Применение теплового действия тока реферат

Обновлено: 04.07.2024

Реферат на тему:
Тепловое действие тока
Сверхпроводимость
Источники постоянного тока

Электрический ток нагревает проводник. Это явление нам хорошо известно. Объясняется оно тем, что свободные электроны в металлах, перемещаясь под действием электрического поля, взаимодействуют с ионами или атомами вещества проводника и передают им свою энергию. В результате работы электрического тока увеличивается скорость колебаний ионов и атомов и внутренняя энергия проводника увеличивается. Опыты показывают, что в неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи. Значит, количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока. Мы знаем, что работу тока рассчитывают по формуле:
А = U•I•t.
Обозначим количество теплоты буквой Q. Согласно сказанному выше Q = A, или Q = U•I•t. Пользуясь законом Ома, можно количество теплоты, выделяемое проводником с током, выразить через силу тока, сопротивление участка цепи и время. Зная, что U = IR, получим: Q = I•R•I•t, т. е. Q=I •R•tКоличество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени. К этому же выводу, но на основании опытов впервые пришли независимо друг от друга английский ученый Джоуль и русский ученый Ленц. Поэтому сформулированный выше вывод называется законом Джоуля - Ленца.
Рассмотрим устройство лампы накаливания. Нагреваемым элементом в ней является свернутая в спираль тонкая вольфрамовая нить 1. Вольфрам для изготовления нити выбран потому, что он тугоплавок и имеет достаточно большое удельное сопротивление. Спираль с помощью специальных держателей 2 укрепляется внутри стеклянного баллона, наполненного инертным газом, в присутствии которого вольфрам не окисляется. Баллон крепится к цоколю 3, к которому припаян один конец токоведущего провода в точке 4. Второй конец провода через изолирующую прокладку 5 припаян к нижнему контакту. Лампа ввертывается в патрон. Он представляет собой пластмассовый корпус А, в котором имеется металлическая гильза Б с резьбой; к ней присоединен один из проводов сети. Патрон контактирует с цоколем 3. Второй провод от сети присоединен к контакту В, который касается нижнего контакта лампы. Лампы накаливания удобны, просты и надежны, но экономически они невыгодны. Так, например, в лампе мощностью 100 Вт лишь небольшая часть электроэнергии (4 Вт) преобразуется в энергию видимого света, а остальная энергия преобразуется в невидимое инфракрасное излучение и в форме тепла передается окружающей среде.
Для оценки эффективности того или иного устройства в технике введена специальная величина - коэффициент полезного действия (КПД). Коэффициентом полезного действия называют отношение энергии, полезно преобразованной (работы или мощности), ко всей потребленной энергии, или затраченной (работе или мощности):
Часто КПД выражают в процентах (%). Вычислим КПД электрической лампы накаливания по данным, приведенным выше: h=4/100=0.04=4%;
Для сравнения укажем, что КПД лампы дневного света примерно 15%, а у натриевых ламп наружного освещения около 25%.
Существует большое число электрических нагревательных приборов, например электрические плиты, утюги, самовары, кипятильники, обогреватели, электрические одеяла, фены для сушки волос, в которых используется тепловое действие тока. Основным нагревательным элементом является спираль из материала с большим удельным сопротивлением. Она помещается в керамические изоляторы с хорошей теплопроводностью, которые изготовлены в виде своеобразных бус. В приборах, предназначенных для нагревания жидкостей, изолированная спираль помещается в трубки из нержавеющей стали. Ее выводы тоже тщательно изолируются от металлических частей приборов. Температура спирали при работе нагревательного прибора остается постоянной. Объясняется это тем, что очень быстро устанавливается баланс между потребляемой из сети электроэнергией и количеством теплоты, отдаваемым путём теплообмена окружающей среде.
Очень эффективным преобразователем электрической энергии, дающим много тепла и света, является электрическая дуга. Ее широко используют для электрической сварки металлов, а также в качестве мощного источника света. Для наблюдения электрической дуги надо два угольных стержня с присоединенными к ним проводами закрепить в хорошо изолирующих держателях, а затем подключить стержни к источнику тока, дающему невысокое напряжение (от 20 до 36 В) и рассчитанному на большие силы тока (до 20 А). Последовательно стержням обязательно надо включить реостат. Ни в коем случае нельзя подключать угли в городскую сеть (220 или 127 В), так как это приведет к сгоранию проводов и к пожару. Коснувшись углями друг друга, можно заметить, что в месте соприкосновения они сильно раскалились. Если в этот момент угли раздвинуть, между ними возникает яркое слепящее пламя, имеющее форму дуги. Это пламя вредно для зрения. Пламя электрической дуги имеет высокую температуру, при которой плавятся самые тугоплавкие материалы, поэтому электрическая дуга используется в дуговых электрических печах для плавки металлов. Пламя дуги является очень ярким источником света, поэтому его часто используют в прожекторах, стационарных кинопроекторах и т. д.
Электрические цепи всегда рассчитаны на определенную силу тока. Если по той или иной причине сила тока в цепи становится больше допустимой, то провода могут значительно нагреться, а покрывающая их изоляция - воспламениться. Причиной значительного увеличения силы тока в сети может быть или одновременное включение мощных потребителей тока, например электрических плиток, или короткое замыкание. Коротким замыканием называют соединение концов участка цепи проводником, сопротивление которого очень мало по сравнению с сопротивлением участка цепи. Короткое замыкание может возникнуть, например, при ремонте проводки под током (рис. 86) или при случайном соприкосновении оголенных проводов. Сопротивление цепи при коротком замыкании незначительно, поэтому в цепи возникает большая сила тока, провода при этом могут сильно накалиться и стать причиной пожара. Чтобы избежать этого, в сеть включают предохранители. Назначение предохранителей - сразу отключить линию, если сила тока вдруг окажется больше допустимой нормы.
Рассмотрим устройство предохранителей, применяемых в квартирной проводке. Главная часть предохранителя, изображенного на рисунке проволока С из легкоплавкого металла (например, из свинца), проходящая внутри фарфоровой пробки П. Пробка имеет винтовую нарезку Р и центральный контакт К. Нарезка соединена с центральным контактом свинцовой проволокой. Пробку ввинчивают в патрон, находящийся внутри фарфоровой коробки Свинцовая проволока представляет, таким образом часть общей цепи. Толщина свинцовых проволок рассчитана так, что они выдерживают определенную силу тока, например 5, 10 А и т.д. Если сила тока превысит допустимое значение, то свинцовая проволока расплавится и цепь окажется разомкнутой. Предохранители с плавящимся проводником называют плавкими предохранителями.
Сверхпроводимость
Сверхпроводи́мость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько десятков чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость — квантовое явление. Оно характеризуется также эффектом Мейснера, заключающимся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.
Открытие в 1986—1993 гг. ряда высокотемпературных сверхпроводников (ВТСП) далеко отодвинуло температурную границу сверхпроводимости и позволило практически использовать сверхпроводящие материалы не только при температуре жидкого гелия (4.2 К), но и при температуре кипения жидкого азота (77 К), гораздо более дешевой криогенной жидкости.

Источники постоянного тока
Простейшим источником постоянного тока является химический источник (гальванический элемент или аккумулятор), поскольку полярность такого источника не может самопроизвольно измениться.
Для получения постоянного тока используют также электрические машины — генераторы постоянного тока.
В электронной аппаратуре, питающейся от сети переменного тока, для получения постоянного тока используют выпрямитель. Далее для уменьшения пульсаций может быть использовансглаживающий фильтр и, при необходимости, стабилизатор тока или стабилизатор напряжения.Сочинения курсовыеСочинения курсовые

Содержимое работы - 1 файл

Тепловое действие электрического тока.docx

Тепловое действие электрического тока:

Исследуя тепловое действие электрического тока, Дж.Джоуль (1818–1889) провел эксперимент, который подвел прочную основу под закон сохранения энергии. Джоуль впервые показал, что химическая энергия, которая расходуется на поддержание в проводнике тока, приблизительно равна тому количеству тепла, которое выделяется в проводнике при прохождении тока. Он установил также, что выделяющееся в проводнике тепло пропорционально квадрату силы тока. Это наблюдение согласуется как с законом Ома (V = IR), так и с определением разности потенциалов (V= W/q). В случае постоянного тока за время t через проводник проходит заряд q = It. Следовательно, электрическая энергия, превратившаяся в проводнике в тепло, равна:

Эта энергия называется джоулевым теплом и выражается в джоулях (Дж), если ток I выражен в амперах, R – в омах, а t – в секундах.

Электрический ток.
Источники электрического тока.

Другой итальянский ученый Алессандро
Вольта(1745-1827) окончательно доказал, что если поместить лягушачьи лапки в
водные растворы некоторых веществ, то в тканях лягушки гальванический ток не
возникает. В частности, это имело место для ключевой или вообще чистой воды;
этот ток появляется при добавлении к воде кислот, солей или щелочей.
По-видимому, наибольший ток возникал в комбинации меди и цинка, помещенных в
разбавленный раствор серной кислоты. Комбинация двух пластин из разнородных
металлов, погруженных в водный раствор щелочи, кислоты или соли, называется
гальваническим (или химическим)
элементом.

Если бы средствами для получения электродвижущей силы
служили только трение и химические процессы в гальванических элементах, то
стоимость электрической энергии, необходимой для работы различных машин, была
бы исключительно высокой. В результате огромного количества экспериментов учёными
разных стран были сделаны открытия, позволившие создать механические
электрические машины, вырабатывающие относительно дешёвую электроэнергию.

В начале 19 века Ганс Христиан Эрстед сделал
открытие совершенно нового электрического явления, заключавшегося в том, что
при прохождении тока через проводник вокруг него образуется магнитное поле.
Спустя несколько лет, в 1831 году, Фарадей сделал ещё одно открытие, равное по
своей значимости открытию Эрстеда. Фарадей обнаружил, что когда движущийся
проводник пересекает силовые линии магнитного поля, в проводнике наводится
электродвижущая сила, вызывающая ток в цепи, в которую входит этот проводник.
Наведённая ЭДС меняется прямо пропорционально скорости движения, числу проводников,
а также напряжённости магнитного поля. Иначе говоря, наведённая ЭДС прямо
пропорциональна числу силовых линий, пересекаемых проводником в единицу
времени. Когда проводник пересекает 100000000 силовых линий за 1 сек,
наведённая ЭДС равна 1 Вольту. Перемещая вручную одиночный проводник или проволочную катушку в магнитном поле,
больших токов получить нельзя. Более эффективным способом является намотка провода
на большую катушку или изготовление катушки в виде барабана. Катушку затем
насаживают на вал, располагаемый между полюсами магнита и вращаемый силой воды
или пара. Так, в сущности, и устроен генератор электрического тока, который относится
к механическим источникам электрического тока, и активно используется
человечеством в настоящее время.
Солнечную энергию люди используют с
древнейших времён. Ещё в 212 г. до н. э. с помощью концентрированных солнечных
лучей они зажигали священный огонь у храмов. Согласно легенде приблизительно в
то же время греческий учёный Архимед при защите родного города поджёг паруса
кораблей римского флота.

Солнце представляет собой удалённый от Земли на расстояние
149,6 млн км термоядерный реактор, излучающий энергию, которая поступает на
Землю главным образом в виде электромагнитного излучения. Наибольшая часть
энергии излучения Солнца сосредоточена в видимой и инфракрасной части спектра.
Солнечная радиация - это неисчерпаемый возобновляемый источник экологически
чистой энергии. Без ущерба для экологической среды может быть использовано 1,5
% всей падающей на землю солнечной
энергии, т.е. 1,62 *10 16 киловатт\часов в год, что эквивалентно огромному количеству
условного топлива - 2 *10 12 т.
Усилия конструкторов идут по пути использования фотоэлементов для
прямого преобразования солнечной энергии в электрическую. Фотопреобразователи,
называемые также солнечными батареями, состоят из ряда фотоэлементов,
соединенных последовательно или параллельно. Если преобразователь должен
заряжать аккумулятор, питающий, например, радиоустройство в облачное время, то
его подключают параллельно к выводам солнечной батареи ( рис. 3). Элементы
применяемые в солнечных батареях, должны обладать большим КПД, выгодной
спектральной характеристикой, малой
стоимостью, простой конструкцией и небольшой массой. К сожалению, только
немногие из известных на сегодня фотоэлементов отвечают хотя бы частично этим
требованиям. Это прежде всего некоторые виды полупроводниковых фотоэлементов.
Простейший из них - селеновый. К сожалению, КПД лучших селеновых фотоэлементов
мал(0,1. 1 %).
Основой солнечных батарей являются кремниевые фото-преобразователи,
имеющие вид круглых или прямоуголь-ных пластин толщиной 0,7 - 1 мм и площадью
до 5 - 8 кв.см. Опыт показал, что хорошие результаты дают небольшие элементы,
площадью около 1 кв. см.,
имеющие КПД около 10 %. Созданы также фотоэлементы из полупро- водниковых
металлов с теоретическим КПД 18 %. Кстати, практический КПД фотоэлектрических
преобразователей ( около 10 %) превышает КПД паровоза ( 8 %), коэффициент
полезного использования солнечной энергии в растительном мире (1 %), а также
КПД многих гидротехнических и ветровых устройств. Фотоэлектрические преобразователи
имеют практически неограниченную долговечность. Для сравнения можно привести
значения КПД различных источников электрической энергии ( в процентах) : теплоэлектроцентраль
- 20-30, термоэлектрический преобра-зователь - 6 - 8, селеновый фотоэлемент -
0,1 - 1, солнечная бата-рея - 6 - 11,
топливный элемент - 70, свинцовый аккумулятор - 80 - 90.

В 1989 г. фирмой Боинг
(США) создан двухслойный фотоэлемент, состоящий из двух полупроводников
- арсенида и антимонида галлия - с
коэффициентом преобразования солнечной энергии в электрическую, равным 37
%, что вполне сопоставимо с КПД
современных тепловых и атомных электростанций. Недавно удалось доказать, что
фотоэлектрический метод преобразования солнечной энергии теоретически позволяет
использовать энергию Солнца с КПД, достигающим 93 %! А ведь первоначально
считалось, что максимальный верхний предел КПД солнечных элементов составляет
не более 26 %, т.е. значительно ниже КПД высокотемпературных тепловых машин.

Солнечные батареи пока используются в основном в
кос-мосе, а на Земле только для электроснабжения автономных потребителей
мощностью до 1 кВт, питания радионавигационной
и маломощной радиоэлектронной
аппаратуры, привода экспериментальных электромобилей и самолётов. По мере
совершенствования солнечных батарей они будут находить применение в жилых домах
для автономного энергоснабжения , т.е. отопления и горячего водоснабжения, а
также для выработки электроэнергии для освещения и питания бытовых
электроприборов.
По тонкому проводнику подсоединённому к источнику тока течёт ток Проводник отсоединил. Простейшее термоэлектрическое устройства для получения электричества своими руками. Использование теплового действия электрического тока в устройстве теплиц. Реферат на тему электрический ток как фактор негативного воздействия. Что необходимо для возникновения и существования электрического тока. Реферат на тему электрический ток в металлах законы постоянного тока. Тепловые действия электрического тока их практическое использование. Тепловые действия электрического тока Их использование в технике. Практическое применение теплового действия электрического тока. Перевод электрических киловатт часов в тоны условного топлива. Электрический ток условие существование электрического тока. Электрический ток Условия существование электрического тока. Преобразование солнечной энергии в электрическую реферат. Тепловое действие тока его практическое использование. Реферат фотоэлементы виды характеристика применение.


Одним из явлений, происходящих при прохождении электрического тока по проводнику, является выделение энергии в виде тепла. Рассмотрим тепловое действие электрического тока более подробно.

Тепловое действие электрического тока

Еще в девятнадцатом веке опыты по изучению проводимости свидетельствовали, что ток, проходящий по нагрузке, нагревает ее. Исследования показали, что нагревается не только нагрузка, но и проводники.

Тепловое действие электрического тока

Рис. 1. Тепловое действие электрического тока.

Данный факт легко объясним, если вспомнить, что электрический ток – это перемещение зарядов в веществе нагрузки. При движении заряды взаимодействуют с ионами кристаллической решетки, и отдают им часть энергии, которая и переходит в тепло.

Закон Джоуля-Ленца

Поскольку разность потенциалов (напряжение) на нагрузке равна работе, которую совершит единичный заряд, двигаясь по нагрузке, то для вычисления работы тока, необходимо напряжение умножить на заряд, прошедший через нагрузку. Заряд же равен произведению тока, проходящего по нагрузке, на время прохождения. Таким образом:

Детальным изучением теплового действия электрического тока в середине XIXв занимались независимо Д.Джоуль (Великобритания) и Э.Ленц (Россия).

Джоуль и Ленц

Рис. 2. Джоуль и Ленц.

Было выяснено, что если нагрузка неподвижна, то вся работа электрического тока в этой нагрузке перейдет в тепло:

Как правило, напряжение на элементах электрической цепи различно, а ток в ней общий. Поэтому для определения теплового действия удобнее выразить напряжение через ток, учитывая сопротивление:

То есть, количество тепла, образующееся в нагрузке, равно произведению значения тока в квадрате, сопротивления и времени. Этот вывод носит название Закона Джоуля-Ленца.

Иногда ток нагрузки неизвестен, но известно ее сопротивление и подводимое напряжение. В этом случае удобнее выразить ток через известные величины:

и, подставив в формулу выше, получаем:

Из данной формулы можно видеть интересный факт – если в нагревательной плите сгорит часть спирали, и мы просто исключим сгоревшие места, то сопротивление спирали уменьшится, а поскольку напряжение сети останется прежним, то тепло, выделяемое плитой, возрастет. Мощность плитки увеличится.

Использование теплового действия электричества

Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.

Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.

Устройство плавкого предохранителя

Рис. 3. Устройство плавкого предохранителя.

Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.

Что мы узнали?

Вся работа тока в неподвижной нагрузке превращается в тепло. Тепловое действие электрического тока по закону Джоуля Ленца пропорционально квадрату тока, сопротивлению и времени. Данное явление широко применяется в плавких предохранителях и нагревательных приборах.

Электрический ток , проходя через любой проводник, сообщает ему некоторое количество энергии. В результате этого проводник нагревается. Передача энергии происходит на молекулярном уровне, т. е., электроны взаимодействуют с атомами или ионами проводника и отдают часть своей энергии.

Тепловое действие тока

В результате этого, ионы и атомы проводника начинают двигаться быстрей, соответственно можно сказать, что внутренняя энергия увеличивается и переходит в тепловую энергию.

Данное явление подтверждается различными опытами, которые говорят о том, что вся работа, которую совершает ток, переходит во внутреннюю энергию проводника, она в свою очередь увеличивается. После этого уже проводник начинает отдавать её окружающим телам в виде тепла. Здесь уже в дело вступает процесс теплопередачи, но сам проводник нагревается.

Этот процесс рассчитывается по формуле: А=U·I·t

А – это работа тока, которую он совершает, протекая через проводник. Можно также высчитать количество теплоты, выделяемое при этом, ведь это значение равно работе тока. Правда, это касается, лишь неподвижных металлических проводников, однако, такие проводники встречаются чаще всего. Таким образом, количество теплоты, также будет высчитываться по той же форме: Q=U·I·t.

История открытия явления

В своё время свойства проводника, через который протекает электрический тока, изучали многие учёные. Особенно среди них были заметны англичанин Джеймс Джоуль и русский учёный Эмилий Христианович Ленц. Каждый из них проводил свои собственные опыты, а вывод они смогли сделать независимо друг от друга.

Применение свойств теплового действия тока

Исследования теплового воздействия тока и открытия закона Джоуля-Ленца позволили сделать вывод, подтолкнувший развитие электротехники и расширить возможности применения электричества. Простейшим примером применения данных свойства является простая лампочка накаливания.

Устройство её заключается в том, что в ней применяется обычная нить накаливания, сделанная из вольфрамовой проволоки. Этот металл был выбран не случайно: тугоплавкий, он имеет довольно высокое удельное сопротивление. Электрический ток проходит через эту проволоку и нагревает её, т. е. передаёт ей свою энергию.

Энергия проводника начинает переходить в тепловую энергию, а спираль разогревается до такой температуры, что начинает светиться. Главным недостатком такой конструкции, конечно, является то, что происходят большие потери энергии, ведь только небольшая часть энергии преобразуется в свет, а остальная уходит в тепло.

Для этого вводится такое понятие в техники, как КПД, показывающее эффективность работы и преобразования электрической энергии. Такие понятия как КПД и тепловое воздействие тока применяются повсеместно, так как существует огромное количество приборов основанных подобном принципе. Это в первую очередь касается нагревательных приборов: кипятильников, обогревателей, электроплит и т. д.

Как правило, в конструкциях перечисленных приборах присутствует некая металлическая спираль, которая и производит нагревание. В приборах для нагревания воды она изолирована, в них устанавливается баланс между потребляемой из сети энергией (в виде электрического тока) и тепловым обменом с окружающей средой.

В связи с этим, перед учёными стоит нелёгкая задача по снижению потерь энергии, главной целью является поиск наиболее оптимальной и эффективной схемы. В данном случае тепловое воздействие тока является даже нежелательным, так как именно оно и ведёт к потерям энергии. Самым простым вариантом является повышение напряжения при передаче энергии. В результате снижается сила тока, но это приводит к снижению безопасности линий электропередач.

Другое направление исследований – это выбор проводов, ведь от свойств проводника зависят и тепловые потери и прочие показатели. С другой стороны, различные нагревательные приборы требуют большого выделения энергии на определённом участке. Для этих целей изготавливают спирали из специальных сплавов.

Для повышения защиты и безопасности электрических цепей применяются специальные предохранители. В случае чрезмерного повышения тока сечение проводника в предохранителе не выдерживает, и он плавится, размыкая цепь, защищая, таким образом, её от токовых перегрузок.

Читайте также: