Приведите примеры систем управления без обратной связи и с обратной связью подготовьте реферат

Обновлено: 02.07.2024

Файлы: 1 файл

утс.docx

Обра́тная связь в технике — это процесс, приводящий к тому, что результат функционирования какой-либо системы влияет на параметры, от которых зависит функционирование этой системы. Другими словами, на вход системы подаётся сигнал,пропорциональный её выходному сигналу

Система управления — систематизированный (строго определённый) набор средств сбора сведений о подконтрольном объекте и средств воздействия на его поведение, предназначенный для достижения определённых целей. Объектом системы управления могут быть как технические объекты, так и люди. Объект системы управления может состоять из других объектов, которые могут иметь постоянную структуру взаимосвязей.

Техническая структура управления — устройство или набор устройств для манипулирования поведением других устройств или систем.

Объектом управления может быть любая динамическая система или её модель. Состояние объекта характеризуется некоторыми количественными величинами, изменяющимися во времени, то есть переменными состояния. В естественных процессах в роли таких переменных может выступать температура, плотность определенного вещества в организме, курс ценных бумаг и т. д. Для технических объектов это механические перемещения (угловые или линейные) и их скорость, электрические переменные, температуры и т. д. Анализ и синтез систем управления проводится методами специального раздела математики — теории управления.

Структуры управления разделяют на два больших класса:

Автоматизированные системы управления (АСУ) — с участием человека в контуре управления;

Система автоматического управления(САУ) — без участия человека в контуре управления.

Система автоматического управления, как правило, состоит из двух основных элементов — объекта управления и управляющего устройства.

Объект управления — изменение состояния объекта в соответствии с заданным законом управления. Такое изменение происходит в результате внешних факторов, например, вследствие управляющих или возмущающих воздействий.

По виду информации в управляющем устройстве

В замкнутых системах автоматического регулирования управляющее воздействие формируется в непосредственной зависимости от управляемой величины. Связь выхода системы с его входом называется обратной связью. Сигнал обратной связи вычитается из задающего воздействия. Такая обратная связь называется отрицательной.

В свою очередь, различают:

Разомкнутые по задающему воздействию

Разомкнутые по возмущающему воздействию

Примеры систем автоматического управления

В зависимости от природы управляемых объектов можно выделить биологические, экологические, экономические и технические системы управления. В качестве примеров технического управления можно привести:

Системы дискретного действия или автоматы (торговые, игровые, музыкальные).

Системы стабилизации уровня звука, изображения или магнитной записи. Это могут быть управляемые комплексы летательных аппаратов, включающие в свой состав системы автоматического управления двигателя, рулевыми механизмами, автопилоты и навигационные системы

Системы управления с участием людей как объектов управления зачастую называют системами менеджмента.

В процессе управления человек с помощью органов чувств воспринимает информацию об окружающей среде (состояние дороги, дорожные знаки, сигналы светофора, наличие встречного транспорта, пешеходов и т. д.). Эта информация через органы чувств передается в мозг человека, где преобразуется в другую информацию — последовательность сигналов, передающихся по нервным путям и управляющих движением ног и рук водителя, воздействующих на руль, сцепление, тормоза и другие устройства автомобиля.

Этот пример показывает, что без информации, ее передачи, преобразования и использования управление невозможно. В основе любого процесса управления лежат информационные процессы.

В любом процессе управления всегда происходит взаимодействие двух систем — управляющей и управляемой. Если они соединены каналами прямой и обратной связи, то такую систему называют замкнутой или системой с обратной связью.

По каналу прямой связи передаются сигналы (команды) управления, вырабатываемые в управляющем органе. Подчиняясь этим командам, управляемый объект осуществляет свои рабочие функции. В свою очередь, управляемый объект соединен с управляющим органом каналом обратной связи, по которому поступает информация о состоянии управляемого объекта. В управляющем органе эта информация используется для выработки новых сигналов управления, направляемых к управляемому объекту.

Рассмотрим простейший пример управления — поддержание постоянно заданной температуры в электрической печи (или термостате). Выполняя эту задачу вручную (без применения средств автоматики), человек должен: 1) наблюдать за показаниями термометра, 2) сравнивать эти показания с заданной температурой и 3) при наличии разности между заданным и наблюдаемым значениями передвигать ползунок регулируемого реостата, изменяя силу тока и температуру электронагревательного прибора таким образом, чтобы эта разность стремилась к нулю.

Структура автоматической системы, предназначенной для решения такой задачи, сводится к схеме, изображенной на рисунке.

с заданным значением и при наличии расхождения передает соответствующую команду на исполнительный орган, который и восстанавливает заданное значение регулируемой величины (в нашем случае — температуры). В качестве исполнительных органов используются устройства, непосредственно воздействующие на технологический процесс (двигатели, электромагниты и т. п.).

Такие системы представляют собой типичный пример систем автоматического регулирования.

Техника автоматического регулирования

Принцип, по которому построены техника автоматического регулирования, состоит в том, что регулятор изменяет регулирующее воздействие при отклонении регулируемой переменной от заданного значения независимо от причин, вызвавших это отклонение. Таким образом, в зависимости от значения выходного сигнала объекта регулятор изменяет его входной сигнал. Вот о том, из чего состоит техника автоматического регулирования, мы и поговорим в этой статье.


Термины и определения

(в соответствии с DIN 19226)

Управление с обратной связью

Процессы управления с обратной связью осу­ществляются в автомобиле в самых различных системах. В качестве примера можно привести регулирование температуры охлаждающей жидкости двигателя, управление кондиционе­ром и многие другие операции регулирования и управления двигателем (контроль детонации, контроль значения λ), трансмиссией (управле­ние сцеплением) и шасси (контроль рыскания).

Системы управления без обратной связи

Довольно часто используются также системы регулирования и управления без обратной связи (с разомкнутым контуром). В этом случае замкну­тая система управления заменяется на разомкну­тую. Этот процесс возможен только в том случае, если поведение управляемой системы точно из­вестно, и на нее не воздействуют никакие (не под­дающиеся измерению) возмущения z.

Управление с обратной связью является пред­почтительным, поскольку при этом со стабиль­ностью управляемой величины не возникает проблем, связанных с отсутствием обратной связи. Поскольку вышеупомянутые условия на практике имеют место весьма редко, исполь­зование систем с обратной связью в большин­стве случаев является неизбежным.

Комбинация замкнутых (с обратной связью) и разомкнутых (без обратной связи) конту­ров управления

Система регулирования с разомкнутым контуром (с регулированием по входному воздействию и возмущению

На практике, с целью использования преиму­ществ обеих структур, часто осуществляется комбинирование замкнутых и разомкнутых контуров управления. При этом установленные связи между опорной переменной, возмуще­нием, корректирующей переменной и управляе­мой переменной используются в максимальной степени с целью реализации системы управ­ления с разомкнутым контуром.

Каскадное управление

Проектирование блоков управления (кон­троллеров) упрощается за счет разделения задачи управления на несколько поддающихся управлению подзадач. Имеют место дополнительные преимущества в отношении динамической характеристики системы, свя­занные с тем, что возмущения, действующие во внутреннем контуре управления, корректи­руются там до того, как они начинают влиять на внешний контур управления. Это ускоряет весь процесс управления. Кроме того, это по­зволяет линеаризовать нелинейные характери­стические кривые внутреннего контура.

Каскадное управление применяется во многих автомобильных системах регулиро­вания, например, в системах регулирования электрического тока электрогидравлических исполнительных механизмов или в системах позиционирования исполнительных механиз­мов с электроприводом.

Техника автоматического управления, элементы передачи

В отношении рабочих характеристик система управления должна отвечать четырем основ­ным требованиям:

  • Система управления должна быть стабиль­ной:
  • Система управления должна демонстриро­вать требуемую стационарную точность;
  • Реакция на скачкообразное изменение опор­ной переменной должна в достаточной сте­пени демпфироваться:
  • Система управления должна обладать доста­точным быстродействием.

Для того чтобы выполнить эти частично про­тиворечащие друг другу требования, сначала необходимо описать статические и динамиче­ские реакции элементов системы управления (самой регулируемой системы и блока управ­ления) с использованием подходящих методов, чтобы иметь возможность проанализировать реакции системы управления и спроектировать блок управления в соответствии с заданными требованиями. Это описание может быть вы­полнено во временном диапазоне (например, при помощи дифференциальных уравнений) или в определенной полосе частот (например, с использованием функции преобразования или диаграммы Боде).

Краткие сведения о некоторых важных элементах передачи

Задачей синтеза системы управления яв­ляется разработка для данной регулируемой системы соответствующего блока управления (структуры и параметров элемента передачи), который отвечает вышеуказанным требова­ниям. Для этой цели существует ряд процедур (например, динамическая коррекция в диа­грамме Боде, метод корневого годографа, де­тализация полюсов, регулятор Риккати в пространстве состояний), которые индиви­дуально дополняются теми или иными конкретными функциями или шагами проектирования.

Описанная ниже систематизированная про­цедура показала свою полезность на практике.

Разработка задачи управления

Задача управления

Как правило, задача управления не формулиру­ется специально как таковая, но должна быть вы­работана на основании требований, предъявляе­мых к конкретному техническому процессу. Это подразумевает определение задач управления с использованием замкнутых и разомкнутых систем с целью решения вопросов, касающихся того, что должно быть достигнуто при помощи функции управления, и с применением каких переменных будет описываться цель управления. В качестве примера можно привести контролируемое пере­ключение передач типа потребность-реакция в автоматической трансмиссии. С помощью этой функции давление переключающей муфты должно быть во время переключения передачи приведено в соответствие с градиентом скорости таким образом, чтобы время проскальзывания оставалось постоянным при любых условиях ра­боты, даже при изменении тех или иных параме­тров (например, коэффициента трения).

Система управления и блок-схемы

Блок-схема системы автоматического управления контролируемым переключением передач типа потребность-реакция в автоматической трансмиссии

При помощи этой диаграммы и блок-схемы можно достичь фундаментального системного понимания оперативных связей в системе. Пока система (механическая часть, периферийные устройства, аппаратура и т.д.) находится на стадии разработки, должна предоставляться возможность оказывать влияние на структурное проектирование системы с использованием об­щего мехатронного подхода. В качестве примера можно привести процесс заполнения жидкостью рабочего цилиндра гидропривода выключения сцепления. Система должна быть разработана таким образом, чтобы на основе поперечных се­чений, объемов и уплотнений было обеспечено ее воспроизводимое поведение при как можно меньшем времени запаздывания.

Регулируемая система

Затем выполняется идентификация регули­руемой системы. Это может быть сделано теоретически (посредством моделирования) или практически, например, путем измерения реакции на ступенчатое воздействие или опре­деления частотной характеристики. Рекомен­дуется использовать оба метода и выполнить соответствующую коррекцию. Идентификация системы представляет собой всеобъемлющий процесс, зависящий от поставленной задачи. Иногда бывает достаточно определить только базовый тип и порядок регулируемой системы.

Разработка блока управления

Блок управления (контроллер) разрабатыва­ется на основе результатов идентификации системы — это главная задача проектирования управляющего устройства. Сначала рекомен­дуется проработать его теоретически и с ис­пользованием методов моделирования. На этом этапе следует определить параметры блока управления. Когда этот этап будет в до­статочной степени проработан, следует перейти к испытаниям на реальной регулируемой си­стеме — на стенде или на автомобиле. Обычно в целях достижения дальнейшей оптимизации периодически выполняются рекурсивные шаги.

Критерии проектирования

В дополнение к этой фундаментальной по­следовательности действий следует учитывать следующие дополнительные критерии.

Цифровое (дискретное) управление

Большинство операций управления на авто­мобиле осуществляется с использованием микропроцессоров. В этом случае необходимо надлежащим образом определить время вы­борки, исходя из динамической характеристики системы. При этом необходимо обеспечить условия для того, чтобы все алгоритмы функ­ций могли быть вычислены в течение времени, которое имеется между двумя выборками.

Нелинейность

Во многих случаях простых линейных методов, описанных выше, оказывается недостаточно, поскольку реальные регулируемые системы со­держат нелинейные элементы (например, нели­нейными являются характеристики регуляторов давления, сцепления и т.д.). В простых случаях, связанных со статическими, непрерывными не­линейностями, они могут быть скомпенсированы посредством дополнительного инвертирующего элемента передачи. В случаях операций регули­рования с малыми амплитудами сигнала относи­тельно рабочей точки уравнения, описывающие работу системы могут быть линеаризованы в об­ласти этой точки. В противном случае требуется применение более сложных процедур.

Структурные переключения

Многие операции управления с замкнутым контуром сначала инициируются сигналами в разомкнутом контуре управления (например, сначала следует заполнить привод сцепления гидравлической жидкостью, затем подать пере­ключающее давление, затем запустить после­довательность переключения передачи). В этом случае при переключении с управления с разом­кнутым контуром на управление с замкнутым контуром необходимо обеспечить, чтобы это переключение происходило плавно, и запоми­нающие устройства (интеграторы элементов I) правильно инициализировались.

Робастность

Адаптивные блоки управления

Мотивация

Поведение регулируемых систем часто бывает непостоянным. Во многих случаях происходит изменение таких параметров, как постоянные времени и коэффициенты усиления. Может из­меняться даже структура системы. Адаптивное регулирование позволяет привести процессы управления с замкнутым и разомкнутым кон­турами в соответствие с изменяющимся пове­дением системы. Примеры:

Допуски изготовления

Не все изделия из одной партии на 100% иден­тичны. Поскольку индивидуальная настройка сложна, система должна автоматически адапти­роваться к различным параметрам (например, см. данные для регулировки автоматической трансмиссии).

Износ

Изменение параметров вследствие износа происходит на воспроизводимом (например, увеличение рабочего хода сцепления) или слу­чайном (например, изменение коэффициента трения дисков) уровне. Адаптация позволяет компенсировать эти изменения (например, адаптация к изменениям рабочего хода для ав­томатических сцеплений).

Зависимость от третьей переменной (например, температуры)

Вязкость рабочих жидкостей сильно зависит от температуры. Поскольку эти колебания мо­гут иметь краткосрочный характер (например, повторяться каждый день), они должны быть скомпенсированы (например, при управлении блокировочной муфтой гидротрансформа­тора).

Зависимость от рабочей точки

Нелинейные системы часто линеаризуются в области рабочей точки, а затем управление осуществляется линейным контроллером (по­ведение системы при малой амплитуде сиг­нала). Адаптация дает возможность учитывать различия в поведении системы в области рабо­чей точки (например, адаптация давления при чередующихся переключениях передач, произ­водимых автоматической трансмиссией).

Различные требования к решению этих про­блем на уровне регулирования с замкнутым контуром вызывают потребность в адаптивных системах, описание и определение которых приведено ниже.

Определение адаптивного управления

Поведение системы управления адаптируется к изменениям свойств регулируемой системы и ее сигналов. Процедура адаптации, как пра­вило, разделяется на два этапа:

  • Идентификация изменений поведения си­стемы (параметров) во времени;
  • Адаптация закона регулирования с замкну­тым или разомкнутым контуром, как реакция на изменение поведения системы.

Адаптация системы управления без обратной связи

Адаптивная система управления без обратной связи

Адаптация системы управления с обратной связью

Как правило, первоначально рекомендуется выполнить адаптацию с разомкнутым контуром, т.е. для адаптации используются известные и метрологически регистрируемые взаимосвязи. Преимущества этой прямонаправленной структуры можно сравнить с преимуществами системы управления без обратной связи по сравнению с системой управления с обратной связью. Контур обратной связи, который может вызывать проблемы с устойчивостью системы, в первом случае отсутствует. На практике, в про­мышленном применении в основном использу­ются адаптивные системы без обратной связи.

Замечания по проектированию

Перед тем как приступить к проектированию системы адаптивного регулирования, следует прояснить следующие вопросы:

Вы уже знакомы с некоторыми областями использования компьютеров. Знаете, что с помощью компьютера можно печатать книги, выполнять чертежи и рисунки; быстро передавать информацию на большие расстояния, создавать компьютерные справочники на любую тему; производить расчеты. Существует еще одно важное приложение компьютерной техники — использование компьютеров для управления.


Эта книга провозгласила рождение новой науки — кибернетики.

Не случайно время появления этого научного направления совпало с созданием первых ЭВМ.

Н. Винер предвидел, что использование ЭВМ для управления станет одним из важнейших их приложений, а для этого потребуется глубокий теоретический анализ самого процесса управления. Этому и посвящена наука кибернетика.

Что такое управление

Управление есть целенаправленное воздействие одних объектов, которые являются управляющими, на другие объекты — управляемые.

Простейшая ситуация — два объекта: один — управляющий, второй — управляемый. Например: человек и телевизор, хозяин и собака, светофор и автомобиль. В первом приближении взаимодействие между такими объектами можно описать схемой, изображенной на рисунке ниже:


В приведенных примерах управляющее воздействие производится в разных формах: человек нажимает кнопку или поворачивает ручку управления телевизором; хозяин голосом подает команду собаке; светофор разными цветами управляет движением автомобилей и пешеходов на перекрестке.

С кибернетической точки зрения все варианты управляющих воздействий следует рассматривать какуправляющую информацию, передаваемую в форме команд.

В данном выше определении сказано, что управление есть целенаправленный процесс, т. е. команды отдаются не случайным образом, а с вполне определенной целью. В простейшем случае цель может быть достигнута после выполнения одной команды. Для достижения более сложной цели бывает необходимо выполнить последовательность (серию) команд.

Последовательность команд по управлению объектом, выполнение которой приводит к достижению заранее поставленной цели, называется алгоритмом управления.

В таком случае объект управления можно назвать исполнителем управляющего алгоритма. Значит, в приведенных выше примерах телевизор, собака, автомобиль являются исполнителями управляющих алгоритмов, направленных на вполне конкретные цели (найти интересующую передачу, выполнить определенное задание хозяина, благополучно проехать перекресток).

С точки зрения кибернетики взаимодействие между управляющим и управляемым объектами рассматривается какинформационный процесс. С этой позиции оказалось, что самые разнообразные процессы управления в природе, технике, обществе происходят сходным образом, подчиняются одним и тем же принципам.

Вопросы и задания:

1. Кто был основателем кибернетики? В каком году вышла первая книга по кибернетике?

2. Что такое управление?

3. Что представляет собой управляющее воздействие с точки зрения кибернетики?

4. Что такое алгоритм управления?

5. Определите, кто играет роль управляющего и кто (или что) играет роль объекта управления в следующих системах: школа, класс, самолет, стая волков, стадо коров.

6. Для систем управления, выявленных в предыдущей задаче, назовите некоторые команды управления и скажите, в какой форме они отдаются.

Управление с обратной связью

КРАСНЫЙ — ЗЕЛЕНЫЙ — ЖЕЛТЫЙ — КРАСНЫЙ — ЗЕЛЕНЫЙ — ЖЕЛТЫЙ — КРАСНЫЙ и т. д.

Такой алгоритм называется линейным или последовательным.

Из этих примеров можно сделать вывод, что управление происходит эффективнее, если управляющий не только отдает команды, т. е. работает прямая связь, но и принимает информацию от объекта управления о его состоянии. Этот процесс называется обратной связью.

Обратная связь — это процесс передачи информации о состоянии объекта управления управляющему объекту.

Статьи к прочтению:

Системы управления с обратной связью


Похожие статьи:

Корень дерева уникален, это единственный узел в дереве, который не имеет родителя. Начав от корневого узла и следуя дочерним указателям, можно найти все…

5) обратная связь по выходу OFB 28. Режим хорошо подходит для шифрования ключей. 1)CBC 2)CFB 3)OFB ECB 29. Какими авторами была предложена первая версия…

§ 26. Управление с обратной связью


Основные темы параграфа:

♦ линейный алгоритм;
♦ обратная связь;
♦ модель управления с обратной связью;
♦ циклы и ветвления в алгоритмах;
♦ системы с программным управлением.

Линейный алгоритм

КРАСНЫЙ-ЗЕЛЕНЫЙ-ЖЕЛТЫЙ-КРАСНЫЙ-ЗЕЛЕНЫЙ-ЖЕЛТЫЙ-КРАСНЫЙ и т. д.

Такой алгоритм называется линейным или последовательным.

Обратная связь

Из этих примеров можно сделать вывод, что управление происходит эффективнее, если управляющий не только отдает команды, т. е. работает прямая связь, но и принимает информацию от объекта управления о его состоянии. Этот процесс называется обратной связью.

Обратная связь — это процесс передачи информации о состоянии объекта управления управляющему объекту.


Модель управления с обратной связью

Управлению с обратной связью соответствует схема, изображенная на рис. 5.3.

Схема системы управления с обратной связью


Циклы и ветвления в алгоритмах

Вот как можно записать алгоритм поиска нужной передачи по телевизору:

ВКЛЮЧИТЬ ТЕЛЕВИЗОР НА 1-М КАНАЛЕ
ПОКА НЕ БУДЕТ НАЙДЕНА ИСКОМАЯ ПЕРЕДАЧА,
ПОВТОРЯТЬ:
ПЕРЕКЛЮЧИТЬ ТЕЛЕВИЗОР НА СЛЕДУЮЩИЙ
КАНАЛ

В этом алгоритме содержится указание на повторение одних и тех же действий (переключить канал) по некоторому условию (пока не найдем передачу). Такой алгоритм называется циклическим.

Назовем пересекающиеся дороги: Дорога-1 и Дорога-2. Логика управления движением описывается следующим алгоритмом:

ЕСЛИ НА ДОРОГЕ-1 СКОПИЛОСЬ БОЛЬШЕ МАШИН
ТО ОТКРЫТЬ ДВИЖЕНИЕ ПО ДОРОГЕ-1
ИНАЧЕ ОТКРЫТЬ ДВИЖЕНИЕ ПО ДОРОГЕ-2

Здесь по определенному условию происходит выбор одного из двух действий. Такой алгоритм называется ветвящимся. Проверка выполнения условия и в первом и во втором примере стала возможна благодаря обратной связи: телезритель наблюдает за состоянием телевизора, милиционер наблюдает за состоянием движения на дорогах.

При наличии обратной связи алгоритм может быть более гибким, допускающим проверку условий, ветвления и циклы.


Системы с программным управлением

Принцип управления с обратной связью и есть основной закон, открытый кибернетической наукой. Он действует в системах самой разной природы: технических, биологических, социальных.

Системы, в которых роль управляющего объекта поручается компьютеру, называются автоматическими системами с программным управлением.

Для функционирования такой системы, во-первых, между компьютером и объектом управления должна быть обеспечена прямая и обратная связь, во-вторых, в память компьютера должна быть заложена программа управления (алгоритм, записанный на языке программирования). Поэтому такой способ управления называют программным управлением.

Программное управление широко используется в технических системах: автопилот в самолете, автоматическая линия на заводе, ускоритель элементарных частиц в физической лаборатории, атомный реактор на электростанции и пр.

Коротко о главном

Управляющая информация передается по линии прямой связи в виде команд управления; по линии обратной связи передается информация о состоянии объекта управления.

Без учета обратной связи алгоритм управления может быть только линейным, при наличии обратной связи алгоритм может иметь сложную структуру, содержащую ветвления и циклы.

Системы, в которых роль управляющего объекта выполняет компьютер, называются автоматическими системами с программным управлением.

Вопросы и задания

И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс
Отослано читателями из интернет-сайтов


Планы уроков информатики, скачать тесты бесплатно, всё для учителя и школьника в подготовке к уроку по информатике 9 класс, домашние задания, вопросы и ответы


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.

Читайте также: