Природа ферромагнетизма реферат по физике

Обновлено: 28.06.2024

Ферромагнетики — вещества, характеризуются наличием областей спонтанной намагниченности. Ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля. При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних… Читать ещё >

Ферромагнетики и их свойства. Природа ферромагнетизма ( реферат , курсовая , диплом , контрольная )

Ферромагнетики — вещества, характеризуются наличием областей спонтанной намагниченности. Ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля.

Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.

При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.

Ферромагнетики притягиваются магнитом.

Природа ферромагнетизма. Ферромагнетизм объясняется магнитными свойствами электронов. Электрон обладает собственным магнитным полем. В большинстве кристаллов магнитные поля электронов взаимно компенсируются благодаря попарной антипараллельной ориентации магнитных полей электронов. Лишь в некоторых кристаллах, например в кристаллах железа, возникают условия для параллельной ориентации собственных магнитных полей электронов. В результате этого внутри кристалла ферромагнетика возникают намагниченные области протяженностью 10−2 — 10−4 см. Эти самопроизвольно намагниченные области называются доменами (рис. 191, а).

Ферромагнетики и их свойства. Природа ферромагнетизма.

В отдельных доменах магнитные поля имеют различные направления и в большом кристалле взаимно компенсируют друг друга. При внесении ферромагнитного образца во внешнее магнитное поле происходит упорядочение ориентации магнитных полей отдельных доменов.

С увеличением магнитной индукции внешнего поля возрастает степень упорядоченности ориентации отдельных доменов — магнитная индукция возрастает. При некотором значении индукции внешнего поля наступает полное упорядочение ориентации доменов (рис. 191, б), возрастание магнитной индукции прекращается. Это явление называется магнитным насыщением.

Цель данного реферата заключается в том, чтобы углубленно изучить ферромагнетики, их основные свойства и область применения.
Для выполнения поставленной цели были выдвинуты следующие задачи:
Дать определение ферромагнетикам;
Выяснить какими свойствами они обладают;

Содержание работы

Цели и задачи……………………………………………………………………3
Введение……………………………………………………………………….…4
Свойства ферромагнетиков………………………………………..…………. 5
Процесс перемагничивания ферромагнетика……………………..…………..9
Гипотеза элементарных магнитов……….………………………….………. 13
Отличие ферромагнетиков от диа- и парамагнетиков……………….……..15
Спиновая природа ферромагнетизма………………………………………..18
Применение ферромагнетиков……………………………….………….……21
Заключение……………………………………………………………………. 22
Список литературы……………………………………………………………..23

Файлы: 1 файл

Реферат Ферромагнетизм.doc

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение

высшего профессионального образования

Выполнил студент гр. Б3205а

Проверил доцент кафедры общей физики Дымченко Н.П. /________/

Свойства ферромагнетиков……………… ………………………..…………. 5

Процесс перемагничивания ферромагнетика……………………..………….. 9

Гипотеза элементарных магнитов……….………………………….………. 13

Отличие ферромагнетиков от диа- и парамагнетиков……………….……..15

Спиновая природа ферромагнетиз ма………………………………………..18

Применение ферромагнетиков………… …………………….………….……21

Цель данного реферата заключается в том, чтобы углубленно изучить ферромагнетики, их основные свойства и область применения.

Для выполнения поставленной цели были выдвинуты следующие задачи:

  1. Дать определение ферромагнетикам;
  2. Выяснить какими свойствами они обладают;
  3. Выявить отличительные особенности ферромагнетиков от диа- и парамагнетиков;
  4. Изучить формулы и расчеты, характерные для ферромагнетиков;
  5. Определить в каких отраслях применяются ферромагнетики.

Ферромагнетики – твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры. К ним относятся: сталь, железо, никель, кобальт, их сплавы и др. Они имеют магнитную проницаемость, превышающую проницаемость вакуума в несколько тысяч раз. Поэтому все электротехнические устройства, использующие магнитные поля для преобразования энергии, обязательно имеют конструктивные элементы, изготовленные из ферромагнитного материала и предназначенные для проведения магнитного потока. Такие элементы называются магнитопроводы.

Магнитные свойства веществ зависят от магнитных свойств элементарных носителей магнетизма - движущихся внутри атомов электронов, а также от совместного действия их групп. Электроны в атомах, двигаясь по орбитам вокруг ядра атома, образуют элементарные токи или магнитные диполи, которые характеризуются магнитным моментом m. Величина его равна произведению элементарного тока i и элементарной площадки s, ограниченной элементарным контуром

Вектор m направлен перпендикулярно к площадке s по правилу буравчика. Магнитный момент тела представляет собой геометрическую сумму магнитных моментов всех диполей. Кроме орбитальных моментов, электроны, вращаясь вокруг своих осей, создают еще спиновые моменты, которые играют важнейшую роль в намагничивании ферромагнетиков.

Рис. 1. Ферромагнетик — упорядочивание магнитных моментов. 1

1 Журнал экспериментальной и теоретической физики (ЖЭТФ), Вып. 1, Январь 1999

В ферромагнетиках образуются отдельные самопроизвольные намагниченные области (от 10-2 до 10-6 см 3 ), спиновые моменты которых ориентируются параллельно. Если ферромагнетик не находится во внешнем поле, то магнитные моменты отдельных областей разнонаправлены и суммарный магнитный момент тела равен нулю - ферромагнетик не намагничен. Внесение ферромагнетика во внешнее магнитное поле вызывает поворот магнитных моментов части областей в направлении внешнего поля и рост размеров тех областей, направления магнитных моментов которых близки к направлению внешнего поля. В результате ферромагнетик намагничивается. Зависимость магнитной индукции от напряженности магнитного поля В = f(Н) нелинейна и изображается кривой начального намагничивания. Эту зависимость впервые открыл русский ученый А. Г. Столетов. Предложенный им экспериментальный метод заключался в измерении магнитного потока Фm в ферромагнитных кольцах при помощи баллистического гальванометра.

Тороид, первичная обмотка которого состояла из N1 витков, имел сердечник из исследуемого материала (например, отожженного железа). Вторичная обмотка из N2 витков была замкнута на баллистический гальванометр G (рис. 1). Обмотка N1 включалась в цепь аккумуляторной батареи Б. Напряжение, приложенное к этой обмотке, а, следовательно, и силу тока I1 в ней можно было изменять с помощью потенциометра R1. Направление тока изменялось посредством коммутатора .

1 Журнал экспериментальной и теоретической физики (ЖЭТФ), Вып. 1, Январь 1999

При изменении направления тока в обмотке N1 на противоположное, в цепи обмотке N2 возникал кратковременный индукционный ток и через баллистический гальванометр проходил электрический заряд q, который равен отношению взятого с обратным знаком изменения потокосцепления вторичной обмотки к электрическому сопротивлению R в цепи гальванометра. Если сердечник тонкий, а площадь поперечного сечения равна S, то магнитная индукция поля в сердечнике равна:

Напряженность магнитного поля в сердечнике вычисляется по следующей формуле:

где Lср – длина средней линии сердечника. Зная B и H можно найти намагниченность J:

Ферромагнетики сильно втягиваются в область более сильного магнитного поля. Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы. При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.

Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H, а при перемагничивании связь между B и H становится неоднозначной.

Как видно из рис.1, при наблюдается магнитное насыщение.

При зависимость магнитной индукции В от Н нелинейная, а при – линейная (рис.2).

Рис. 1 - зависимость намагниченности J от Н 1 Рис. 2 - зависимость магнитной индукции В от Н 2

Функции B(H) имеют особое значение, т.к. только с их помощью можно исследовать электромагнитные процессы в цепях, содержащих элементы, в которых магнитный поток проходит в ферромагнитной среде. Эти функции бывают двух видов: кривые намагничивания и петли гистерезиса.

1 Журнал экспериментальной и теоретической физики (ЖЭТФ), Вып. 1, Январь 1999

Процесс перемагничивания ферромагнетика

Пусть первоначально ферромагнетик был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения.

Если в процессе намагничивания довести напряженность поля до некоторого значения, а затем начать уменьшать, то уменьшение индукции будет происходить медленнее, чем при намагничивании и новая кривая будет отличаться от первоначальной. Кривая рис.1 – кривая намагничивания 1 изменения индукции при увеличении

напряженности поля для предварительно полностью размагниченного вещества называется начальной кривой намагничивания. На рис. 1 она показана утолщенной линией.

После нескольких (около 10) циклов изменения напряженности от положительного до отрицательного максимальных значений зависимость B=f(H) начнет повторяться и приобретет характерный вид симметричной замкнутой кривой, называемой петлей гистерезиса. Гистерезисом называют отставание изменения индукции от напряженности магнитного поля. Явление гистерезиса характерно вообще для всех процессов, в которых наблюдается зависимость какой-либо величины от значения другой не только

1 Журнал экспериментальной и теоретической физики (ЖЭТФ), Вып. 1, Январь 1999

в текущем, но и в предыдущем состоянии, т.е. B2=f(H2, H1) - где H2 и H1 - соответственно текущее и предыдущее значения напряженности.

Петли гистерезиса можно получить при различных значениях максимальной напряженности внешнего поля Hm (рис. 1). Геометрическое место точек вершин симметричных циклов гистерезиса называется основной кривой намагничивания. Основная кривая намагничивания практически совпадает с начальной кривой.

Симметричная петля гистерезиса, полученная при максимальной напряженности поля Hm (рис.1), соответствующей насыщению ферромагнетика, называется предельным циклом.

Для предельного цикла устанавливают также значения индукции Br при H = 0, которое называется остаточной индукцией, и значение Hc при B = 0, называемое коэрцитивной силой. Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.

Форма и характерные точки предельного цикла определяют свойства ферромагнетика. Вещества с большой остаточной индукцией, коэрцитивной силой и площадью петли гистерезиса (кривая 1 рис. 2) называются магнитнотвердыми. Они используются для изготовления постоянных магнитов. Вещества с малой остаточной индукцией и площадью петли гистерезиса (кривая 2 рис. 2) называются магнитномягкими и используются

1 Журнал экспериментальной и теоретической физики (ЖЭТФ), Вып. 1, Январь 1999

для изготовления магнитопроводов электротехнических устройств, в особенности работающих при периодически изменяющемся магнитном потоке.

При перемагничивании ферромагнетика в нем происходят необратимые преобразования энергии в тепло. Пусть магнитное поле создается обмоткой, по которой протекает ток i. Тогда работа источника питания обмотки, затрачиваемая на элементарное изменение рис.6магнитного потока равна

Если отнести эту работу на единицу объема вещества, получим

Графически эта работа представляет собой площадь элементарной полоски петли гистерезиса (рис. 1 а)).

Рис. 1 – петли гистеризиса 1

Полная работа по перемагничиванию единицы объема вещества определится в виде интеграла по контуру петли гистерезиса

1 Журнал экспериментальной и теоретической физики (ЖЭТФ), Вып. 1, Январь 1999

Контур интегрирования можно разделить на два участка, соответствующих изменению индукции от -Bm до Bm и изменению от Bm до -Вm. Интегралы на этих участках соответствуют заштрихованным площадям рис. 1 а) и б). На каждом участке часть площади соответствует отрицательной работе и после вычитания ее из положительной части мы на обоих участках получим площадь, ограниченную кривой петли гистерезиса (рис. 1 в)).

Обозначая энергию, отнесенную к единице объема вещества, затрачиваемую на перемагничивание за один полный симметричный цикл, через W'h=A' получим:

Из предыдущего параграфа следует, что элементарными носителями ферромагнетизма являются электронные спины. Однако возникает вполне законный вопрос почему же электронные спины создают ферромагнетизм не во всех веществах, а только в некоторых, причем очень немногих? Почему ферромагнитны железо, никель, почему не ферромагнитны медь и серебро? Ведь и в атомах меди электроны вращаются вокруг ядра, обладая орбитальными магнитными моментами, и в атомах меди электроны вращаются вокруг своей оси и, таким образом, обладают спиновыми магнитными моментами.

Ответ следует, очевидно, искать в специфике атомного строения ферромагнитных веществ.

В атоме с достаточно большим порядковым номером вокруг ядра вращается значительное количество электронов. При вращении вокруг ядра электроны располагаются некоторыми слоями. Максимальное число электронов в слое (оболочке) равно 2n2, где n – порядковый номер слоя. Так, например, в первом слое электронов может быть всего 2, во втором слое 2·22, или 8, а в третьем 2·32, или 18, а в четвертом 32 электрона и т.п.

При переходе от одного атома к другому в порядке увеличения его атомного номера с меньшими порядковыми номерами и лишь потом начинают заполняться более отдаленные слои. Так, в атоме водорода всего один электрон, и он будет находиться в первом электронном слое. Атом гелия (его порядковый номер два) имеет два электрона, и они оба находятся в первом слое. У химического элемента лития, имеющего порядковый номер три, - три электрона. Эти электроны не могут быть размещены в первом слое, поскольку, как указывалось выше, максимальное количество электронов, которое может быть в первом слое, равно двум. Следовательно, третий электрон в атоме лития расположен во втором слое. У следующих по порядку элементов – бериллия, бора, углерода и т.д. – будет все больше и больше заполняться второй слой. У неона, имеющего порядковый номер десять, этот слой окажется полностью заполненным. Очевидно, у следующего элемента – натрия – начинает заполняться третий слой.

В слоях следует различать подслои. Первый подслой носит название s–подслоя и находящиеся в нем электроны называются s-электронами. Второй подслой называется p-подслоем, третий – d-подслоем, четвертый – f-подслоем. Соответственно этому имеем s, p, d, или f-электроны. Согласно квантовой теории, число электронов в каждом подслое должно быть ограничено. Так, в s-подслое их будет не более двух, в p-подслое – не более 6, в d-подслое – не более 10, в f-подслое число их не может превышать 14. Максимальное число электронов в слое равно 2n2, поэтому можно подсчитать также, какое число подслоев имеет каждый слой.

Первый слой, содержит всего 2 электрона, не имеет подслоев. Второй слой, который может иметь 8 электронов, имеет два подслоя: s-подслой (с двумя электронами) и p-подслой (с шестью электронами). Для обозначения того, в каком подслое какого слоя находится электрон, обозначают номер слоя числом, за которым ставят букву, обозначающую подслой. Например, запись 2s означает, что электрон принадлежит к первому подслою второго слоя, а запись 4d означает, что электрон принадлежит к третьему подслою четвертого слоя (таблица 1).

Таблица 1 - Максимальное число электронов в подслое каждого слоя

Первый слой Второй слой Третий слой Четвертый слой
1 2s 2p 3s 3p 3d 4s 4p 4d 4f
2 2 6 2 6 10 2 6 10 14

Последовательный характер заполнения слоев при переходе к химическим элементам с большими порядковыми номерами нарушается в третьем слое. Это значит, что наблюдаются случаи, когда третий слой еще не совсем заполнен, а уже начинает заполняться четвертый слой. Заметим, что у заполненных слоев и подслоев как орбитальные, так и спиновые магнитные моменты оказываются взаимно скомпенсированными, т.е. если направленные в одну сторону спины условно считать положительными, а в противоположную сторону – отрицательными, то число плюс и минус спинов окажется равным.


Рисунок 10 - Электронные слои и подслои в атоме железа.

На рисунке 10 схематически представлены электронные слои и подслои в атоме железа. Видно, что в атоме железа целиком заполнены первый и второй слои с одинаковым количеством + и – спинов в каждом. Одинаковое число + и – спинов находится также во внешнем, четвертом слое. Что же касается третьего слоя, то в нем целиком, с одинаковым числом + и – спинов, заполнены подслои 3s и 3p, а подслой 3d не заполнен и содержит 5 положительных спинов и 1 отрицательный.

Для других ферромагнетиков также характерно наличие внутренних незаполненных электронных слоев. Для железа, никеля и кобальта незаполненными являются 3d-подслой, для лантанидов подслой 4f.

Наличие внутренних незаполненных слоев в атоме является необходимым, но еще недостаточным условием для возникновения ферромагнетизма. В самом деле, внутренние незаполненные слои мы встречаем не только у ферромагнитных элементов. Например, незаполненные слои имеют атомы марганца, хрома, ванадия, все лантаниды, а между тем марганец, хром и ванадий не ферромагнитны, так же как и лантаниды (за исключением гадолиния, эрбия, диспрозия, тербия, тулия и гольмия).

Лантаниды - химические элементы, очень сходные по своим химическим свойствам с лантаном и имеющие в таблице Менделеева порядковые номера от 57 до 70.

Кроме того, сами атомы ферромагнитного вещества, будучи изолированными друг от друга, не проявляют никаких ферромагнитных свойств.

Обменное воздействие характеризуется так называемым интегралом обмена, который очень сильно зависит от расстояния между атомами в кристаллической решетке. При значительных расстояниях между атомами это взаимодействие равно нулю. С уменьшением расстояния взаимодействие растет, интеграл обмена положителен. При положительном значении интеграла обмена взаимодействие приводит к параллельной ориентации спинов, что в свою очередь ведет к самопроизвольной или спонтанной намагниченности вещества – основного свойства ферромагнетизма. При дальнейшем уменьшении расстояния интеграл обмена, пройдя максимальное значение, начинает убывать и становиться отрицательным. При отрицательном значении интеграла обмена спины электронов самопроизвольно устанавливаются антипараллельно друг другу, что приводит к особому явлению, называемому антиферромагнетизмом. Как показали исследования, интеграл обмена положителен, т.е. вещество обладает ферромагнитными свойствами, если отношение диаметра атома к диаметру незаполненной оболочки больше 1,5.

Зависимость интеграла обмена от отношения диаметра атома к диаметру незаполненной оболочки представлена на рисунке 11 и таблице 2.

Таблица 2 - Зависимость магнитных свойств от отношения диаметра атома к диаметру незаполненной его оболочки

Элемент Диаметр атома a, А Диаметр незаполненного слоя d, А Отношение а/d Примечание
Марганец 2,52 1,71 1,47 Не ферромагнитен
Железо 2,50 1,53 1,63 Ферромагнитен
Кобальт 2,51 1,38 1,82 Ферромагнитен
Никель 2,50 1,27 1,97 Ферромагнитен
Платина 2,77 2,25 1,23 Не ферромагнитна
Гадолиний 3,35 1,08 3,10 Ферромагнитен


Рисунок 11 - Зависимость интеграла обмена от отношения диаметра атома к диаметру незаполненной оболочки.

Итак, можно сделать следующие выводы:

Элементарными носителями ферромагнетизма являются электронные спины.

Ферромагнетизм присущ тем элементам, в которых:

а) имеются внутренние незаполненные слои;

б) отношение диаметра атома в кристаллической решетке к диаметру незаполненного слоя больше 1,5 (интеграл обмена положителен)

Следует также отметить, что ферромагнетизм возможен лишь в кристаллическом состоянии ниже некоторой температуры, характерной для каждого ферромагнетика [7, с. 32-41].

Дальнейшее развитие теории ферромагнетизма Френкелœем и Гейзенбергом, а также ряд экспериментальных фактов позволили узнать природу эле­ментарных носителœей ферромагнетизма. Сегодня установлено, что магнитные свойства ферромагнетиков определяются спиновыми магнитными моментами электронов. Установлено также, что ферромагнитными свойствами могут обладать только кристаллические вещества, в атомах которых имеются недостроенные внутренние электронные оболочки с нескомпенсированными спинами. В подобных кристаллах могут возникать силы, которые вынуждают спиновые магнитные моменты электронов ориентироваться параллельно друг другу, что и приводит к возникновению областей спонтанного намагничивания. Эти силы, называемые обменными силами, имеют квантовую природу - они обусловлены волновыми свойствами электронов.

Существуют вещества, в которых обменные силы вызывают антипарал­лельную ориентацию спиновых магнитных моментов электронов. Такие веще­ства называются антиферромагнетиками. Их существование теоре­тически было предсказано Л.Д.Ландау. Антиферромагнетиками являются неко­торые соединœения марганца (MnO, MnF2), желœеза (FeO, FeCl2) и многих других элементов. Стоит сказать, что для них также существует антиферромагнитная точка Кюри, при которой магнитное упорядочение спиновых магнитных моментов нарушается и антиферромагнетик превращается в ферромагнетик.

В последнее время большое значение приобрели полупроводниковые фер­ромагнетики - ферриты, химические соединœения типа MeOFe2O3, где Me - ион двухвалентного металла (Mn, Co, Ni, Cu, Fe). Οʜᴎ отличаются заметными фер­ромагнитными свойствами и большим удельным электрическим сопротивлени­ем (в миллиарды раз больше, чем у металлов). Ферриты применяются для изго­товления постоянных магнитов, ферритовых антенн, сердечников радиочастот­ных контуров, элементов оперативной памяти в вычислительной технике, для покрытия пленок в магнитофонах и видеомагнитофонах и т.д.

Природа ферромагнетизма - понятие и виды. Классификация и особенности категории "Природа ферромагнетизма" 2017, 2018.

Читайте также: