Применение радиоактивного изотопа углерода в научных исследованиях реферат

Обновлено: 02.07.2024

Второй радиоактивный изотоп углерода С14 имеет период полураспада 5700 лет1, так что в масштабах времени, отвечающих обычным лабораторным условиям, можно совершенно не считаться с изменением его активности. Измерение последней связано с некоторыми затруднениями, так как он дает очень мягкое - излучение с энергией электронов до 0, 15 MeV. Для измерения активности его вводят внутрь прибора или же применяют счетчики торцового типа с очень тонкими окошками из слюды и др. Этот изотоп был получен еще в 1940 г., но, как и тритий, он только недавно получил более широкое применение, так как приготовление достаточно активных его препаратов также требует длительного и интенсивного облучения нейтронами из урановых реакторов или больших циклотронов. [4]

Очень важен радиоактивный изотоп углерода 4С, испускающий р-лучи ( электроны) с периодом полураспада Т 2 5570 лет. С помощью радиоуглеродного анализа путем определения концентрации изотопа С ученые смогли довольно точно датировать возраст углеродсодерзкащих пород, археологических и палеонтологических находок, геологических событий. [5]

Очень важен радиоактивный изотоп углерода 14С, испускающий 3-лучи ( электроны) с периодом полураспада Ti / 2 5570 лет. С помощью радиоуглеродного анализа путем определения концентрации изотопа 14С ученые смогли довольно точно датировать возраст углеродсодержащих пород, археологических и палеонтологических находок, геологических событий. [6]

Кальвин использовал радиоактивный изотоп углерода С-14 в качестве метки и проследил, каким образом растения на свету превращают атмосферный углекислый газ в глюкозу. Открытая им цепочка реакций, происходящих в процессе фотосинтеза, получила название цикл Кальвина. В 1961 году Кальвин был удостоен Нобелевской премии по химии. [7]

Реакция образования радиоактивного изотопа углерода еС имеет вид sB ( d, n), где d - дейтон. Период полураспада изотопа бС Г) / 2 20 мин. Какая Энергия Q выделяется при этой реакции. [8]

С помощью радиоактивного изотопа углерода С14 ф - с энергией 0 154 Мэв, Г5100 лет) была установлена совершенно новая функция корней - поглощение ими углекислоты из почвы. Далее удалось установить, что корни являются не просто органами, всасывающими воду и питательные вещества из почвы. Целый ряд сложных органических веществ, образующихся в листьях, возвращается в корневую систему, где и происходит синтез ряда аминокислот. Было установлено, что передвижение соков от корней к листьям происходит со скоростью в несколько десятков сантиметров, а иногда и нескольких метров в час. [9]

Однако применение недавно открытого радиоактивного изотопа углерода С14 в качестве распознавателя образования карбидов при синтезе над железным катализатором показало, что при температуре 260 С и ниже только около 10 % углеводородов образуется через карбиды, а при 300 С только 16 % продуктов получается через стадию восстановления карбида. [10]

Однако применение недавно открытого радиоактивного изотопа углерода С14 в качестве распознавателя образования карбидов при синтезе над железным катализатором показало, что при температуре 260 и ниже только около 10 % углеводородов образуется через карбиды, а при 300 только 16 % продуктов получается через стадию восстановления карбида. [11]

В дальнейшем применение радиоактивного изотопа углерода С14 для распознавания образования карбидов на кобальтовом катализаторе показало, что при температуре 200 только около 10 % углеводородов образуется через карбид кобальта, а вся основная масса продуктов образуется, минуя стадию образования карбида кобальта как промежуточного продукта. [12]

В дальнейшем применение недавно открытого радиоактивного изотопа углерода С14 для распознавания образования карбидов на кобальтовом катализаторе показало, что при температуре 200 С только около 10 % углеводородов образуется через карбид кобальта, а вся основная масса продуктов образуется, минуя стадию образования карбида кобальта как промежуточного продукта. [13]

Далее, с помощью радиоактивного изотопа углерода С11, было показано Рубеном и Каменом, что ассимиляция С02 происходит в растительных клетках также и в темноте, хотя гораздо медленнее, чем при освещении. Все это приводило к заключению, что под действием света растение вырабатывает малостойкие восстановители, связывающие С02, но самое поглощение СО2 есть вторичный процесс, происходящий без участия света. Эти новые данные имеют столь же фундаментальное значение для проблемы фотосинтеза, как указанное выше выяснение вопроса о происхождения выделяемого кислорода. [14]

Далее, при помощи радиоактивного изотопа углерода С11 было показано Рубеном и Каменом [1340], что ассимиляция СО2 происходит в растительных клетках также и в темноте, хотя гораздо медленнее, чем при освещении. Это приводит к заключению, что под действием света растение вырабатывает малостойкие восстановители, связывающие СО2, но самое поглощение СО2 есть вторичный процесс, происходящий без участия света. Эти новые данные имеют столь же фундаментальное значение для проблемы фотосинтеза, как указанное выше выяснение вопроса о происхождении выделяемого кислорода. [15]


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




РАДИОИЗОТОПЫ НА СЛУЖБЕ У ЧЕЛОВЕКА


Автор работы награжден дипломом победителя II степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Актуальность исследования. Я считаю, что моя исследовательская работа актуальна именно сегодня. Появившаяся в конце XIX века ядерная физика, бурное развитие которой привело к созданию атомного и водородного оружия, уже в середине XX века заставила общественность во весь голос заговорить об угрозе самого существования человечества. Но ведь энергию деления ядра и радиоактивность можно использовать и для созидания. Например, радиоизотопы используются в различных производствах, при научных исследованиях и в медицине.

Промышленное использование включает дефектоскопию и процессы контроля в металлургической (литейной), бумажной, химической промышленности и в дорожном строительстве.

В современной медицине получило развитие новое направление – ядерная медицина, использующее радиоактивные вещества и свойства атомного ядра для диагностики и терапии в различных областях научной и практической медицины. Ядерная медицина обогатилась новыми методами изучения жизненных процессов, диагностики и лечения болезней. На ее нужды расходуется более 50% годового производства радионуклидов во всем мире. Радионуклиды применяются в ядерной медицине в основном в виде радиофармацевтических препаратов (РФП).

Люди должны понимать, что радиоактивное излучение – это не есть что-то невероятно опасное и непостижимое, а наоборот, чем больше ведется изучения радиоактивных явлений, тем более осознанно с ними можно обращаться, используя их свойства на благо человека.

Проблема исследования. Обучающиеся старших классов имеют недостаточные знания о радиоизотопах, их применении в различных областях жизнедеятельности человека.

Предмет исследования. Радиоактивные изотопы и область их применения.

Цель исследования. Выяснить, что представляют собой радиоактивные изотопы, какими свойствами они обладают и как можно их использовать на благо человека.

В связи с поставленной целью предстояло решить следующие задачи:

Расширить знания о строении ядра атома, явлении радиоактивности, радиоактивных изотопах.

Узнать в специальной литературе и интернет-ресурсах современное состояние дел, успехов и проблем в производстве изотопов.

Показать необходимость использования радиоизотопов в различных отраслях деятельности человека.

Структура и объем работы. Исследовательский проект состоит из введения, 7 глав, заключения, списка используемых источников, приложений № 1,2,3,4,5. В тексте проекта содержится 3 рисунка.

ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число (например, 12 C, 222 Rn). Можно также написать название элемента с добавлением через дефис массового числа (например, углерод-12, радон-222). Некоторые изотопы имеют традиционные собственные названия (например,дейтерий,актинон).На март 2017 года известно 3437 изотопов всех элементов.

По количеству открытых изотопов первое место занимают США (1237), затем идут Германия (558), Великобритания (299), СССР/Россия (247) и Франция (217). За 10 лет (2006—2015 годы включительно) в среднем физики открывали в год 27 изотопов. Общее количество учёных, являвшихся авторами или соавторами открытия какого-либо изотопа, составляет 3598 человек.

Нуклиды, ядра которых нестабильны и испытывают радиоактивный распад. Большинство известных нуклидов радиоактивны (стабильными являются лишь около 300 из более чем 3000 нуклидов, известных науке). Все нуклиды, имеющие зарядовое число, равное 43 или 61 или большее 82, радиоактивны; соответствующие элементы называются радиоактивными элементами. Существуют радионуклиды и с другими зарядовыми числами (от 1 до 42, от 44 до 60 и от 62 до 82). Радионуклиды отличаются между собой энергией излучения, периодом полураспада.

Радиоактивные изотопы, встречающиеся в природе, называются естественными, например, 40 K. В 1934 году французские ученые Ирен и Фредерик Жолио–Кюри обнаружили, что радиоактивные изотопы могут быть созданы искусственным путем в результате ядерных реакций. Такие изотопы назвали искусственными.

Для получения искусственных радиоактивных изотопов обычно используют ядерные реакторы и ускорители элементарных частиц. Впоследствии был получены искусственные изотопы всех химических элементов. Всего в настоящее время известно примерно 3000 радиоактивных изотопов, причем 300 из них – естественные.

3. Торговля радиоактивными изотопами.

Не менее половины изотопов имеют медицинское назначение (остальное — промышленность и научные исследования).

Мировой экспорт и импорт искусственными радиоактивными изотопами (ИРИ) составлял последние 3 года чуть более 1 млрд долларов в год. Список экспортеров возглавляют Канада, США, Нидерланды, Бельгия и Германия. В списке импортеров лидируют США, Япония, Германия, Англия и Китай.

России сегодня принадлежит 6% мирового экспорта и 1% импорта. Динамика международной торговли ИРИ России показана на рисунке (приложение № 1). Хорошо виден рост экспорта за 15 лет — более чем втрое! Импорт же в последние годы стабилен.

Главное направление российского экспорта ИРИ — Запад, с большим отрывом лидирует Великобритания: около 50%. На втором месте — США, на третьем — Германия, четвертый Китай.

Россия закупает за рубежом главным образом радиофармацевтические препараты и источники излучения для медтехники; основные поставщики — Германия и США.

4. Применение радиоактивных изотопов.

В настоящее время радиоактивные изотопы широко применяют в различных сферах научной и практической деятельности: технике, медицине, сельском хозяйстве, средствах связи, военной области и в некоторых других. При этом часто используют так называемый метод меченых атомов.

4.1. Применение радиоизотопов в медицине.

Изотопы, в первую очередь радиоактивные, широко применяются в современной медицинской практике.

В изотопной диагностике в мире и в России все большее значение имеет позитронно-эмиссионная томография (ПЭТ).

Рис. 4.1.1.Оборудование для позитронной эмиссионной томографии

Поэтому растет потребность не только в традиционных радиоизотопах, таких как 11 С, 13 N, 15 O, 18 F, но и генераторных изотопах 68 Ga и 82 Rb, а также перспективных для новейшей диагностической технологии, совмещающей позитронно-эмиссионную и компьютерную томографию, изотопах 38 K, 45 Ti, 62 Cu, 64 Cu, 75 Br, 76 Br, 94m Tc и 124 I.

Развитие получают и терапевтические методы на основе радиоактивных изотопов, например, лучевая терапия открытыми источниками радионуклидов, особенно эффективная при борьбе со злокачественными лимфомами, раком щитовидной железы и др.

131 I был и продолжает оставаться наиболее широко используемым терапевтическим изотопом (ежегодно в Европе — более 90000 ГБк (один беккерель определяется как активность источника, в котором за одну секунду происходит в среднем один радиоактивный распад), в России — около 2000 ГБк). Йодотерапия не имеет альтернативы при тяжелых формах рака щитовидной железы.

Радиоиммунотерапия на начальных этапах своего становления и развития также проводилась с использованием препаратов 131 I, но в последнее десятилетие резко возрос интерес к 90 Y.

Одним из направлений применения микроисточников (брахитерапия) с 103 Pd или 125 I в последние 10-15 лет стало лечение рака предстательной железы и некоторых других онкопатологий. В настоящее время перспективным изотопом для брахитерапии является 131 Cs.

В радиофармацевтике диагностического и терапевтического назначения наметился сдвиг в сторону короткоживущих радиоизотопов. Наряду с применением стандартных медицинских изотопов 198 Au, 131 I, 125 I, 203 Hg, 197 Hg и др. все чаще применяют их заменители с меньшим периодом полураспада. Все большее признание в исследовательской деятельности и клинической практике получает фармацевтика на основе короткоживущих 99m Tc, 123 I, 13 N, 15 O, 11 C, 18 F, 77 Br, 68 Ga, 81m Kr и др.

4.2. Применение радиоизотопов в промышленности.

Не менее обширны применения радиоактивных изотопов в промышленности и промышленных исследованиях. Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца. Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д.

Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.

4.3. Применение радиоизотопов в сельском хозяйстве.

4.4. Применение радиоизотопов в археологии и геологии.

Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом. Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате β-распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели.

40 Ca + 1 n = 37 Ar + 4 He

В ИРМ была разработана, изготовлена и смонтирована установка растворения облучённой окиси кальция и экстракции 37 Ar с его последующей очисткой. Была также разработана конструкция газового источника, технология его заполнения и измерение его активности.

Рис. 5.1. Галлий-германиевый нейтринный телескоп ИЯИ РАН.

Фрагмент Баксанской Нейтринной обсерватории находящейся в горном массиве на глубине более 2 км.

14 N + 1 n = 14 C + 1 p

131 Cs образуется при распаде 131 Ba, получаемого нейтронным облучением соединений бария:

130 Ba + 1 n = 131 Ba + γ

131 Ba →ЭЗ 11.5 дн. 131 Cs

Оптимальное сочетание периода полураспада и энергии излучения делают 131 Cs перспективным радиоизотопом для брахитерапии злокачественных заболеваний предстательной железы, легкого, молочной железы и т.д. Введение его в клиническую практику рассматривается как одно из наиболее значимых достижений в брахитерапии.

На предприятии организована наработка 192 Ir из природного и изотопно-обогащённого иридия.

191 Ir+ 1 n = 192 Ir + γ

В качестве материала мишени используется металлический иридий в виде дисков различного типоразмера. Применяемая схема облучения и конструкция облучательного устройства позволяет нарабатывать на среднепоточном ядерном реакторе 192 Ir с удельной активностью достаточной для использования в дефектоскопах при неразрушающих методах контроля в науке и технике, а также в ядерной медицине для высокодозовой брахитерапии.

Наработка 177 Lu проходит по реакции:

176 Lu+ 1 n = 177 Lu + γ

Привлекательность радионуклида 177 Lu для современной ядерной медицины определяется относительно низкой энергией бета-излучения и, соответственно, невысокой проникающей способностью в мягких тканях что позволяет использовать 177 Lu в терапии опухолей небольшого размера, а также при лечении паталогических изменений костных тканей.

Период полураспада Lu (6,65 сут.) позволяет осуществлять доставку данного радионуклида на достаточно большие расстояния от места его производства.

7. Социологический опрос.

95% обучающихся считают, что радиация – главный источник большинства онкологических заболеваний. В связи с этим необходимо вести разъяснительную работу о значении радиации в жизни человека и ее последствиях, объяснять обучающимся, что не только радиация является причиной онкологических заболеваний, но и последствия неправильного образа жизни, вредных привычек, а также вредные условия труда.

93% обучающихся не имели представления о радионуклидной продукции, выпускаемой в Институте реакторных материалов ГО Заречный. Тем более обучающиеся не знали, для каких целей их производят, и кто является покупателем радиоизотопов ИРМ.

ЗАКЛЮЧЕНИЕ

Радиоактивные изотопы служат человеку во многих сферах его жизнедеятельности. Это еще раз доказывает, что радиацию можно использовать во благо человечества, помогая людям.

За ядерной медициной стоит будущее. Знание законов физики и химии двигает науку вперед. Люди должны знать о радиоактивных изотопах, радионуклидной продукции, о той пользе, которую они приносят.

Катастрофа на Чернобыльской АЭС, а затем распад СССР привели к негативным последствиям, закрывались научно-исследовательские институты, уезжали за границу лучшие умы России. В настоящее время производство радиоактивных изотопов - одно из важнейших направлений развития отрасли атомной энергетики.

Проанализировав большое количество материалов научной литературы и Интернет-ресурсов, на основе проведенного исследования можно сделать выводы:

1.Доказано, что радиоактивные изотопы служат человеку в медицине, сельском хозяйстве, науке, промышленности, археологии и геологии.

Поставленные передо мной задачи были решены, цель достигнута.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

Давыдов А.С., Теория атомного ядра. - М., 1958.

Маргулова Т.Х. Атомная энергетика сегодня и завтра. – М.: Высшая школа, 2016.

Мурин А.Н., Введение в радиоактивность. - Л., 1955.

Современная медицинская энциклопедия/Русское издание под общей ред. Г.Б.Федосеева. – СПб.:Норинт, 2014.

Учение о радиоактивности. История и современность. М. Наука, 2003.

Фурман В.И. Ядерные излучения в науке и технике. М. Наука, 1984.

Холл Э.Дж. Радиация и жизнь/Пер.с англ. – М.: Медицина, 2012.

Энциклопедия для детей. Физика. Т.16/ Под ред. В.А. Володина. – М.: Аванта+, 2000.

Интернет-ресурсы:

Приложение №1

Приложение№2

Приложение №3

Анкета Приложение № 4

Дорогой друг! Мы предлагаем тебе заполнить данную анкету для выявления отношения к радионуклидной продукции (изотопам):

1. Много ли вы знаете о радиоактивных изотопах (нуклидах)?

4. Считаете ли вы, что большинство онкологических заболеваний и генетических изменений связаны с радиацией?

5. Знаете ли Вы о том, что на основе радиоактивных изотопов производятся радиофармпрепараты, которые сегодня активно используют при лечении онкологических заболеваний?

6. Знаете ли Вы, что на территории ГО Заречный в институте реакторных материалов производят радионуклидную продукцию и успешно реализуют ее на мировом рынке?

Приложение № 5

Социологическое исследование учащихся МКОУ «Средняя

Изотопы, особенно радиоактивные, имеют многочисленные применения. В табл. 1.13 указаны отдельные примеры некоторых промышленных применений изотопов. Каждая методика, упоминаемая в этой таблице, используется также и в других отраслях промышленности. Например, методика определения утечки вещества с помощью радиоизотопов используется: в производстве напитков-для определения утечки из накопительных баков и трубопроводов; в строительстве инженерных сооружений-для

Таблица 1.13. Некоторые применения радиоизотопов



Стерилизованный слабым источником радиоактивного излучения самец мухи цеце маркируется для последующего обнаружения (Буркина-Фасо). Эта процедура является частью эксперимента, проводимого для изучения мухи цеце и установления эффективных мер контроля, препятствующих широкому распространению трипаносомоза (сонной болезни). Муха цеце является переносчиком этого заболевания и заражает им людей, домашних животных и дикий скот. Сонная болезнь чрезвычайно распространена в некоторых частях Африки.

определения утечки из подземных водоводов; в энергетической промышленности-для определения утечки из теплообменников на электростанциях; в нефтяной промышленности-для определения утечки из подземных нефтепроводов; в службе контроля сточных и канализационных вод-для определения утечки из магистральных коллекторов.

Изотопы также широко используются в научных исследованиях. В частности, они используются для определения механизмов химических реакций. В качестве примера укажем использование воды, меченной устойчивым изотопом кислорода 18O, для изучения гидролиза сложных эфиров, подобных этилацетату (см. также разд. 19.3). С использованием масс-спектрометрии для обнаружения изотопа 18O было установлено, что при гидролизе атом кислорода из молекулы воды переходит в уксусную кислоту, а не в этанол



Радиоизотопы широко используются в роли меченых атомов в биологических исследованиях. Для того чтобы прослеживать метаболические пути * в живых системах, используют радиоизотопы углерод-14, тритий, фосфор-32 и сера-35. Например, усвоение фосфора растениями из обработанной удобрениями почвы можно проследить, пользуясь удобрениями, которые содержат примесь фосфора-32.

Радиационная терапия. Ионизирующее излучение способно разрушать живые ткани. Ткани злокачественных опухолей более чувствительны к облучению, чем здоровые ткани. Это позволяет лечить раковые заболевания при помощи у-лучей, испускаемых из источника, в качестве которого используется радиоактивный изотоп кобальт-60. Излучение направляют на пораженный опухолью участок тела больного; сеанс лечения длится несколько минут и повторяется ежедневно в течение 2-6 недель. Во время сеанса все остальные части тела больного должны быть тщательно закрыты непроницаемым для излучения материалом, чтобы предотвратить разрушение здоровых тканей.

Определение возраста образцов при помощи радиоуглерода. Небольшая часть того диоксида углерода, который находится в атмосфере, содержит радиоактивный изотоп 'бС. Растения поглощают этот изотоп в процессе фотосинтеза. Поэтому ткани всех

* Метаболизм-это совокупность всех химических реакций, протекающих в клетках живых организмов. В результате метаболических реакций происходит превращение питательных веществ в полезную энергию или в составные части клеток. Метаболические реакции обычно протекают в несколько простых этапов -стадий. Последовательность всех стадий метаболической реакции называется метаболическим путем (механизмом).





Радиоизотопы используются для наблюдения за механизмами осаждения наносов в устьях рек, портах и доках.



Использование радиоизотопов для получения фотографического изображения камеры сгорания реактивного двигателя в Центре неповреждающих испытаний лондонского аэропорта Хитроу. (На плакатах надписи: Радиация. Не подходить.) Радиоизотопы широко используются в промышленности для проведения неповреждающих испытаний.

Живые ткани обладают постоянным уровнем радиоактивности, потому что его убывание из-за радиоактивного распада компенсируется постоянным поступлением радиоуглерода из атмосферы. Однако, как только наступает смерть растения или животного, прекращается поступление радиоуглерода в его ткани. Это приводит к постепенному снижению уровня радиоактивности мертвых тканей.

Метод радиоуглеродной датировки позволил установить, что образцы древесного угля из Стоунхенджа имеют возраст около 4000 лет.

Радиоуглеродный метод геохронологии разработал в 1946 г. У.Ф. Либби, получивший за него Нобелевскую премию по химии в 1960 г. Этот метод широко используется в настоящее время археологами, антропологами и геологами для датировки образцов, имеющих возраст вплоть до 35000 лет. Точность этого метода-приблизительно 300 лет. Наилучшие результаты получаются при определении возраста шерсти, семян, ракушек и костей. Для определения возраста образца измеряют активность р-излучения (число распадов в минуту) в расчете на 1 г содержащегося в нем углерода. Это позволяет установить возраст образца при помощи кривой радиоактивного распада для изотопа 14С.

Какой возраст имеют Земля и Луна?



Многие горные породы на Земле и Луне содержат радиоизотопы с периодами полураспада порядка 10-9 -10-10 лет. Измеряя и сравнивая относительное содержание этих радиоизотопов с относительным содержанием продуктов их распада в образцах таких горных пороl, можно установить их возраст. Три наиболее важных метода геохронологии основаны на определении относительного содержания изотопов К (период полураспада 1,4-109 лет). "Rb (период полураспада 6•1O10 лет) и 2I29U (период полураспада 4,50-109 лет).

Метод датировки по калию и аргону. Такие минералы, как слюда и некоторые разновидности полевого шпата, содержат небольшое количество радиоизотопа калий-40. Он распадается, претерпевая электронный захват и превращаясь в аргон-40:

Возраст образца определяется на основе вычислений, в которых используются данные об относительном содержании в образце калия-40 по сравнению с арго-ном-40.

Метол датировки по рубидию и стронцию. Некоторые из наиболее древних горных пород на Земле, например граниты с западного побережья Гренландии, содержат рубидий. Приблизительно третья часть всех атомов рубидия приходится на долю радиоактивного рубидия-87. Этот радиоизотоп распадается, превращаясь в устойчивый изотоп стронций-87. Вычисления, основанные на использовании данных об относительном содержании в образцах изотопов рубидия и стронция, позволяют устанавливать возраст таких горных пород.

Метод датировки по урану и свинцу. Изотопы урана распадаются, превращаясь в изотопы свинца. Возраст таких минералов, как апатиты, которые содержат примеси урана, можно определять, сравнивая содержание в их образцах определенных изотопов урана и свинца.

Все три описанных метода использовались для датировки земных горных пород. Полученные в результате данные указывают, что возраст Земли равен 4,6-109 лет. Указанные методы использовались также для определения возраста лунных горных пород, доставленных на Землю из космических экспедиций. Возраст этих пород составляет от 3,2 до 4,2 *10 9 лет.

ядерное деление и ядерный синтез

Мы уже упоминали, что экспериментальные значения изотопных масс оказываются меньше значений, вычисленных как сумма масс всех входящих в ядро элементарных частиц. Разность между вычисленным и экспериментальным значением атомной массы называется дефект массы. Дефект массы соответствует энергии, необходимой для преодоления сил отталкивания между частицами с одинаковым зарядом в атомном ядре и связывания их в единое ядро; по этой причине она называется энергия связи. Энергию связи можно вычислить через дефект массы при помощи уравнения Эйнштейна

где E-энергия, m-масса и с—скорость света.

Энергию связи принято выражать в мегаэлектронвольтах (1 МэВ = 106 эВ) на одну субъядерную частицу (нуклон). Электронвольт-это энергия, которую приобретает или теряет частица с единичным элементарным зарядом (равным по абсолютной величине заряду электрона), перемещаемая между точками с разностью электрического потенциала в 1 В (1 МэВ = 9,6* 10 10 Дж/моль).

Например, энергия связи, приходящаяся на один нуклон, в ядре гелия приблизительно равна 7 МэВ, а в ядре хлора-35 она составляет 8,5 МэВ.

Чем больше энергия связи на один нуклон, тем больше устойчивость ядра. На рис. 1.33 показана зависимость энергии связи от массового числа элементов. Следует обратить внимание на то, что наибольшей устойчивостью обладают элементы с массовым числом, близким к 60. К таким элементам относятся 56Fe, 59Co, 59Ni и 64Cu. Элементы с более низкими массовыми числами могут, по крайней мере с теоретической точки зрения, повышать свою устойчивость в результате увеличения их массового числа. На практике, однако, представляется возможным увеличивать массовые числа только наиболее легких элементов, таких, как водород. (Гелий обладает аномально высокой устойчивостью; энергия связи нуклонов в ядре гелия не укладывается на кривую, изображенную на рис. 1.33.) Массовое число таких элементов увеличивается в процессе, называемом ядерным синтезом (см. ниже).

Рис. 1.33. Зависимость энергии связи от массового числа элемента.



Элементы с большими массовыми числами становятся более устойчивыми в результате уменьшения их массового числа, когда они превращаются в более легкие элементы. Это происходит в процессе расщепления ядер, который называется ядерным делением (см. ниже).

Гатина Гузель Робертовна

Творческая работа ученика по теме: "Применение радиоактивных изотопов".

ВложениеРазмер
Primenenie_radioaktivnyh_izotopov.ppt 1.86 МБ
Предварительный просмотр:

Подписи к слайдам:

Таблица 1.Основные характеристики радионуклидов – γ-излучателей для использования в диагностических целях Радионуклид Период полураспада Энергия γ-излучения, кэВ 7Be 53,2 сут 478 28Mg 21,1 ч 401 28Al 2,2 мин 1779 38Cl 37,2 мин 1642 43K 22,6 ч 373 47Sc 3,4 сут 159 51Cr 27,7 сут 320 54Mn 312,2 сут 835 52Fe 8,3 ч 169

59Fe 44,5 сут 1099 55Co 17,5 ч 477 57Co 272 сут 122 62Cu 9,7 мин 1173 64Cu 12,7 ч 1346 67Cu 61,8 ч 185 62Zn 9,3 ч 597 69mZn 13,9 ч 439 72As 26 ч 834 74As 17,8 сут 596 72Se 8,4 сут 46 73Se 7,2 ч 361 75Se 120 сут 136 77mSe 17,4 с 162

Со60 применяется для лечения злокачественных опухолей, расположенных как на поверхности тела, так и внутри организма. Для лечения опухолей, расположенных поверхностно (например, рак кожи), кобальт применяется в виде трубочек, которые прикладываются к опухоли, или в виде иголочек, которые вкалываются в нее. Трубочки и иголочки, содержащие радиокобальт, держатся в таком положении до тех пор, пока не наступит разрушение опухоли. При этом не должна сильно страдать здоровая ткань, окружающая опухоль. Если опухоль расположена в глубине тела (рак желудка или легкого), применяются специальные γ -установки, содержащие радиоактивный кобальт. Такая установка создает узкий, очень мощный пучок γ -лучей, который направляется на то место, где распола­гается опухоль. Облучение не вызывает никакой боли, больные не чувствуют его.

Камера радиографическая цифровая для флюорографических аппаратов КРЦ 01- "ПОНИ"

Маммограф современная маммографическая система, с низкой дозой облучения и высокой разрешающей способностью, которая обеспечивает высококачественное изображение молочной железы необходимое для точной диагностики

компьютерный томограф Компьютерная томография – метод послойного рентгенологического исследования органов и тканей. Она основана на компьютерной обработке множественных рентгеновских изображений поперечного слоя, выполненных под разными углами.

Брахитерапия — не радикальная, а практически амбулаторная операция, в ходе которой в пораженный орган мы вводим титановые зерна, содержащие изотоп. Этот радиоактивный нуклид убивает опухоль насмерть. В России пока только четыре клиники выполняют такую операцию, две из которых в Москве, в Обнинске и в Екатеринбурге, хотя страна нуждается в 300—400 центрах, где применяли бы брахитерапию.

Контроль износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца.

Мощное y-излучение препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.

Радиоактивные материалы позволяют судить о диффузии материалов, процессах в доменных печах и т.д

Облучение семян растений (хлопчатника, капусты, редиса и др.) небольшими дозами y-лучей от радиоактивных препаратов приводит к заметному увеличению урожайности.

Большие дозы радиации вызывают мутации у растений и микроорганизмов, что в отдельных случаях приводит к появлению мутантов с новыми ценными свойствами (радио селекция). Так выведены ценные сорта пшеницы, фасоли и других культур. Так выведены ценные сорта пшеницы, фасоли и других культур, а также получены высокопродуктивные микроорганизмы, применяемые в производстве антибиотиков.

Гамма-излучения радиоактивных изотопов используется также для борьбы с вредными насекомыми и для консервации пищевых продуктов.

Интересное применение для определения возраста древних предметов органического происхождения (дерева, древесного угля, тканей и т. д.) получил метод радиоактивного углерода. В растениях всегда имеется B-радиоактивный изотоп углерода 166C с периодом полураспада Т=5700 лет. Он образуется в атмосфере Земли в небольшом количестве из азота под действием нейтронов. Последние же возникают за счет ядерных реакций, вызванных быстрыми частицами, которые поступают в атмосферу из космоса (космические лучи). Соединяясь с кислородом, этот углерод образует углекислый газ, поглощаемый растениями, а через них и животными. Один грамм углерода из образцов молодого леса испускает около пятнадцати B-частиц в секунду.

После гибели организма пополнение его радиоактивным углеродом прекращается. Имеющееся же количество этого изотопа убывает за счет радиоактивности. Определяя процентное содержание радиоактивного углерода в органических остатках, можно определить их возраст, если он лежит в пределах от 1000 до 50000 и даже до 100000 лет. Таким образом, узнают возраст египетских мумий, остатков доисторических костров и т. д.

Читайте также: