Причины пожаров на производстве реферат

Обновлено: 05.07.2024

В современном производстве с повышенными параметрами технологического процесса периодически создаются условия, приводящие к неожиданному нарушению работы или выходу из строя машин, агрегатов, коммуникаций сооружений или их систем. Такие явления принято называть авариями.

Прикрепленные файлы: 1 файл

Семинар 3. Пожары и взрывы на предприятиях.doc

Семинар 3. Вопрос 6. Пожары и взрывы на предприятиях (причины, последствия этих аварий).

В современном производстве с повышенными параметрами технологического процесса периодически создаются условия, приводящие к неожиданному нарушению работы или выходу из строя машин, агрегатов, коммуникаций сооружений или их систем. Такие явления принято называть авариями.

Катастрофа — если авария создает угрозу жизни или здоровья людей или вызывает человеческие жертвы.

Не всякая авария приводит к катастрофе, но причиной практически всех катастроф являются аварии.

Наиболее опасные последствия аварий — пожары, взрывы, обрушения и аварии на энергоносителях — энергоисточниках, на атомных электростанциях, на химических предприятиях, приводящих к разрушению средств производства. Большинство аварий происходит по вине человеческого фактора. Наиболее частыми последствиями аварий являются пожары и взрывы. Пожар - это неконтролируемый процесс горения, сопровождающийся уничтожением материальных ценностей и создающий опасность для жизни людей.

Взрыв - это высвобождение большого количества энергии в ограниченном объеме за короткий промежуток времени. Он приводит к образованию сильно нагретого газа (плазмы) с очень высоким давлением, который при моментальном расширении оказывает ударное механическое воздействие (давление, разрушение) на окружающие тела. Взрыв в твердой среде сопровождается ее разрушением и дроблением, в воздушной или водяной - вызывает образование воздушной или гидравлической ударных волн, которые и оказывают разрушающее воздействие на помещенные в них объекты.

Взрывы происходят за счет высвобождения химической энергии (главным образом взрывчатых веществ), внутриядерной энергии (ядерный взрыв), механической энергии (при падении метеоритов на поверхность Земли и др.), энергии сжатых газов (при превышении давления предела прочности сосуда - баллона, трубопровода и пр.).

Горение - сложный физико-химический процесс превращения горючих веществ и материалов в продукты сгорания, сопровождаемый интенсивным выделением тепла, дыма и светового излучения, в основе которого лежат быстротекущие химические реакции окисления в атмосфере кислорода воздуха.

На предприятиях нефтяной, химической и газовой промышленности аварии вызывают загазованность, разлив нефтепродуктов, агрессивных жидкостей и сильнодействующих ядовитых веществ. Количество аварий на этих предприятиях ежегодно растет. За последние 30 лет количество аварий увеличилось в 2,5 раза. При этом, количество жертв увеличилось в 6 раз, а экономический ущерб в 11 раз. Такие предприятия наносят колоссальный ущерб окружающей среде. Причиной техногенных аварий могут стать стихийные бедствия, дефекты, допущенные при проектировании, нарушение технического процесса.

Основными причинами всех техногенных катастроф являются:

  • Человеческий фактор.
  • Обученность человека.
  • Отношение человека к работе.
  • Трудовая дисциплина.

Любая авария или катастрофа не может произойти по какой-то одной причине. Все аварии — это результат действия нескольких причин и совокупности неблагоприятных факторов. Самый частый вариант, это когда ошибки, допущенные при проектировании, взаимодействуют с ошибками, допущенными при монтаже и усугубляются неправильной эксплуатацией.

Главные меры (усилия) человека по борьбе с авариями и катастрофами должны быть направлены на их профилактику и предупреждение. Принятые меры либо полностью исключают, либо локализуют техногенные аварии и катастрофы. В основе таких мер лежит обеспечение надежности технологического процесса.

Основные меры обеспечения надежности функционирования объекта:

  • Выполнение требований государственных стандартов и строительных норм и правил, которые направлены на то, чтобы максимально исключить возможность аварии.
  • Жесткая производственная дисциплина. Точное выполнение технологических процессов. Использование оборудования в строгом соответствии с его техническим назначением.
  • Дублирование и увеличение запасов прочности важнейших элементов производства.
  • Чёткая организация службы инспекции контроля и безопасности.
  • Тщательный подбор кадров, повышение практических знаний в объёме выполняемой работы.
  • Оценка условий производства с точки зрения возможности возникновения аварии.

Если в технологическом процессе применяют горючие вещества и существует возможность их контакта с воздухом, то опасность пожара и взрыва может возникнуть как внутри аппаратуры, так и вне ее, в помещении и на открытых площадках. Так, большую опасность представляют аппараты, емкости и резервуары с горючими жидкостями, так как они не бывают заполнены до предела и в пространстве над уровнем жидкости образуется паровоздушная взрывоопасная смесь. Опасны в пожарном отношении малярные участки и цехи предприятий, где в качестве растворителей используют легковоспламеняющиеся жидкости.

Причиной взрыва или пожара может послужить наличие в помещении горючей пыли и волокон.

Различают тепловые, химические и микробиологические источники зажигания - импульсы. Наиболее распространен тепловой импульс, которым обладают: открытое пламя, искра, электрические дуги, нагретые поверхности и др.

Для воспламенения горючей смеси газов и паров с воздухом достаточно нагреть до температуры воспламенения всего 0,5. 1 мм3 этой смеси. От открытого пламени почти всегда зажигается горючая смесь.

Искрой обычно называют точечный источник воспламенения. Искры могут образовываться при трении, ударе или вызываться электрическим разрядом. К источникам их образования относятся операции механической обработки (шлифование), а также заточка инструмента и т. п.

Источники открытого огня - технологические нагреватели печи, аппараты и процессы газовой сварки и резки, установки для сжигания отходов и т. п.

Пожары могут возникнуть от электроустановок, в которых присутствуют нагревающиеся проводники электрического тока и горючее вещество (изоляция этих проводников). При коротких замыканиях электрические проводники быстро разогреваются до высоких температур.

Во избежание возникновения пожаров курить разрешается только в специально отведенных местах.

Химический импульс обусловлен тем, что температура повышается за счет экзотермических химических реакций взаимодействия тех или иных веществ, а микробиологический - связан с жизнедеятельностью микроорганизмов, влияющих на увеличение температуры. Их отличительная особенность заключается в том, что процессы, обусловливающие эти импульсы, начинаются при обычных температурах и приводят к самовозгоранию.

Особую опасность представляют промасленные специальная одежда и обтирочные материалы, сложенные в кучи. При условии плохого теплоотвода нагревание, начавшееся при нормальной температуре, через 3. 4 ч может закончиться самовозгоранием.

Последствия пожаров и взрывов

Последствия пожаров и взрывов обусловлены действием их поражающих факторов.

Основными поражающими факторами пожара являются: непосредственное действие огня на горящий предмет и дистанционное воздействие на предметы и объекты высоких температур за счет облучения.

В результате происходит сгорание объектов, их обугливание, разрушение, выход из строя. Уничтожаются все элементы зданий и конструкций, выполненных и сгораемых материалов, действие высоких температур вызывает пережог, деформацию и обрушение металлических ферм, балок перекрытий и др. конструктивных деталей сооружения. Кирпичные стены и столбы деформируются. В кладке из силикатного кирпича при длительном нагревании до 500-600 0 С наблюдается его расслоение трещинами и разрушение материала.

При пожарах полностью или частично уничтожаются или выходят из строя технологическое оборудование и транспортные средства. Гибнут домашние и с/х животные. Гибнут или получают ожоги люди.

Вторичными последствиями пожаров могут быть взрывы, утечка ядовитых или загрязняющих веществ. Большой ущерб незатронутым пожаром помещениям и хранящимся в них предметам может нанести вода, применяемая для тушения пожара.

Основными поражающими факторами взрывов являются:

воздушная ударная волна (ВУВ), возникающая при ядерных взрывах, взрывах детонирующих и инициирующих веществ, при взрывных превращениях облаков топливно-воздушных смесей, взрывов резервуаров с перегретой жидкостью и резервуаров под давлением;

осколочные поля, создаваемые летящими обломками разного рода объектов.

Основными параметрами поражающих факторов являются:

- воздушной ударной волны - избыточное давление в ее фронте;

- осколочного поля - количество осколков, их кинетическая энергия и радиус разлета.

В результате действия поражающих факторов взрыва происходит разрушение или повреждение зданий, сооружений, оборудования, элементов коммуникации, и гибель людей и животных.

Вторичными последствиями взрывов являются поражение находящихся внутри объектов, обломками обрушенных конструкций здания, их погребение под обломками. В результате взрывов могут возникнуть пожары, утечка опасных веществ из поврежденного оборудования.

При пожарах и взрывах люди получают термические и механические травмы. Характерны ожоги верхних дыхательных путей, тела, черепно-мозговые травмы, множественные переломы и ушибы, комбинированные поражения.

Изучение причин опасности аппаратов, емкостей и резервуаров с горючими жидкостями. Рассмотрение основных источников открытого огня. Характеристика главных причин возникновения пожаров. Характеристика особенностей применения огнегасительных средств.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 18.11.2013
Размер файла 17,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Причины пожаров и взрывов на производстве

горючий пожар огнегасительный

Если в технологическом процессе применяют горючие вещества и существует возможность их контакта с воздухом, то опасность пожара и взрыва может возникнуть как внутри аппаратуры, так и вне ее, в помещении и на открытых площадках. Так, большую опасность представляют аппараты, емкости и резервуары с горючими жидкостями, так как они не бывают заполнены до предела и в пространстве над уровнем жидкости образуется паровоздушная взрывоопасная смесь. Опасны в пожарном отношении малярные участки и цехи предприятий, где в качестве растворителей используют легковоспламеняющиеся жидкости.

Причиной взрыва или пожара может послужить наличие в помещении горючей пыли и волокон.

Различают тепловые, химические и микробиологические источники зажигания - импульсы. Наиболее распространен тепловой импульс, которым обладают: открытое пламя, искра, электрические дуги, нагретые поверхности и др.

Для воспламенения горючей смеси газов и паров с воздухом достаточно нагреть до температуры воспламенения всего 0,5. 1 мм3 этой смеси. От открытого пламени почти всегда зажигается горючая смесь.

Искрой обычно называют точечный источник воспламенения. Искры могут образовываться при трении, ударе или вызываться электрическим разрядом. К источникам их образования относятся операции механической обработки (шлифование), а также заточка инструмента и т. п.

Источники открытого огня - технологические нагреватели печи, аппараты и процессы газовой сварки и резки, установки для сжигания отходов и т. п.

Пожары могут возникнуть от электроустановок, в которых присутствуют нагревающиеся проводники электрического тока и горючее вещество (изоляция этих проводников). При коротких замыканиях электрические проводники быстро разогреваются до высоких температур.

Во избежание возникновения пожаров курить разрешается только в специально отведенных местах.

Химический импульс обусловлен тем, что температура повышается за счет экзотермических химических реакций взаимодействия тех или иных веществ, а микробиологический - связан с жизнедеятельностью микроорганизмов, влияющих на увеличение температуры. Их отличительная особенность заключается в том, что процессы, обусловливающие эти импульсы, начинаются при обычных температурах и приводят к самовозгоранию.

Особую опасность представляют промасленные специальная одежда и обтирочные материалы, сложенные в кучи. При условии плохого теплоотвода нагревание, начавшееся при нормальной температуре, через 3. 4 ч может закончиться самовозгоранием.

Для охлаждения очагов горения должны применяться огнегасительные вещества с большой теплоемкостью, удельной теплотой парообразования или плавления, способные быстро распространяться по поверхности горящих веществ, впитываться и проникать вглубь их. В качестве огнегасительных веществ наибольшее распространение получили вода, водные эмульсии галоидированных углеводородов, химическая и воздушно-механическая пены, водяной пар, углекислота, инертные газы, галоидированные углеводороды, порошки, сжатый воздух, песок и др. Вода используется в виде компактных и распыленных струй (размер капель более 100 мкм), в тонкораспыленном состоянии (размер капель до 10 мкм), со смачивателями и в парообразном состоянии. Огнегасительный эффект воды заключается в основном в смачивании поверхности, увлажнении и охлаждении горячих материалов и веществ, вследствие чего при тушении понижается или полностью устраняется их возгораемость. В виде компактных и распыленных струй воду применяют тушения большинства твердых горючих веществ и материалов, тяжелых нефтепродуктов, для создания водяных завес и охлаждения объектов, находящихся вблизи очага пожара. Тонкораспыленной водой и паром эффективно тушат твердые вещества и материалы, легковоспламеняющиеся и горючие жидкости. При добавлении к воде 0,3-0,4% смачивателей огнегасителъный эффект повышается настолько, что позволяет в 2-2,5 раза снизать расход воды и сократить время тушения до 30%. В качестве смачивателей используют растворы поверхностно-активных веществ: сульфанол НП-1, сульфат, синтол, смачиватель ДП, пенообразователь ПО-1 и другие, поверхностное натяжение которых менее 37 эрг/см2. Водные эмульсии галоидированных углеводородов представляют собой смеси воды с 5-10% бромэтила, тетрафтордиброметана и др. Огнегасительный эффект этих эмульсий заключается в сочетании смачивающего и охлаждающего действия воды и ингибирущего действия галоидированных углеводородов в парогазовой фазе. Рекомендуется применять их для тушения твердых и жидких горючих материалов и веществ в тех случаях, когда вода неэффективна. Химическая пена получается в пеногенераторах из порошков ПГП и ПГПС и в огнетушителях при взаимодействии щелочного и кислотного растворов. Пеногенераторный порошок ПГП - это сыпучая желтовато-серая масса, состоящая из кислотной и щелочной частей. Кислотная часть представляет собой размолотый сернокислый глинозем Аl2(SO4)3, а щелочная - измельченный бикарбонат натрия NaHCO3, обработанный экстрактом солодкового корня или лакричным экстрактом. При смешивании порошка с водой в пеногенераторе происходит реакция

Аl2(SO4)3+6H2O = 2Al(OH)3+3H2SO4 H2SO4+2NaHCO3 = Na2SO4+2H2O+2CO2

Выделившийся углекислый газ в присутствии экстракта солодкового корня или лакричного экстракта - пенообразующего вещества, придающего прочность пузырькам пены, образует густую стойкую пену, которая через пожарный рукав и пенный ствол или пенослив, выбрасывается в очаг пожара. Химическую пену из порошка ПГП применяют для тушения нефтепродуктов. В состав порошка ПГПС дополнительно введено 2% мыла. Это придает пене гидрофобные свойства, позволяющие применять ее для тушения спирта, ацетона и других растворимых в воде жидкостей. В огнетушителях ОХП-10, ОП-М, ОП-ЭММ, в которых щелочная часть представляет собой водный раствор бикарбоната натрия. NaHCO3 содержащий лакричный экстракт, а кислотная - водный раствор серной кислоты и железного дубителя Fe2(SO4)3, химическая пена образуется по реакциям

H2SO4+2NaHCO3 = Na2SO4+2H2O+2CO2 Fe2(SO4)3+6H2O = 2Fe(OH)3+3H2SO4

Химическая пена по объему состоит примерно из 80% углекислого газа, 19,7% воды и 0,3% пенообразующего вещества. Кратность пены равна 5. При тушении пожаров ЛВЖ и горючих жидкостей пена, покрывая поверхность, изолирует их от окружающего воздуха, а углекислый газ снижает концентрацию кислорода в нем. Воздушно-механическая пена бывает низкой (до 10), средней (11-200) и высокой (201-1000) кратности. Пена получается при смешивании водного раствора пенообразователя ПО-1 с воздухом: низкой кратности в воздушно-пенных стволах СВП-2, СВП-4, СВП-8 и др., а средней и высокой кратности - в пеногенераторах ГВП-200, ГВП-600, ГВП-2000 и др. Пену низкой кратности применяют для тушения нефтепродуктов (кроме гидрофильных - ацетона, спирта, и т.д.), многих твердых веществ и материалов, а также для защиты конструкций, аппаратов и другого оборудования от теплового излучения при пожаре. Пена средней кратности (80-150) является основным огнегасительным веществом для тушения нефтепродуктов и других ЛВЖ и горючих жидкостей (кроме гидрофильных), а также твердых материалов и веществ. Пену высокой кратности применяют для тушения пожаров в подвалах, трюмах судов, шахтах и всех закрытых объектах, а также для тушения ЛВЖ и горючих жидкостей. Водяной пар используют для тушения пожаров в помещениях объемом до 500м3 и небольших пожаров на открытых площадках и установках. Пар увлажняет горючие предметы и снижает концентрацию кислорода. ВНИМАНИЕ. Так как вода входит в состав химической и воздушно-механической пен, эмульсий галоидированных углеводородов и пара, то данными огнегасителъными веществами категорически запрещается тушить пожары: электроустановок, находящихся под напряжением (вода хорошо проводит электроток); помещений, в которых хранится и применяется карбид кальция (при взаимодействии воды с карбидом кальция образуется взрывоопасный газ ацетилен); помещений, в которых хранятся и применяются металлы - калий и натрий (при взаимодействии воды с калием и натрием образуется взрывоопасный газ водород). Струей воды нельзя также гасить жидкие нефтепродукты, удельный вес которых меньше удельного веса воды, и угольную пыль, так как она легко переходит во взвешенное состояние с образованием взрывоопасных концентраций в смеси с воздухом. Углекислота в снегообразном и газообразном состояниях применяется в различных огнетушителях и стационарных установках для тушения пожаров в закрытых помещениях и небольших открытых загораний. Инертные газы (азот, аргон, гелий) понижают концентрацию кислорода в очаге горения и тормозят интенсивность горения. Их применяют для заполнения танков и других резервуаров, в которых при снижении концентрации кислорода до 5% и ниже можно выполнять огневые работы. Галоидированные углеводороды (газы или легкоиспаряющиеся жидкости) - высокоэффективные средства пожаротушения. Огнегасительное действие их основано на торможении химических реакций горения, поэтому их часто называют антикатализаторам, ингибиторами или флегматизаторами. К данным огнегасительным веществам относятся бромистый метилен, йодистый метилен, бромистый метил, бромистый этил и др. Порошки СП-2, ПС-1, ПСБ и других марок применяют для тушения металлов и различных твердых и жидких горючих веществ и материалов. Для тушения щелочных металлов рекомендуется сухой порошок, содержащий кальцинированную соду, графит, стеарат железа, стеарат алюминия и стеариновую кислоту. В качестве огнегасительных веществ используют также измельчённую двууглекислую соду NaHCO3, углекислую соду Na2CO3, поташ К2CO3, квасцы KAl(SO4)2·12H2O. Порошки эффективно сбивают пламя, но не всегда полностью тушат, если в очаге пожара имеются раскаленные или тлеющие предметы. Поэтому их рекомендуется применять как самостоятельно, так и совместно с другими смачивающими огнегасительными веществами. Сжатый воздух используют для тушения горючих жидкостей методом их перемешивания. Горение прекращается, когда температура верхнего слоя жидкости становится ниже температуры воспламенения. Сжатый воздух рекомендуется для тушения жидкостей с температурой вспышки 60°С и выше. Химические огнетушители ОХП-10, ОП-М и ОП-9ММ предназначены для тушения твердых материалов и горючих жидкостей за исключением электроустановок под напряжением и щелочных металлов. Огнетушитель такого типа, например ОХП-10 (ранее маркированный как ОП-5), представляет собой стальной сварной баллон с чугунной крышкой, горловиной со спрыском и ручкой для переноски. Внутри баллона находится полиэтиленовый стакан, закрывающийся резиновым клапаном (расположен на штоке с пружиной). Сверху шток крепится штифтом к эксцентриковой рукоятке. Предохранительный клапан предотвращает взрыв баллона, башмак предназначен для установки огнетушителя. Заряд огнетушителя состоит из двух частей: щелочной и кислотной. Кислотная часть находится в полиэтиленовом стакане емкостью 0,45 л; щелочная часть - в стальном баллоне емкостью 8.5 л. Первичные средства пожаротушения служат для тушения пожаров в начальной стадии их развития до прибытия пожарных подразделений. К ним относятся ручные, и передвижные огнетушители, гидропульты, ведра, бочки с водой, лопаты, ящики с песком, асбестовые полотна, войлочные маты, кошмы, ломы, пилы, багры, валы и топоры. Рассмотрим применяемые в настоящее время ручные огнетушители, в состав которых входят перечисленные огнегасительные вещества. Для тушения возникших очагов пожаров применяются следующие виды огнетушителей: а) химические пенные ОХП-10, ОП-М, ОП-9ММ; б) воздушно-пенные ОПВ-5, ОВП-10, ОВП-100; в) углекислотные ОУ, ОУ-2, ОУ-5, ОУ-8, ОУ-25, ОУ-80 г) углекислотные бромэтиловые ОУБ-3А, ОУБ-7А; д) порошковые ОП-1 “Спутник”, ОП-1 “Турист”, ОП-1Б “Момент”, ОП-2 и ОПС-10. а) и б)- для тушения обыкновенных горючих твердых веществ и материалов, огнеопасных жидкостей; в) и г) - то же, что а) и б) + тушение электроустановки под напряжением; д) для тушения небольших загораний.

Подобные документы

Понятие и определение основных причин пожаров и взрывов. Техника тушения пожаров: методы, оборудование, средства, огнетушители. Пути и правила эвакуации людей. Пожарная связь и сигнализация. Методы защиты от статического и атмосферного электричества.

Наиболее частые причины возникновения пожаров на промышленных предприятиях – неосторожное обращение с огнем, неисправность производственного оборудования, нарушения технологического процесса, нарушения правил эксплуатации электрооборудования, несоблюдение мер пожарной безопасности при проведении электрогазосварочных работ и некоторых другие.

Пожар на производстве может возникнуть вследствие причин неэлектрического и электрического характера.

Причины неэлектрического характера:

- неправильное устройство и неисправность котельных печей, вентиляционных и отопительных систем, отопительных приборов и технологического оборудования;

- неисправность систем питания и смазки в работающих двигателях механизмов;

- нарушение технологического процесса;

- нарушение требований пожарной безопасности при газосварочных работах, резке металлов, пользовании паяльными лампами;

- халатное и неосторожное обращение с огнем – курение, оставление без присмотра нагревательных приборов, разогрев деталей и сушка;

- самовозгорание или самовоспламенение веществ.

Причины электрического характера:

- короткие замыкания, перегрузки, искрения от нарушения изоляции, что приводит к нагреванию проводников до температуры воспламенения изоляции;

- электрическая дуга, возникающая между контактами коммутационных аппаратов, не предназначенных для отключения больших токов нагрузки, а также придуговой электросварке;

- неудовлетворительные контакты в местах соединения проводов и их сильный нагрев вследствие большого переходного сопротивления при протекании электрического тока;

- аварии с маслонаполненными аппаратами, когда происходит сброс в атмосферу и воспламенение продуктов разложения минерального масла и смеси их с воздухом;

- искрение в электрических аппаратах и машинах, а также искрение в результате электростатических разрядов и ударов молнии;

- неисправность в обмотках электрических машин при отсутствии надлежащей защиты.

Рост единичной мощности агрегатов, интенсификация технологических процессов, т.е. увеличение объемов и скоростей движения подчас пожаро- и взрывоопасных материалов, применение высоких температур и давлений, максимальная механизация и автоматизация выдвигают повышенные требования к надежности и эффективности пожаро- и взрывозащиты. Как показывает практика, авария даже одного крупного агрегата, сопровождается пожаром и взрывом, а в химической промышленности они часто сопутствуют один другому, может привести к весьма тяжким последствиям не только для самого производства и людей его обслуживающих, но и для окружающей среды. В этой связи чрезвычайно важна правильная оценка уже на стадии проектирования пожаро- и взрывопредупреждения и защиты. Именно этой цели служат ГОСТ ССБТ, СниП, нормы технологического проектирования, созданные на основе изучения и обобщения науки и практики в области борьбы с пожарами и взрывами на производстве.

Анализ аварий в химической промышленности показывает, что, несмотря на многообразие технологических схем, оборудования и самих процессов, характер их опасности во многом схож. Для предаварийного состояния характерно образование взрывоопасных газопаровых смесей, накопление и образование взрывоопасных пылевоздушных смесей, жидких и твердых взрывоопасных продуктов в аппаратах и коммуникациях и инициирование воспламенения и взрыва источниками воспламенения; образование взрывоопасного облака в производственных зданиях, а также на территории предприятия и т.д.

Это говорит о том, что, проводя анализ пожаро- и взрывоопасности технологического процесса в целом, необходимо знать пожаро- и взрывоопасные свойства веществ, поступающих и образующихся в производстве, знать их количество, степень пожаро- и взрывоопасности среды внутри аппаратов и оборудования, а также возможные причины выхода горючих веществ в производственное помещение, причины и пути распространения пожара по коммуникациям и производственному зданию. Необходимо также определить возможность появления внутренних и внешних источников воспламенения и инициирования взрыва как в аппарате, так и в производственных зданиях и не территории предприятия и т.д.

Требования к пожару- и взрывоопасности промышленных объектов сформулированы в ГОСТ 12.1.004-85 "Пожарная безопасность. Общие требования", ГОСТ 12.1.033-81 "Пожарная безопасность. Термины и определения", ГОСТ 12.1.010-76 "Взрывоопасность. Общие требования".

Рекомендации ГОСТ определяют два основных принципа обеспечения пожаро- и взрывобезопасности:

-предотвращение образования горючей и взрывоопасной среды;

-пожаро- и взрывозащита технологических процессов, помещений и зданий и трактуют пожарную безопасность как "состояние объекта, при котором с установленной вероятностью исключается возможность возникновения и развития пожара, а также обеспечивается защита материальных ценностей", а взрывобезопасность как "состояние производственного процесса, при котором исключается возможность взрыва, или в случае его возникновения предотвращается воздействие на людей вызываемых им опасных и вредных факторов и обеспечивается сохранение материальных ценностей".

К опасным и вредным факторам, которые могут воздействовать на людей в результате пожара и взрыва, относятся: пламя, ударная волна, обрушения оборудования, коммуникаций зданий и сооружений и их осколков, образование при взрыве и пожаре и выход из поврежденных аппаратов содержащихся в них вредных веществ и т.д.

Производственные процессы, за исключением процессов, связанных с взрывчатыми веществами, должны разрабатываться так, чтобы вероятность возникновения пожара или взрыва на любом участке в течении года не превышала 0,000001, а система пожаро- и взрывозащиты, разрабатываемая для каждого конкретного объекта из расчета, что нормативная величина воздействия опасных факторов пожара или взрыва на людей принимается равной не более 0,000001 в год в расчете на отдельного человека. При этом надо иметь в виду, что безопасность людей должна быть обеспечена при возникновении пожара в любом месте объекта, а пожарная безопасность объекта как в его рабочем состоянии, так и в случаях аварийной обстановки.

Основные меры обеспечения пожаро- и взрывобезопасности производственных процессов могут быть представлены следующей схемой, см. рис.1.

Рассчитать эффективность природной вентиляции помещения экономического отдела.

Основный выходные данные:

количество работающих – 5

размеры форточки – 0,21 , м 2 .

В соответствии с СниП 2.09.04-87 объем рабочего помещения, которое приходится на одного работающего не менее 40 м 3 . В противоположном случае для нормальной работы в помещении необходимо обеспечивать постоянный воздухообмен с помощью вентиляции размером не менее L’= 30 м 3 /час на одного работающего.

Таким образом, необходимый воздухообмен Lн вычисляется по формуле

где n – количество работающих.

Lн = 30·5 = 150 м 3 /час.

Фактический воздухообмен в отделе производится с помощью природной вентиляции как неорганизованно – через различные щели дверных и оконных проемов так и организованно – через форточку.

Фактический воздухообмен Lф, м 3 /час, вычисляется по формуле:

где м – коэффициент расхода воздуха м=0,55;

F – площадь форточки, через которую будет выходить воздух, м 2 ;

V – скорость выхода воздуха, м/с. Ее можно рассчитать по формуле:


где g – ускорение свободного падения;

DH2 – тепловой напор, под действием которого будет выходить воздух, кг/м 2 :

где h2 – высота от площади равных давлений до центра форточки.

yн, увп – соответственно объемные массы воздуха снаружи и внутри помещения, кгс/ м 3 .

Объемные массы воздуха определяется по формуле:

где Рб – барометрическое давление, мм. рт. ст.;

Т – температура воздуха, К.

Для отдела где выполняются легкие работы соответственно с ГОСТ 12.1.005-88 для теплого периода года температура должна составлять не больше 301 К, для холодного 290 К.

Для внешнего воздуха температуру берем соответственно СниП 2.04.05.-91:

- для лета Т=297 К;

- для зимы Т=262 К.

Ун = 0,465·750/297=1,17 кгс/ м 3

Увп = 0,465·750/301=1,16 кгс/ м 3

Ун = 0,465·750/262=1,33 кгс/ м 3

Увп = 0,465·750/290=1,2 кгс/ м 3

DH = 1,25·(1,17-1,16)=0,0125 кг/м 2


м/с


м/с

Lф = 0,55·0,21·0,46·3600=191,3 м 3 /час

Lф = 0,55·0,21·1,65·3600=686 м 3 /час

Эффективность природной вентиляции в отделе эффективна Lн І V =ен ІІІ ·m·с,

где - ен ІІІ нормированное значение КПО для ІІІ светового пояса согласно СниП ІІ-4-79. Для экономического отдела, в котором выполняются роботы ІІІ разряда, для бокового освещения ен ІІІ =1,5%;

m – коэффициент светового климата, m=0,9;

с – коэффициент солнечности, с=0,75;

Фактическое значение КПО для помещения отдела равно


,

где Sо – площадь всех окон в помещении, м 2 ;

Sn – площадь пола в помещении, м 2 ;

t – общий коэффициент светопропускания оконного прореза.

r1 – коэффициент, который учитывает отражение света от внутренних поверхностей помещения. r1=1,4

nо – световая характеристика окна. nо=9,3

- коэффициент, который учитывает затемнение окон домами.

=1;

- коэффициент запаса. =1,4


%

Природная освещенность помещения достаточно эффективна, использование дополнительного освещения не нужно.

Проверить эффективность искусственного освещения отдела.

Вид источника света – Л.г.

Система освещения – общ.

Количество светильников – 6

Количество ламп на светильнике – 2

Для оценки эффективности искусственного освещения в помещении необходимо сравнить значение фактической освещенности и нормированного значении по СниП ІІ-4-79.

Нормированное значение освещенности для экономического отдела при общей освещенности по СниП ІІ-4-79 составляет при использовании газоразрядных ламп – 200 лк, при использовании ламп накаливания – 50 лк.

Значение расчетной освещенности, при использовании ламп накаливания может быть рассчитано с помощью метода коэффициента использования светового потока:


,

откуда вычисляется, лк:


,

где Fл – световой поток лампы, лм. Ориентировочно лампа мощностью 100 Вт образует 1450 лм, 150 Вт – 200 лм, 60 Вт – 790 лм;

nm – коэффициент использования светового потока. nm=0,4-0,6;

N – количество светильников, шт. Светильники располагаем равномерно по площади помещения, желательно по сторонам квадрата, выполняя следующие условия:

Сторона квадрата L=1,4·Нр, где Нр – высота подвеса светильников над рабочей площадью, определяется как разница между высотой помещения и стандартной высотой рабочей площади помещении, которая равняется 0,8 м, и также высотой свисания светильника со стены hсв=0,4 м.

Расстояние от светильника до стены в пределах I=(0,3 - 0,5) L;

n – количество ламп в светильнике, шт;

S – площадь помещения, м 2 ;

к – коэффициент запаса, к=1,5-2;

Z – коэффициент неравномерности освещения, для ламп накаливания Z=1,15.


лк

фактическое значение освещенности в несколько раз больше нормативного при использовании ламп накаливания (50 лк.). поэтому можно сделать вывод про эффективность искусственного освещения в отделе.

Рассчитать заземление для стационарной установки. Заземлителя радмещены в один рад(глубина заложения t=80 см)

Тип заземлителя – труба;

Длина заземлителя, см – 300;

Диаметр заземлителя, см – 5;

Ширина соединительной полосы, см – 4;

Принимаем соответственно с ПВЕ, ПТЕ и ПТБ допустимое сопротивление защитного заземлителя 4 Ом.

Расчетное частное сопротивление грунта:

Для супеска ρтабл=3·10 4 Ом·см

Удельное расчетное сопротивление грунта для стержней

где Кпт – повышающий коэффициент для стержня, Кпт=1,6-1,8, принимаем Кпт=1,7для II-й зоны

ρрасч.т.=3·10 4 ·1,7=5,1·10 4 Ом·см

Расстояние от поверхности земли до середины трубы:


,

где hB – глубина заложения труб, см;

lT – длина трубы, см.


см

сопротивление вытекания тока одного заземлителя:


,


Ом

Необходимое число труб без учета коэффициента экранирования:



Определяем расстояние между стержнями из соотношения

Для погруженных стационарных заземлителей с=1.

Необходимое количество труб с учетом коэффициента экранирования


принимаем количество стержней n=100 шт, причем заземления располагаем по четырехугольному контуру.

Определяем расчетное сопротивление растекания тока по принятому числу труб


Ом

Длина соединительной полосы

Сопротивление размыкания тока в соединительной полосе



Ом

Расчетное сопротивление размыкания тока в соединительной полосе


,


где =0,37

=0,19


Ом

Общий расчетное сопротивление


,


Ом

Вывод: заземление имеет запас. Стержни можно использовать менее металлоемкие.

1. Кобевник В.Ф. Охрана труда.-К.: Выща шк., 1990.-286 с.:ил.

2. Охрана труда в химической промышленности/Г.В. Макаров, А.Я. Васин, Л.К. Маринина, П.И. Софинский, В.А. Старобинский, Н.И. Торопов.-М., Химия,1989. 496 с.,ил.

Раздел: Безопасность жизнедеятельности
Количество знаков с пробелами: 23331
Количество таблиц: 0
Количество изображений: 0

Пожары наносят громадный материальный ущерб и в ряде случаев сопровождаются гибелью людей. Поэтому защита от пожаров является важнейшей обязанностью каждого члена общества и проводится в общегосударственном масштабе.
Противопожарная защита имеет своей целью изыскание наиболее эффективных, экономически целесообразных и технически обоснованных способов и средств предупреждения пожаров и их ликвидации с минимальным ущербом при наиболее рациональном использовании сил и технических средств тушения.

Содержание

1. Пожарная безопасность 3
1.1. Пожар как фактор техногенной катастрофы 3
2. Причины возникновения пожаров на предприятиях 6
2.1. Автотранспортные предприятия 7
2.2. Предприятия машиностроения 7
2.3. Лаборатории 7
3. Меры по пожарной профилактике 8
3.1. Способы и средства тушения пожаров 9
4. Оценка пожарной опасности промышленных предприятий 12
5. Самые крупные пожары на промышленных предприятиях России в 2004–2009 годах 14
Список использованной литературы 18

Работа содержит 1 файл

пожары на предприятиях.doc

Пожары наносят громадный материальный ущерб и в ряде случаев сопровождаются гибелью людей. Поэтому защита от пожаров является важнейшей обязанностью каждого члена общества и проводится в общегосударственном масштабе.

Противопожарная защита имеет своей целью изыскание наиболее эффективных, экономически целесообразных и технически обоснованных способов и средств предупреждения пожаров и их ликвидации с минимальным ущербом при наиболее рациональном использовании сил и технических средств тушения.

Пожарная безопасность – это состояние объекта, при котором исключается возможность пожара, а в случае его возникновения используются необходимые меры по устранению негативного влияния опасных факторов пожара на людей, сооружения и материальных ценностей

Пожарная безопасность может быть обеспечена мерами пожарной профилактики и активной пожарной защиты. Пожарная профилактика включает комплекс мероприятий, направленных на предупреждение пожара или уменьшение его последствий. Активная пожарная защита - меры, обеспечивающие успешную борьбу с пожарами или взрывоопасной ситуацией.

1.1. Пожар как фактор техногенной катастрофы

Пожар – это горение вне специального очага, которое не контролируется и может привести к массовому поражению и гибели людей, а также к нанесению экологического, материального и другого вреда.

Горение - это химическая реакция окисления, сопровождающаяся выделением теплоты и света. Для возникновения горения требуется наличие трех факторов: горючего вещества, окислителя и источника загорания. Окислителями могут быть кислород, хлор, фтор, бром, йод, окиси азота и другие. Кроме того, необходимо чтобы горючее вещество было нагрето до определенной температуры и находилось в определенном количественном соотношении с окислителем, а источник загорания имел определенную энергию.

Наибольшая скорость горения наблюдается в чистом кислороде. При уменьшении содержания кислорода в воздухе горение прекращается. Горение при достаточной и над мерной концентрации окислителя называется полным, а при его нехватке – неполным.

Выделяют три основных вида самоускорения химической реакции при горении: тепловой, цепной и цепочно-тепловой. Тепловой механизм связан с экзотермичностью процесса окисления и возрастанием скорости химической реакции с повышением температуры. Цепное ускорение реакции связано с катализом превращений, которое осуществляют промежуточные продукты превращений. Реальные процессы горения осуществляются, как правило, по комбинированному (цепочно-тепловой) механизму.

Процесс возникновения горения подразделяется на несколько видов:

Вспышка - быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание - возникновение горения под воздействием источника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Самовозгорание - явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения вещества при отсутствии источника зажигания. Различают несколько видов самовозгорания:

Химическое – от воздействия на горючие вещества кислорода, воздуха, воды или взаимодействия веществ;

Микробиологическое – происходит при определенной влажности и температуры в растительных продуктах (самовозгорание зерна);

Тепловое – вследствие долговременного воздействия незначительных источников тепла (например, при температуре 100 С тирса, ДВП и другие склоны к самовозгоранию).

Самовоспламенение - самовозгорание, сопровождается появлением пламени.

Взрыв - чрезвычайно быстрое (взрывчатое) превращение, сопровождающееся выделением энергии с образованием сжатых газов.

Основными показателями пожарной опасности являются температура самовоспламенения и концентрационные пределы воспламенения.

Температура самовоспламенения характеризует минимальную температуру вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

Температура вспышки - самая низкая (в условиях специальных испытаний) температура горючего вещества, при которой над поверхностью образуются пары и газы, способные вспыхивать в воздухе от источника зажигания, но скорость их образования еще недостаточна для последующего горения.

По этой характеристике горючие жидкости делятся на 2 класса:
1) жидкости с tвсп 610 C (бензин, этиловый спирт, ацетон, нитроэмали и т.д.) - легковоспламеняющиеся жидкости (ЛВЖ); 2) жидкости с tвсп > 610 C (масло, мазут, формалин и др.) - горючие жидкости (ГЖ).

Температура воспламенения - температура горения вещества, при которой оно выделяет горючие пары и газы с такой скоростью, что после воспламенения их от источника зажигание возникает устойчивое горение.

Температурные пределы воспламенения - температуры, при которых насыщенные пары вещества образуют в данной окислительной среде концентрации, равные соответственно нижнему и верхнему концентрационным пределам воспламенения жидкостей.

Горючими называются вещества, способные самостоятельно гореть после изъятия источника загорания.

По степени горючести вещества делятся на: горючие (сгораемые), трудногорючие (трудносгораемые) и негорючие (несгораемые).

К горючим относятся такие вещества, которые при воспламенении посторонним источником продолжают гореть и после его удаления.

К трудногорючим относятся такие вещества, которые не способны распространять пламя и горят лишь в месте воздействия источника зажигания.

Негорючими являются вещества, не воспламеняющиеся даже при воздействии достаточно мощных источников зажигания (импульсов).

Горючие вещества могут быть в трех агрегатных состояниях: жидком, твердом и газообразном. Большинство горючих веществ независимо от агрегатного состояния при нагревании образует газообразные продукты, которые при смешении с воздухом, содержащим определенное количество кислорода, образуют горючую среду. Горючая среда может образоваться при тонкодисперсном распылении твердых и жидких веществ.

Из горючих газов и пыли образуются горючие смеси при любой температуре, в то время как твердые вещества и жидкости могут образовать горючие смеси только при определенных температурах.

В производственных условиях может иметь место образование смесей горючих газов или паров в любых количественных соотношениях. Однако взрывоопасными эти смеси могут быть только тогда, когда концентрация горючего газа или пара находится между границами воспламеняемых концентраций.

Минимальная концентрация горючих газов и паров в воздухе, при которой они способны загораться и распространять пламя, называющееся нижним концентрационным пределом воспламенения.

Максимальная концентрация горючих газов и паров, при которой еще возможно распространение пламени, называется верхним концентрационным пределом воспламенения.

Указанные пределы зависят от температуры газов и паров: при увеличении температуры на 100 0С величины нижних пределов воспламенения уменьшаются на 8 - 10 %, верхних - увеличиваются на 12 - 15 %.

Пожарная опасность вещества тем больше, чем ниже нижний и выше верхний пределы воспламенения и чем ниже температура самовоспламенения.

Пыли горючих и некоторых не горючих веществ (например, алюминий, цинк) могут в смеси с воздухом образовать горючие концентрации.

Наибольшую опасность по взрыву представляет взвешенная в воздухе пыль. Однако и осевшая на конструкциях пыль представляет опасность не только с точки зрения возникновения пожара, но и вторичного взрыва, вызываемого в результате взвихривания пыли при первичном взрыве.

Минимальная концентрация пыли в воздухе, при которой происходит ее загорание, называется нижним пределом воспламенения пыли.

Поскольку достижение очень больших концентраций пыли во взвешенном состоянии практически нереально, термин "верхний предел воспламенения" к пылям не применяется.

Воспламенение жидкости может произойти только в том случае, если над ее поверхностью имеется смесь паров с воздухом в определенном количественном соотношении, соответствующим нижнему температурному пределу воспламенения.

Пожар на предприятии наносит большой материальный ущерб народному хозяйству и очень часто сопровождается несчастными случаями с людьми.

Основными причинами, способствующими возникновению и развитию пожара, являются:

нарушение правил применения и эксплуатации приборов и оборудования с низкой противопожарной защитой;

использование при строительстве в ряде случаев материалов, не отвечающих требованиям пожарной безопасности;

отсутствие на многих объектах народного хозяйства и в подразделениях пожарной охраны эффективных средств борьбы с огнем.

2.1. Автотранспортные предприятия

Причины воспламенения материалов и возникновения пожаров на автотранспортных предприятиях:

неправильное устройство термических печей и котельных топок;

неисправность отопительных приборов;

неисправность электрооборудования и освещения и неправильная их эксплуатация;

самовозгорание от неправильного хранения смазочных и обтирочных материалов;

наличие статического электричества, отсутствие молниеотводов;

неосторожное обращение с огнем, неудовлетворительный надзор за пожарными устройствами и производственным оборудованием.

2.2. Предприятия машиностроения

Машиностроительные предприятия отличаются повышенной пожарной опасностью, так как характеризуется сложностью производственных процессов; наличием значительных количеств ЛВЖ и ГЖ, сжиженных горючих газов, твердых сгораемых материалов; большой оснащенностью электрическими установками и другое.

1) Нарушение технологического режима - 33 % .

2) Неисправность электрооборудования - 16 % .

3) Плохая подготовка к ремонту оборудования - 13 % .

4) Самовозгорание промасленной ветоши и других материалов - 10 %

А также нарушение норм и правил хранения пожароопасных материалов, неосторожное обращение с огнем, использование открытого огня факелов, паяльных ламп, курение в запрещенных местах, невыполнение противопожарных мероприятий по оборудованию пожарного водоснабжение, пожарной сигнализации, обеспечение первичными средствами пожаротушения и др.

2.3. Лаборатории

При эксплуатации ЭВМ возможны возникновения следующих аварийных ситуаций:

Под пожаром понимают неконтролируемый процесс горения, сопровождающийся уничтожением материальных ценностей и создающий опасность для жизни людей.
Причины возникновения пожаров (наиболее частые):
- несоблюдение работниками правил пожарной безопасности;
- безответственное, халатное или беспечное отношение работников к огню;
- неисправность электрической проводки, электроаппаратуры, электроустановок, неадаптированность импортных приборов к отечественной электросети;
- последствие взрыва при утечках или аварийных выбросах пожаро- и взрывоопасных сред;
- проведение электро- и газосварочных работ, электро- и газорезки металла, других технологических процессов, связанных с применением открытого пламени или искрообразованием;
- захламленность рабочей среды;
- размещение излишков взрыво- и пожароопасных веществ в рабочей среде;
- умышленный поджог.
Несоблюдение правил пожарной безопасности (вина человека) может быть как следствием незнания этих правил, так и их намеренного игнорирования.
Человеческий фактор включает в себя:
- недооценку пожарной опасности и ее последствий в результате убежденности, что вероятность возникновения пожара настолько мала, что ею можно пренебречь;
- чувство безнаказанности, возникающее при снисходительном отношении ответственных должностных лиц к нарушениям противопожарных инструкций.

Более половины всех пожаров и взрывов на производстве происходят по причинам, связанным с нарушениями эксплуатации электроустановок. Очень часто пожары возникают из-за неосторожного обращения с огнем (от непогашенных окурков, газопламенных работ, скопление сухого мусора и т.д.).

Профилактические мероприятия для работников, не знакомых с правилами либо не умеющих ими пользоваться, — обучение, систематическая проверка знаний, отработка навыков профилактики и пожаротушения. Для работников, не желающих адекватно оценивать опасность, халатно относящихся к противопожарным регламентациям, профилактическими мероприятиями служат пропаганда и воспитание. Любое нарушение (невыполнение, ненадлежащее выполнение или уклонение от выполнения) требований пожарной безопасности не должно оставаться безнаказанным. Нарушения могут повлечь за собой в зависимости от тяжести содеянного и обстоятельств происшествия уголовную, административную, дисциплинарную или иную ответственность в соответствии с действующим законодательством Российской Федерации. Работники должны это понимать.

Читайте также: