что длина свободного пробега обратно пропорциональна отношению Z/A, где Z-атомный номер атомов мишени, а А-их массовое число. В мягкой биоткани пробег a- частиц составляет несколько десятков микрон, а электронов 0.02ч1.9 см[3].

g-кванты при прохождении через вещество способны взаимодействовать с ним тремя путями:

а) фотоэффект, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему свою энергию;

б) комптоновское рассеяние, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему часть своей энергии;

в) для g-квантов с энергиями превышающими 1.02 МэВ возможно образование электрон-позитронных пар при прохождении квантов в поле атомного ядра [6].

Нейтроны, проходя через вещество вызывают ядерные реакции так, что в конечном итоге образуются заряженные частицы.

В общем можно утверждать, что все виды перечисленных видов излучения являются ионизирующими. Далее необходимо рассмотреть каким образом ионизирующее излучение может воздействовать на организм.

Облучение организма.

Облучение организма можно подразделить на внешнее и внутреннее. Внешнее облучение возникает в результате попадания потока частиц в организм извне. Такое облучение могут создавать технологические установки, содержащие радиоактивные изотопы или ускорители частиц. Воздействие источника внешнего облучения на организм зависит от той энергии, которую несут частицы, величины их свободного пробега, расстояния от источника и его активности, а также времени облучения. Наибольшую опасность представляют источники нейтронного и g-излучения, так как нейтроны и g-кванты обладают наибольшей проникающей способностью.

Внутреннее облучение вызывается попавшими в организм радиоактивными веществами. Наибольшую опасность представляют собой a- радиоактивные источники, поскольку вся энергия излучения поглощается в непосредственной близости от местонахождения источника, принося наибольший вред [6].

Дозиметрия.

Поглощенная и экспозиционная доза.

Для определения меры той части энергии, которая поглощена веществом при облучении ионизирующим излучением используют понятие поглощенной дозы:

где dEп-энергия, поглощаемая элементом вещества массой dm. Единица дозы - Гр (грей) равна 1 Дж/кг. Поглощенную дозу чаще всего выражают, используя внесистемную единицу “рад”:

Мощность дозы Рп выражает дозу, полученную в единицу времени:

где t-время облучения. Эту величину измеряют в рад/с или рад/ч:

Для измерения поглощенной дозы g-излучения используют непосредственно измеряемую величину экспозиционной дозы Dэ, которая выражает ту часть энергии потока g-квантов, которая пошла на образование фотоэлектронов, комптоновских электронов и электрон-позитронных пар. Единица измерения в системе СИ-Кл/кг. Чаще измеряют экспозиционную дозу в рентгенах:

1Р=2.58 . 10 -4 Кл/кг.

Мощность экспозиционной дозы обычно измеряют в мкР/ч.

Можно показать, что, приближенно, поглощенная биологической тканью доза g-излучения численно равна экспозиционной дозе в воздухе [6]. Для этого необходимо соблюдения в системе “электронного равновесия" - условия, при котором все электроны, образующиеся в результате взаимодействия g-излучения со средой, полностью в ней поглощаются, что, по всей вероятности, и происходит в действительности.

Биологический эквивалент рада.

Различные виды ионизирующего излучения по-разному воздействуют на биологическую ткань. Для введения количественной характеристики биологического воздействия на организм вводят так называемый “коэффициент качества излучения”, который зависит от величины линейной передачи энергии. Эта зависимость приведена в таблице1.

После терактов, произошедших в Брюсселе, Париже, Стамбуле, Анкаре и в других городах, многие страны мира активно пересматривают аспекты внутренней безопасности. Известно, что мишенями террористов могут стать атомные электростанции.

В настоящее время в мире функционирует 444 атомные электростанции, расположенные в тридцати странах. Кроме того, еще на 243 научно-исследовательских реакторах производят изотопы для использования в медицинских целях и для подготовки инженеров-ядерщиков. Атомная промышленность также включает в себя сотни заводов, которые обогащают уран и изготавливают топливо для реакторов. На многих из этих объектов используются материалы, которые террористы могут использовать для создания ядерной бомбы. Также на атомных электростанциях террористы могут создать аварийную ситуацию, например, как на АЭС Чернобыля и Фукусимы, в следствие которой радиоактивные облака распространятся на сотни километров.

На саммите по вопросам ядерной безопасности, который проводился в прошлом месяце в Вашингтоне, округ Колумбия, представители пятидесяти двух стран обязались продолжить работу по улучшению безопасности своих ядерных реакторов и утвердили план действий для совместной работы. Однако, стоит отметить, что такие крупные игроки как Россия и Пакистан в этой программе не участвуют. Кроме того, некоторые страны Европы только начинают осознавать необходимость усиления мер безопасности. Становится понятно, что на сегодняшний день, атомные электростанции - это объекты, уязвимые для террористических атак.

Угрозы безопасности

Не новость, что безопасности многих ядерных энергетических и исследовательских центров долгое время отводилась крайне незначительная роль. В октябре 2012 года активисты Гринпис беспрепятственно вошли на территорию двух расположенных в Швеции АЭС - они выломали ворота и перелезли через заборы, и охранники попросту не смогли их остановить. Кроме того, четверо активистов спрятались и провели всю ночь на крыше одного из реакторов. Только в этом году регулирующий деятельность ядерной индустрии орган Швеции принял требование обеспечить вооруженную охрану и внедрить дополнительные меры безопасности. Однако, эти требования будут введены в силу не ранее начала 2017 года.

Активисты Гринпис также ворвались и на территорию французской атомной электростанции Фессенхайм, которая находится вблизи границы с Германией, и вывесили на здание реактора большой баннер.

В свете недавних событий, произошедших в Брюсселе, там ситуация еще более тревожная. Стало известно, что в 2012 году два сотрудника атомной электростанции Дул покинули Бельгию, чтобы воевать в Сирии. В 2014 году неизвестный злоумышленник устроил неполадки в турбине в том же самом реакторе, в результате чего станция была закрыта целых 5 месяцев.

Учитывая состояние повышенной боевой готовности в Европе, правительства должны немедленно повысить уровень безопасности ядерных объектов. Они могут последовать примеру Соединенных Штатов, которые после террористических актов 11 сентября 2001 года существенно усилили меры безопасности на своих ядерных объектах.

Американская модель

Ядерные электростанции США в настоящее время являются одними из самых хорошо охраняемых объектов в мире. Безопасность на атомных электростанциях контролирует Комиссия США по ядерному регулированию (NRC). Одна треть сотрудников многих АЭС в США отвечают за безопасность. Нормативные акты США требуют, чтобы на атомных станциях проводились регулярные учения. Во время учений хорошо подготовленные бывшие военные “нападают” на станции, используя самые современные технологии. Наблюдатели NRC оценивают результаты этих учений, и в случае неудовлетворительной оценки владельцы объекта могут понести жесткие штрафы. Соединенные Штаты также разработали для реакторов правила обеспечения кибербезопасности.

Усиление мер безопасности во всем мире

Международных стандартов защиты ядерных объектов на сегодняшний день не существует. Каждая страна принимает свои собственные законы и правила, диктующие владельцам ядерных станций, какие охранные системы они должны внедрить для защиты от нападений.

Поэтому меры защиты могут очень сильно отличаться - скажем, некоторые страны полагаются на местных полицейских и охрану без оружия. Часто уровень мер обеспечения безопасности зависит от культурных норм, однако, недавние нападения в Европе свидетельствуют о необходимости принятия решительных мер, независимо от норм и традиций.

Существуют определенные меры, которые могут предпринять все страны, чтобы сделать свои атомные станции более безопасными объектами.

Одним из приоритетных направлений является поддержка Международного агентства по атомной энергии (МАГАТЭ), которое разрабатывает меры оказания помощи странам, которые хотят обеспечить более эффективную защиту своих атомных электростанций. С 2010 года в области ядерной безопасности агентство подготовило более 10000 человек, включая полицию и пограничников.

Страны с атомными электростанциями или исследовательскими реакторами, по понятным причинам, не обнародуют проблемы защиты своих объектов. Но мы знаем из приведенных выше случаев, что проблемы существуют. Каждая из стран должна расширить возможности независимого регулирующего органа для обеспечения соблюдения новых требований и инспектирования безопасности на ядерных объектах. И самое главное - службы обеспечения безопасности на ядерных объектах должны регулярно проводить учения под пристальным взглядом независимых наблюдателей.

Такие страны, как Соединенные Штаты, которые уже имеют большие наработки в вопросах обеспечения физической безопасности ядерных объектов, им в этом помогут.

Регулирующие органы всех стран регулярно встречаются и могут обмениваться информацией и обучать своих коллег. К примеру, в декабре 2012 года Комиссия США по ядерному регулированию организовала первую в истории конференцию по ядерной безопасности. К сожалению, с тех пор ни одно другое правительство не предложило возглавить последующую встречу.

Страны с существующими реакторами - не единственная проблема. Как минимум, еще шестьдесят стран выразили желание производить ядерную энергетику. Объединенные Арабские Эмираты находятся в процессе строительства четырех реакторов. Турция и Вьетнам заключили сделки с российским производителем, компанией “Росатом”, в ходе которого строительство, финансирование, эксплуатация и даже утилизация отходов будут выполняться исключительно русскими специалистами. Многие из этих стран даже не всегда посещают встречи по вопросам ядерной безопасности, которые проводятся Международным агентством по атомной энергии. Разве можно надеяться, что они будут лучше относиться к безопасности, чем те атомные электростанции, которые на сегодняшний день функционируют?

Для того, чтобы предотвратить возможные нападения на свои ядерные объекты, правительства должны предпринять меры обеспечения безопасности уже сейчас, а не через год. В свете нынешней террористической угрозы, страны с АЭС должны со всей ответственностью подойти к вопросам обеспечения физической безопасности на своих объектах атомной энергетики, пока не слишком поздно.


Основная задача дозиметрии-определение дозы излучения в различных материалах, средах и особенно в тканях живого организма с целью выявления, оценки и предупреждения возможной радиационной опасности для человека. Иначе, основная задача дозиметрии сводится к обеспечению радиационной безопасности при проведении работ в условиях ионизирующих излучений.

Ядерная энергетическая установка считается безопасной, если ее радиационное воздействие на персонал, население и окружающую среду в процессе нормальной эксплуатации и проектных авариях не приводит к превышению установленных доз облучения персонала и населения и нормативов по выбросам и сбросам радиоактивных веществ в окружающую среду, а также ограничивает это воздействие при запроектных авариях.

Организация радиационной безопасности АЭС

Общее руководство по обеспечению радиационной безопасности АЭС возглавляет ее директор, на которого возлагается ответственность за разработку Программы радиационной защиты АЭС и организацию контроля ее выполнения. Главный инженер АЭС персонально отвечает за организацию и техническое обеспечение радиационной безопасности, выполнение Программы радиационной защиты АЭС. Руководители подразделений АЭС несут персональную ответственность за изучение и выполнение подчиненным персоналом правил и инструкций по радиационной безопасности, Программы радиационной защиты АЭС.

Радиационный контроль - это часть организационных и технических мер радиационной защиты АЭС, направленных на контроль за соблюдением норм радиационной безопасности и основных санитарных правил работы с радиоактивными веществами и другими источниками ионизирующих излучений, а также получение, обработку и представление измерительной информации о состоянии радиационной обстановки во всех режимах эксплуатации АЭС.

Безопасность атомной станции должна обеспечиваться за счет последовательной реализации принципа глубоко эшелонированной защиты, основанного на применении системы барьеров на пути распространения ионизирующих излучений и радиоактивных веществ в окружающую среду и системы технических и организационных мер по защите барьеров и сохранению их эффективности и непосредственно по защите населения.

Система барьеров включает: топливную матрицу, оболочки ТВЭЛов, границу контура теплоносителя, охлаждающего активную зону, герметичное ограждение локализующих систем безопасности. Состояние каждого из этих барьеров контролируется в процессе эксплуатации АЭС и поддерживается на уровне, соответствующем требованиям действующих нормативных документов по безопасности АЭС.

Радиационная безопасность во всех режимах эксплуатации АЭС обеспечивается следующими методами и средствами:

  • организационно-управленческие методы, включающие в себя методы организации труда, подготовки персонала, проверки состояния радиационной безопасности, а также весь процесс принятия решений по обеспечению радиационной безопасности, начиная от исполнителя работ и заканчивая руководством эксплуатирующей организации;
  • технические средства, включающие в себя оборудование, сооружения, конструкции, предназначенные для удержаний радиоактивных веществ и ионизирующих излучений в заданных границах;
  • радиационно-гигиенические средства, включающие в себя оборудование, сооружения, средства индивидуальной зашиты, предназначенные для снижения радиационного воздействия на человека;
  • информационно-обеспечивающие средства, включающие в себя все приборы, датчики, системы баз данных, предназначенные для получения, обработки, использования и хранения информации необходимой для качественного обеспечения радиационной безопасности.

Вывод

Таким образом, четкая организация работы службы радиационной безопасности в условиях нормальной эксплуатации является залогом безопасности всех видов работ и в других режимах, в том числе в аварийных режимах эксплуатации АЭС.

Список литературы

1. Иванов В.И. Курс дозиметрии: Учебник для вузов./4-е изд., перераб. и доп.-M.: Энергоатомиздат, 1988.

2. Культура безопасности: Доклад Международной консультативной группы по ядерной безопасности (INSAG). - Вена, МАГАТЭ, 1990. (Серия безопасности 75-INSAG-4).

Читайте также: