Принципы неопределенности и дополнительности в естествознании реферат

Обновлено: 02.07.2024

Согласно электромагнитной картине мира окружающий человека мир представляет собой сплошную среду — поле, которое может иметь в разных точках различную температуру, концентрировать разный энергетический потенциал, по-разному двигаться и т.д.

Содержание

Оглавление
Понятие квантово- полевой картины мира
Принцип дополнительности и соотношения неопределенностей
Принцип соответствия
Заключение
Литература

Вложенные файлы: 1 файл

семинар 5.docx

Министерство образования и науки РФ

Институт инновационного бизнеса и менеджмента

Доклад по
Концепции современного естествознания

Выполнила: Студентка 1 курса

Понятие квантово- полевой картины мира

Принцип дополнительности и соотношения неопределенностей

Понятие квантово- полевой картины мира

Согласно электромагнитной картине мира окружающий человека мир представляет собой сплошную среду — поле, которое может иметь в разных точках различную температуру, концентрировать разный энергетический потенциал, по-разному двигаться и т.д. Сплошная среда может занимать значительные области пространства, ее свойства изменяются непрерывно, у нее нет резких границ. Этими свойствами поле отличается от физических тел, имеющих определенные и четкие границы. Разделение мира на тела и частицы поля, на поле и пространство является свидетельством существования двух крайних свойств мира — дискретности и непрерывности. Дискретность (прерывность) мира означает конечную делимость всего пространственно - временного строения на отдельные ограниченные предметы , свойства и формы движения, тогда как непрерывность (континуальность) выражает единство, целостность и неделимость объекта.
В рамках классической физики дискретность и непрерывность мира первоначально выступают как противоположные друг другу, отдельные и независимые, хотя в целом и взаимодополняющие свойства. В современной физике это единство противоположностей, дискретного и непрерывного нашло свое обоснование в концепции корпускулярно -волнового дуализма.
т-ч и и
В основе современной квантово -полевой картины мира лежит новая физическая теория — квантовая механика, описывающая состояние и движение микрообъектов материального мира.
Квантовой механикой называют теорию, устанавливающую способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми
опытным путем.
Законы квантовой механики составляют фундамент изучения строения вещества. Они позволяют выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, изучить свойства элементарных частиц.
Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, то законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Например, квантовая механика позволила определить строение и понять многие свойства твердых тел, последовательно объяснить явления ферромагнетиз ма, сверхтекучести, сверхпроводимости, понять природу астрофизических объектов — белых карликов, нейтронных звезд, выяснить механизм протекания термоядерных реакций на Солнце и звездах.

Разработка квантовой механики относится к началу XX в., когда были обнаружены физические явления, свидетельствующие о неприменимости механики Ньютона и классической электродинамики к процессам взаимодействия света с веществом и процессам, происходящим в атоме. Установление связи между этими группами явлений и попытки объясни ть их на основе теории привели к открытию законов квантовой механики.
Впервые в науке представления о кванте высказал в 1900 г. М. Планк в процессе исследования теплового излучения тел. Своими исследованиями он продемонстрировал, что излучение энергии прои сходит дискретно, определенными порциями — квантами, энергия которых зависит от частоты световой волны. Эксперименты Планка привели к признанию двойственного характера света, который обладает одновременно и корпускулярными, и волновыми свойствами, представ ляя собой, таким образом, диалектическое единство этих противоположностей. Диалектика, в частности, выражается в том, что чем короче длина волны излучения, тем ярче проявляются квантовые свойства; чем больше длина волны, тем ярче проявляются волновые свойства света.
В 1924 г. французский физик Л. де Бройль выдвинул гипотезу, что корпускулярно-волновой дуализм имеет универсальный характер, т.е. все частицы вещества обладают волновыми свойствами. Позднее эта идея была подтверждена экспериментально, и принцип корпускулярно-волнового дуализма был распространен на все процессы движения и взаимодействия в микромире.
В частности, Н. Бор применил идею квантования энергии к теории строения атома. Согласно его представлениям в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома, а вокруг ядра вращаются по орбитам отрицательно заряженные электроны. Вращающиеся электроны должны терять часть своей энергии, что влечет за собой нестабильное существование атомов. Однако на практике атомы не только существуют, но и являются весьма устойчивыми. Объясняя этот вопрос, Бор предположил, что электрон, совершая движение по своей орбите, не испускает квантов. Излучение происходит лишь при переходе электрона с одной орбиты на другую, т.е. с одного уровня энергии на другой, с меньшей энергией. В момент перехода и рождается квант излучения.

В соответствии с квантово -полевой картиной мира любой микрообъект, обладая волновыми и корпускулярными свойствами, не имее т определенной траектории движения и не может иметь определенных координат и скорости (импульса). Это можно сделать только через определение волновой функции в данный момент, а потом найти его волновую функцию в любой другой момент. Квадрат модуля дает вероятность нахождения частицы в данной точке пространства.
Кроме того, относительность пространства -времени в данной картине мира приводит к неопределенности координат и скорости в данный момент, к отсутствию траектории движения микрообъекта. И если в класси ческой физике вероятностным законам подчинялось поведение большого числа частиц, то в квантовой механике поведение каждой микрочастицы подчиняется не динамическим, а статистическим законам.
Таким образом, материя двулика: она обладает и корпускулярными, и волновыми свойствами, которые проявляются в зависимости от условий. Отсюда общая картина реальности в квантово -полевой картине мира становится как бы двуплановой: с одной стороны, в нее входят характеристики исследуемого объекта, а с другой — условия наблюдения, от которых зависит определенность этих характеристик. Это означает, что картина реальности в современной физике является не только картиной объекта, но и картиной процесса его познания.
Итак, ушли в прошлое представления о неизменности материи и возможности достичь конечного предела ее делимости. Сегодня мы рассматриваем материю с точки зрения корпускулярно -волнового дуализма. Одной из основных особенностей элементарных частиц является их универсальная взаимопревращаемость и взаимозависимость. В совр еменной физике основным материальным объектом является квантовое поле, переход его из одного состояния в другое меняет число частиц.
Кардинально меняется представление о движении, которое становится лишь частным случаем фундаментальных физических взаимодей ствий. Известно четыре вида фундаментальных физических взаимодействий: гравитационное, электромагнитное, сильное и слабое. Все они описываются на основе современного принципа близкодействия. В соответствии с ним взаимодействие каждого типа передается соответствующим полем от точки к точке. При этом скорость передачи взаимодействия всегда конечна и не может превышать скорости света в вакууме (300 000 км/с).
Окончательно утверждаются представления об относительности пространства и времени, их зависимости от м атерии. Пространство и время перестают быть независимыми друг от друга и согласно теории относительности сливаются в едином четырехмерном пространстве -времени, которое не существует вне материальных тел.
Спецификой квантово-полевых представлений о закономерности и причинности является то, что они всегда выступают в вероятностной форме, в виде так называемых статистических законов. Они соответствуют более глубокому уровню познания природных закономерностей. Таким образом, оказалось, что в основе нашего мира лежит случайность, вероятность.
Также новая картина мира впервые включила в себя наблюдателя, от присутствия которого зависели получаемые результаты исследований. Более того, был сформулирован так называемый антропныи принцип, который утверждает, что наш мир таков, каков он есть, только благодаря существованию человека. Отныне появление человека считается закономерным результатом эволюции Вселенной.

Представляя раздел теоретической физики, квантовая механика описывает физические явления, где действие по величине равнозначно постоянной Планка. Основополагающие принципы этого раздела физики это:

  • принцип неопределенности В. Гейзенберга);
  • принцип дополнительности Н. Бора.

Принцип неопределенности Гейзенберга

В квантовой механике принцип неопределенности Гейзенберга заключается в следующем: чем точнее будут измерения одной характеристики частицы, тем менее точным окажется измерение второй.

Соотношение неопределенностей задает нижний предел произведения среднеквадратичных отклонений для пары квантовых наблюдаемых. Принцип неопределенности открыт В. Гейзенбергом в 1927 г., представляя следствие принципа корпускулярно-волнового дуализма.

Соотношения неопределенностей справедливы не только в отношении идеальных измерений фон Неймана, но и для неидеальных измерений. Согласно этому принципу, у частицы не могут в одно и то же время точно измеряться скорость и положение. Принцип неопределенности применяется также в ситуации, когда не реализуется ни одна из двух крайних ситуаций: полностью неопределенная пространственная координата и импульс.

В качестве примера можно рассмотреть частицу с некоторым значением энергии. Эта частица находится в коробке с отражающими стенками, при этом она не характеризуется:

  • определенным значением импульса (с учетом его направления);
  • каким-либо определенным состоянием;
  • пространственной координатой (волновая функция частицы делокализуется в пределах всего пространства коробки).

Соотношения неопределенностей не ограничивают точность единожды произведенного измерения для любой величины (для многомерных величин предусматривается в общем случае лишь одна компонента). Соотношение неопределенностей для свободной частицы, например, не препятствует точным измерениям ее импульса, но при этом точное измерение ее координаты становится невозможным. Такое ограничение называется стандартным квантовым пределом для координаты.

Готовые работы на аналогичную тему

В математическом смысле соотношение неопределенностей в квантовой механике представляет прямое следствие свойства преобразования Фурье. Говорится о существовании точной количественной аналогии между соотношениями неопределенности Гейзенберга и свойствами сигналов или волн.

Если рассматривать переменный во времени сигнал (например, волну), то с целью точного определения частоты важно наблюдать за ним некоторое время. При этом теряется точность определения самого времени. Звук, таким образом, не может одновременно иметь:

  • точное значение времени фиксации (как очень короткий импульс);
  • точное значение частоты (как непрерывный чистый тон).

Частота волны и временное положение математически полностью аналогичны квантовому механическому импульсу частицы и координате. Если наличествует несколько идентичных копий системы в рассматриваемом состоянии, то в таком случае измеренные значения импульса и координаты будут подчиняться определенному порядку распределению вероятности (фундаментальный постулат квантовой механики). При измерении величины среднеквадратического отклонения импульса и также координаты, получаем следующую формулу:

Рисунок 1. Формула. Автор24 — интернет-биржа студенческих работ

Для трехмерного осциллятора принцип неопределенности выражает формула:

Рисунок 2. Формула. Автор24 — интернет-биржа студенческих работ

Принцип дополнительности Бора

Принцип дополнительности представляет собой один из важнейших эвристических и методологических принципов в квантовой механике. Сформулирован Н. Бором в 1927 г.

Согласно такому принципу, при полном описании квантово-механических явлений требуется применение двух дополнительных (взаимоисключающих) наборов классических понятий, совокупность которых позволяет получить исчерпывающую информацию о таких явлениях, как о целостных. Дополнительными в квантовой механике считаются энергетически-импульсная и пространственно-временная картины.

Принцип дополнительности положен в основу копенгагенской интерпретации механики квантов и анализа измерительного процесса характеристик микрообъектов. Согласно данной интерпретации, позаимствованные из классической физики, динамические характеристики микрочастицы (энергия, импульс и др.) вовсе не свойственны частице как самой по себе.

Смысл и определенные значения тех или иных характеристик электрона раскрываются в непосредственной взаимосвязи с классическими объектами. Для этих объектов такие величины одновременно могут иметь некоторое значение (условно подобный классический объект называется измерительным прибором). Роль вышеозначенного принципа дополнительности в физике оказалась настолько значимой, что Паули даже предложил назвать квантовую механик теорией дополнительности (как аналогия с теорией относительности).

Обобщение принципа дополнительности

Н. Бор предложил обобщение принципа дополнительности, придав ему гносеологический глубокий смысл. Так, всякое глубокое явление природы, к примеру, физическая система или атомный объект, не поддается однозначному определению с помощью слов нашего языка, поэтому требует для своего определения как минимум двух взаимоисключающих дополнительных понятий.

Физическая картина явления, например, и его математическое описание являются дополняющими друг друга. Физическая картина явления не придает важное значение деталям и достаточно далека от математической точности, в то время как точное математическое описание явления, напротив, затрудняет его ясное понимание.

Наука и искусство представляют два дополнительных способа исследования окружающего мира. Наука основывается на опыте и логике, а искусство - на прозрении и интуиции. Они не только не противоречат, но и дополняют друг друга.

Применение обобщающего принципа дополнительности способствовало формированию со временем концепции дополнительности, охватывающей такие сферы, как физика, психология, биология, культурология и гуманитарное знание в целом.

В становлении квантово-механических представлений важную роль сыграл выдвинутый Н.Бором в 1923г. принцип соответствия: всякая новая более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применения, причем в определенных предельных случаях новая теория переходит в старую. Так, формулы кинематики и динамики релятивистской механики переходят при скоростях, много меньших скорости света в вакууме, в формулы механики Ньютона. Волновыми свойствами обладают все тела, однако для макроскопических тел ими можно пренебречь, т.е. для них применима классическая механика.

14. Основные теории возникновения жизни

Наиболее известными к настоящему времени теориями возникновения жизни на Земле являются следующие.

Теория панспермии. Согласно этой теории жизнь была занесена на Землю извне, поэтому ее, в сущности, нельзя считать теорией возникновения жизни как таковой. Она не предлагает никакого механизма для объяснения первичного возникновения жизни, а просто переносит проблему происхождения жизни в какое-то другое место Вселенной.

Теория биохимической эволюции. Жизнь возникла в специфических условиях древней Земли в результате процессов, подчиняющимся физическим и химическим законам. Последняя теория отражает современные естественнонаучные взгляды и поэтому будет рассмотрена подробнее. Согласно данным современной науки возраст Земли составляет примерно 4,5–5 млрд. лет. В далеком прошлом условия на Земле коренным образом отличались от современных, что обусловило определенное течение химической эволюции, которая явилась предпосылкой для возникновения жизни. Другими словами, собственно биологической эволюции предшествовала предбиотическая эволюция, связанная с переходом от неорганической материи к органической, а затем к элементарным формам жизни. Это было возможным в определенных условиях, которые имели место на Земле в то время, а именно: · высокая температура, порядка 4000ОС, · атмосфера, состоящая из водяных паров, СО2, СН3, NH3, · присутствие сернистых соединений (вулканическая активность), · высокая электрическая активность атмосферы, · ультрафиолетовое излучение Солнца, которое беспрепятственно достигало нижних слоев атмосферы и поверхности Земли, поскольку озоновый слой еще не сформировался. Следует подчеркнуть одно из важнейших отличий теории биохимической эволюции от теории самопроизвольного (спонтанного) зарождения, а именно: согласно этой теории жизнь возникла в условиях, которые для современной биоты непригодны !

Содержание фундаментальных физических теорий показывает, что каждая из них описывает вполне определенные явления нашего мира: механическое или тепловое движение, электромагнитные процессы, физические процессы микромира и т.д.

Содержание работы
Файлы: 1 файл

Принципы.docx

ГОУ ВПО ВГМУ Минздравсоцразвития России

Кафедра физики и математики

Выполнила: студентка 101 группы

факультета клинической психологии

Мироненко Татьяна Андреевна

концепции современного естествознания

Тупкало Андрей Викторович

  1. Введение………………………………………………………… ………….…3
  1. Принцип суперпозиции……………………………………………… ………4
  1. Принцип неопределенности…………………………………… ………….…6
  2. Принцип дополнительности…………………………………… ….…………8
  1. Заключение…………………………………………………… ….………….10
  1. Литература…………………………………………………… ………….…..11

Содержание фундаментальных физических теорий показывает, что каждая из них описывает вполне определенные явления нашего мира: механическое или тепловое движение, электромагнитные процессы, физические процессы микромира и т.д.

Однако, наряду с этим, среди фундаментальных физических теорий существуют еще более общие законы, влияние которых распространяется на все физические процессы, все формы движения материи. Эти законы ученые назвали принципами современной физики.

Среди целой группы принципов современной физики важное место отводится таким принципам, как принцип дополнительности и соотношения неопределённостей и принцип суперпозиции.

В физике при изучении линейных систем широко используется принцип суперпозиции.

Принцип суперпозиции: общий результат воздействия на систему многих факторов равен сумме результатов воздействия каждого отдельного фактора.

Принцип суперпозиции играет большую роль во многих разделах физики и техники, в том числе и в теории колебаний и волновых процессов.

Особенно плодотворным оказалось применение принципа суперпозиции при изучении микромира. Здесь он стал одним из фундаментальных принципов, составляющих основу математического аппарата квантовой механики. Как известно, состояния микросистем описываются волновыми функциями. Из принципа суперпозиции, например, следует, что если квантово-механическая система может находиться в некоторых конкретных состояниях, описываемых волновыми функциями, то физически допустимым будет состояние, изображаемое другой волновой функцией, т.е. суперпозицией исходных волновых функций. Принцип суперпозиции в описании микромира отражает волновую природу микрочастиц.

В классической физике принцип суперпозиции - приближённый принцип, вытекающий из линейности уравнений движения соответствующих систем (что обычно является хорошим приближением для описания реальных систем), например уравнений Максвелла для электромагнитного поля. Таким образом, он вытекает из более глубоких динамических принципов и поэтому не является фундаментальным. Он и не универсален. Так, достаточно сильное гравитационное поле не удовлетворяет принципу суперпозиции, поскольку оно описывается нелинейными уравнениями Эйнштейна. Макроскопическое электромагнитное поле в веществе, строго говоря, также не подчиняется принципу суперпозиции в силу зависимости (иногда существенной) диэлектрической и магнитной проницаемостей от внешнего поля.

В квантовой механике принцип суперпозиции - фундаментальный принцип, один из основных её постулатов, определяющий вместе с соотношением неопределённостей структуру математического аппарата теории. Из принципа суперпозиции следует, например, что состояния квантовомеханической системы должны изображаться векторами линейного пространства, в частности волновыми функциями ; что операторы физических величин должны быть линейными и т. д. Принцип суперпозиции утверждает, что если квантовомеханическая система может находиться в состояниях, описываемых волновыми функциями y1,y2. yn, то физически допустимой будет и суперпозиция этих состояний, то есть состояние, изображаемое волновой функцией

где c1, c2. cn - произвольные комплексные числа.

Квантовый принцип суперпозиции лишён наглядности, характерной для принципа суперпозиции в классической физике, так как в квантовой теории в суперпозиции участвуют альтернативные, с классической точки зрения взаимоисключающие друг друга состояния. Принцип суперпозиции отражает волновую природу микрочастиц и выполняется в нерелятивистской квантовой механике без исключений. В релятивистской квантовой теории, рассматривающей процессы, в которых могут происходить взаимопревращения частиц, принцип суперпозиции должен быть дополнен так называемыми правилами суперотбора. Так, суперпозиции состояний с разными значениями электрического, барионного, лептонного зарядов не предполагаются физически реализуемыми. Реализуемость таких суперпозиций означала бы, например, что физические свойства пучка частиц, в котором в некоторой пропорции присутствуют электроны и позитроны, не определяются однозначно динамическими характеристиками этих частиц, то есть что возможна интерференция состояний с разными значениями зарядов. Однако такая интерференция никогда не наблюдалась на опыте. Поэтому операторы физических величин не должны менять заряды. Это уточнение в релятивистской квантовой теории накладывает на матричные элементы операторов определённые ограничения, которые называют правилами суперотбора.

Используемые в квантовой механике волновые функции для описания микрочастиц дают возможность установить вероятность нахождения микрочастиц в том или ином месте пространства в соответствии с принципом неопределенности.

Такое положение связано с двойственностью частиц микромира. С одной стороны, если считать микроструктуру частицей, то она должна быть локализована в пространстве, а если ее считать волной, то она формально занимает все пространство.

Вероятностный характер волновых функций приводит к парадоксальному выводу: если мы какую-то группу параметров микрочастиц можем знать более или менее точно (с небольшой погрешностью), то существует однозначно связанная с ней другая группа параметров, одновременные сведения о которых принципиально получить нельзя. Такими взаимно противоположными, дополнительными, или канонически сопряженными, переменными в микромире являются координаты и скорость (или импульс), энергия, и время, направление и величина момента количества движения, кинетическая и потенциальная энергии напряженность электрического поля в данной точке и число фотонов и др. В общем случае из теории следует, что дополнительными друг к другу являются физические величины, которым в квантовой механике соответствуют некоммутирурующие между собой операторы.

В 1927 г. один из создателей квантовой механики В. Гейзенберг установил фундаментальное положение квантовой теории – принцип неопределенности. Гейзенберг показал, что неопределенность в положении частицы, умноженная на неопределенность ее скорости и на ее массу, не может быть меньше некоторого числа, которое называется сейчас постоянной Планка. Это число не зависит ни от способа, которым измеряется положение или скорость частицы, ни от типа этой частицы, т. е. принцип неопределенности Гейзенберга является фундаментальным, обязательным свойством нашего мира.

Принцип неопределенности: любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульса одновременно принимают вполне определенные точные значения.

Количественно соотношение неопределенности формулируется следующим образом. Если ∆х – неопределенность значения координаты х – центра инерции системы, а ∆р – неопределенность импульса р, то произведение этих неопределенностей должно быть по порядку величины не меньше постоянной Планка h, т.е. ∆х∆р >h. Ввиду малости h по сравнению с макроскопическими величинами той же размерности действия соотношение неопределенности существенно только для явлений атомных масштабов и не проявляется в опытах с макроскопическими телами.

Из соотношения неопределенности следует, что чем точнее определена одна из величин, входящих в неравенство, тем менее определенно значение другой. Никакой эксперимент не может привести к одновременно точному измерению таких динамических переменных. При этом неопределенность в измерениях связана не с несовершенством экспериментальной техники, а с объективными свойствами микрообъектов. Таким образом, соотношение неопределенностей является квантовым ограничением применимости классической механики к микрообъектам. В квантовой механике частицы больше не имеют таких определенных и не зависящих друг от друга характеристик, как положение в пространстве и скорость, недоступных для наблюдения. Вместо этого они характеризуются квантовым состоянием, которое представляет собой некую комбинацию положения и скорости.

Для описания микрообъектов Н. Бор сформулировал принципиальное положение квантовой механики – принцип дополнительности, который наиболее четко изложил в следующей форме:

По современным представлениям, квантовый объект – это одновременно и частица, и волна, которые являются классическими понятиями. Для возможно полного представления о микрообъекте мы должны использовать два разных типа приборов: один – для излучения волновых свойств, другой – для корпускулярных. Эту свойства несовместимы в отношении их одновременного проявления, но оба они в равной мере характеризуют микрообъект, а поэтому не противоречат, а дополняют друг друга. Эта идея и положена Бором в основу важнейшего методологического принципа современной науки – принципа дополнительности.

Принцип дополнительности — простая констатация того, что квантово-волновой дуализм объективно присущ квантовым частицам. Согласно этому принципу, если мы измеряем свойства квантового объекта как частицы, мы видим, что он ведет себя как частица. Если же мы измеряем его волновые свойства, для нас он ведет себя как волна. Оба представления отнюдь не противоречат друг другу — они именно дополняют одно другое, что и отражено в названии принципа

Принцип дополнительности, как общий принцип познания может быть сформулирован следующим образом: всякое истинное явление природы не может быть определено однозначно с помощью слов нашего языка и требует для своего определения, по крайней мере, двух взаимоисключающих дополнительных понятий. К числу таких явлений относятся, например, квантовые явления, жизнь, психика и др. Бор, в частности, видел необходимость применения принципа дополнительности в биологии, что обусловлено чрезвычайно сложным строением и функциями живых организмов, которые обеспечивают им практически неисчерпаемые скрытые возможности.

Итак, согласно принципу дополнительности Бора, для полного описания квантово-механических явлений необходимо применять два взаимоисключающих (дополнительных) набора классических понятий (частиц и волн). Только совокупность таких понятий дает исчерпывающую информацию об этих явлениях как о целостных. Частным выражением принципа дополнительности является соотношение неопределенностей Гейзенберга. Принцип дополнительности выражает на макроскопическом уровне один из основных законов диалектики - закон единства противоположностей.

Читайте также: