Пресные подземные воды реферат

Обновлено: 05.07.2024

Все воды, находящиеся в порах и трещинах горных пород ниже поверхности Земли, относятся к подземным водам. Часть этих вод свободно перемещается в верхней части земной коры под действием гравитационных сил, а другая часть находится в очень тонких порах, удерживаясь силами поверхностного натяжения. Подземные воды не могут существовать без обмена с водой поверхностной и активно участвуют в круговороте воды в природе. Все, что связано с подземной водной оболочкой, включая теоретические и, особенно, прикладные аспекты, изучает наука гидрогеология. В наше время непрерывно усиливающегося техногенного пресса на природную среду пресная вода стала важнейшим полезным ископаемым.

1. Виды воды в горных породах

Вода в горных породах содержится в нескольких различных видах.

1. Кристаллизационная вода находится в составе кристаллической решетки некоторых минералов, например, в гипсе – CaSO4*2H2O (~21% воды по массе), мирабилите Na2SO4*10H2O (~56% воды по массе). Если эти минералы нагревать, то вода высвобождается из кристаллической решетки. Так, гипс потеряет одну молекулу воды при +107°С, а вторую – при +170°С, после чего он превращается в ангидрит – CaSO4.

2. Вода в твердом виде встречается в многолетнемерзлых породах в виде кристаллов и прожилков льда. Также лед образуется и при сезонном промерзании воды, содержащейся в горных породах.

3. Вода в виде пара содержится в воздухе, который находится в порах горной породы.

4. Прочносвязанная вода располагается в виде молекулярной прерывистой пленки на поверхности мельчайших частиц таких пород, как глины и суглинки. Эта пленка удерживается силами молекулярного сцепления и не может стечь с поверхности частицы.

5. Рыхлосвязанная вода представляет собой более толстую пленку из нескольких слоев молекул воды на частицы породы. Эта вода обладает способностью перемещаться от более толстой пленке к менее толстой.

6. Капельно-жидкая (гравитационная) вода уже обладает способностью свободно перемещаться в горной породе по трещинам и порам под действием силы тяжести, начиная с верхнего почвенного слоя.

7. Капиллярная вода, как следует из названия, находится в тончайших капиллярных (лат. капилярис – волосяной) трубочках или порах, в которых удерживается силами поверхностного натяжения с образованием менисков. Капиллярная вода обычно располагается выше уровня грунтовых вод и при этом она может подниматься подтягиваясь вверх от этого уровня на 1,5 – 3 м. Капиллярная кайма, будучи связана с уровнем грунтовых вод, колеблется вместе с ним.

Выше уровня грунтовых вод может располагаться еще одна неширокая кайма капилярно-подвешенной воды, удерживаемой в тонких порах почвы и подпочвенных горизонтов суглинков и глин.

Подземные воды распределяются в верхней части земной коры вполне закономерно. Самая верхняя часть земной коры, вблизи поверхности, называют зоной аэрации, т.к. она связана с атмосферой и с почвенным покровом. Ниже нее залегает зона полного насыщения, где вода распространена преимущественно в жидком виде, тогда как в зоне аэрации она может быть и парообразной. Если температуры отрицательны, то вода в этих двух зонах может присутствовать и в виде льда.

Таким образом, зона аэрации представляет собой как бы переходный буферный слой между атмосферой и гидросферой. В зоне полного насыщения все поры заполнены капельно-жидкой водой и тогда образуется водоносный горизонт.

Однако горные породы в различной степени проницаемы для воды, что зависит от ряда факторов. Следует подчеркнуть, что пористость и проницаемость не одно и тоже.

Горные породы подразделяются на:

1. Водопроницаемые – песок, гравий, галечники, конгломераты, трещиноватые песчаники, доломиты, закарстованные известняки и др. и это несмотря на то, что галечники, прекрасно проницаемые для воды, имеют пористость всего 20%. Пески обладают пористостью в 30-35%.

2. К слабопроницаемым породам относятся супеси, легкие суглинки, лёссы.

3. Водоупорными считаются всевозможные глины, тяжелые суглинки, плотные сцементированные породы (табл.1).

Прочность и проницаемость горных пород

Глины имеют пористость в 50-60%. Все дело в том, что поры в глинах очень тонкие (субкапиллярные) и вода через них не может проникнуть, т.к. задерживается силами поверхностного напряжения. Водопроницаемость зависит не от количества пор, а от размера и формы слагающих породу зерен и от плотности их сложения.

Способность горных пород накапливать и удерживать в себе воду называется влагоемкостью. Под полной влагоемкостью понимают такое состояние породы, в которой все виды пор заполнены водой. Максимальная молекулярная влагоемкость – это то количество воды, которое остается в горной породе после того, как стечет вся капельно-жидкая гравитационная вода. Оставшаяся вода удерживается в порах силами молекулярного сцепления и поверхностного натяжения. Разница между полной влагоемкостью и максимальной молекулярной влагоемкостью называется водоотдачей, а удельной водоотдачей – количество воды, получаемой из 1 м 3 горной породы.

Классифицировать подземные воды можно по разным признакам – по условиям залегания, по происхождению, по химическому составу.

Типы подземных вод по условиям залегания. Выделяются воды безнапорные, подразделяющиеся на верховодку, грунтовые и межпластовые, а также напорные или артезианские.

Верховодка – это временное скопление воды в близповерхностном слое в пределах зоны аэрации, располагающееся в водоносных отложениях, лежащих на линзовидном, выклинивающемся водоупоре. Как правило, верховодка появляется весной, когда тают снега или в дождливое время, но потом она может исчезнуть. Поэтому колодцы, выкопанные до верховодки, летом пересыхают.

Временными водоупорами могут быть любые выклинивающиеся линзовидные пласты глин и тяжелых суглинков, располагающиеся в толще водоносных аллювиальных или флювиогляциальных отложений.

Грунтовые воды представляют собой первый сверху постоянный водоносный горизонт, располагающийся на первом же протяженном водоупорном слое. Питаются грунтовые воды из области водосбора в пределах водоносного горизонта. Грунтовые воды могут быть связаны с любыми породами как рыхлыми, так и твердыми, но трещиноватыми.

Поверхность грунтовых вод называется зеркалом, а мощность водосодержащего слоя оценивается вертикалью от зеркала до кровли водоупорного горизонта и она не остается постоянной, а меняется из-за неровностей рельефа, положения уровня разгрузки, количества атмосферных осадков, изгиба кровли водоупорного слоя. Выше зеркала грунтовых вод образуется кайма капиллярно подтянутой воды.

2. Движение и режим грунтовых вод

Зеркало грунтовых вод ведет себя в зависимости от рельефа повышаясь на водоразделах и понижаясь к рекам, оврагам и другим местам дренирования (фр. дренаж – сток). Естественно, что вода в водоносном слое под действием силы тяжести находится в непрерывном движении и стремится достичь наиболее низкого места в рельефе, например, уреза воды в реке, тальвега дна оврага. Именно там, в области разгрузки подземных вод, образуются родники. Вода в водоносном слое перемещается в зависимости от пористости пород, характера соприкосновения частиц, формы и размеров пор, уклона водоносного слоя. Обычно в песках скорость движения воды при небольших уклонах составляет от 0,5 до 2-3 м/сутки. Но если уклон большой и поры велики, то скорость может достигать первых десятков м/сутки.

В зависимости от количества атмосферных осадков объем грунтовых вод может изменяться и летом дебит (фр. дебит – расход) источников падает, а в сильные засухи родники даже пересыхают. Зеркало грунтовых вод особенно сильно может понижаться в связи с забором воды для промышленных нужд. Вокруг скважин, откачивающих воду, уровень грунтовых вод постепенно понижается и образуется депрессионная воронка.

Межпластовые безнапорные подземные воды приурочены к водоносным слоям, располагающимся между двумя водоупорными слоями. Иногда таких водоносных пластов может быть несколько. Если водоносный горизонт обладает большой мощностью и выше его зеркала находится озеро, пруд или река, то направление течения воды в водоносном горизонте будет проходить по изогнутым линиям, стремящимся к реке.

Напорные или артезианские межпластовые воды образуются в том случае, если водоносный горизонт, зажатый между двумя водоупорными, приурочен либо к пологой синклинали или мульде, или к моноклинали, или еще к каким-нибудь структурам, в которых возможно образование напорного градиента.

Напорный или гидравлический градиент:

Где h – превышение одной точки зеркала грунтовых вод над другой, а l – расстояние между ними. Напорные воды обладают способностью самоизливаться и фонтанировать, т.к. находятся под гидростатическим давлением.

Впервые такие фонтаны воды были получены во Франции в провинции Артезия, поэтому они и стали называться артезианскими. Каждый артезианский бассейн включает в себя области: питания, напора и разгрузки. Первая область представляет собой выход на поверхность водоносного слоя, на которую выпадают все атмосферные осадки, питающие этот водоносный горизонт. Область напора заключена между двумя водоупорами – водоупорной кровлей и водоупорным ложем, а там, где водоносный слой появляется на поверхности, или вскрывается скважинами, но ниже области питания, называется областью разгрузки. Нередко в артезианских бассейнах развито сразу несколько водоносных напорных горизонта, что особенно характерно для артезианских бассейнов в межгорных впадинах, где глубины водоносных горизонтов могут превышать 1000-1500 м.

В платформенных областях, где артезианские бассейны большие, верхние водоносные горизонты до глубин в 200-5—м содержат преимущественно пресные воды, а ниже воды обладают уже высокой минерализацией.

В центре Европейской части России находится Московский артезианский бассейн, располагающийся в пологой чашеобразной впадине – Московской синеклизе. Водоносные горизонты связаны с трещиноватыми каменноугольными и девонскими известняками, а водоупорами служат прослои глин. Области питания располагаются на крыльях синеклизы. В девонских карбонатных отложениях на глубинах от 400 до 600 м развиты минеральные воды с минерализацией 2,4-4,5 г/л. Это всем хорошо известная московская минеральная вода. В Московском артезианском бассейне сосредоточены большие запасы пресных и промышленных вод. На всю территорию России составлены карты распространения артезианских бассейнов и подсчитаны запасы в них воды, как пресной, так промышленной и термальной.

Типы источников. Всем хорошо известны выходы подземных вод на поверхность в виде родников и ключей с холодной, вкусной водой. Родники появляются там, где происходит разгрузка водоносных горизонтов.

Нисходящие источники чаще всего располагаются недалеко от уреза воды в долине реки, в нижней части склонов оврагов, там где к поверхности подходят водоупорные горизонты. Источники этого типа связаны как с верховодкой, так и с грунтовыми, а также межпластовыми водами. Все они характеризуются изменяющимся дебитом, вплоть до высыхания в жаркое лето. В источниках нисходящего типа вода изливается спокойно, в виду небольшого угла наклона слоев. Нередко можно наблюдать вдоль берега реки сплошную линию сочащихся подземных вод. Нисходящие источники обычно водообильны, поэтому местами они дают начало ручьям и небольшим речкам, как происходит с карстовыми источниками, вытекающими из пещер.

Восходящие источники — это выходы на поверхность в местах разгрузки напорных вод, тогда как сам водоносный горизонт расположен намного ниже. Вода может подниматься вверх по трещинам или тектоническому разлому.

Вокруг минеральных источников, особенно углекислых вод, на поверхности образуется скопление т.н. известкового туфа или травертина, иногда достигающего нескольких метров мощности. Такие травертины белого, желтоватого или розового цветов известны на г.Машук в Пятигорске, в районе Кавказских минеральных вод. Туф образуется из гидрокарбонатно-кальциевых вод, когда гидрокарбонат Ca(HCO3)2 переходит в СаСО3 при уходе в воздух СО2 – углекислого газа. В травертинах часто находят отпечатки листьев растений, кости древних животных, которые постепенно обвалакиваются известковым туфом.

3. Подземные воды и окружающая среда

Гидрогеологические процессы, происходящие в верхней части земной коры тесно связаны с хозяйственной деятельностью человека – водоснабжением, эксплуатацией городских агломераций, обоснованием строительства и т.д. Именно в области прикладной геологии очень важно понимать существо природно-технического взаимодействия, усиливающегося техногенного пресса на геологическую среду.

Одной из важных задач прикладной геологии является обоснование водозабора для хозяйственно-питьевого водоснабжения, а, сейчас, особенно, оценка качества воды. Какое количество воды можно извлечь из данного водоносного слоя? Как при этом изменится уровень грунтовых вод? Какова будет депрессионная воронка и как быстр она сформируется? Какова должна быть ширина зоны санитарной охраны? На все эти вопросы надо дать ответ.

В связи с отбором воды из водоносных горизонтов разного типа, изменяется водный режим ландшафтов, изменение растительности, поверхностный сток, напряженно-деформированное состояние водонасыщенных горных пород. Понижение уровня грунтовых вод приводит к угнетению лесов, к осушению и возгоранию летом торфяников, к уменьшению поверхностного водного стока и обмелению небольших рек, эвтрофикации мелеющих озер, оседанию отдельных участков земной поверхности. Поэтому необходим мониторинг влияния водоотбора на окружающую среду, а также геофильстрационное моделирование потока подземных вод.

Для многих городов характерно подтопление территорий, т.е. повышение уровня грунтовых вод за счет повышенной инфильтрации осадков, утечек промышленных вод, искусственного орошения. Такое подтопление вызывает усиление оползневых явлений, суффозии (вымывания), уменьшение прочностных свойств грунтов. Поэтому необходимо проводить дренаж, чтобы снизить уровень грунтовых вод.

Другая опасность – это техногенное загрязнение подземных вод из атмосферы в виде твердой и жидкой фаз, закачка промышленных стоков, утечки из систем канализации, свалки, нефтепродукты и другие способствуют проникновению токсичных веществ сначала в зону аэрации, а потом и в водоносные горизонты.

Все сказанное выше свидетельствует об уязвимости водоснабжения населения в связи с усиливающимся техногенным загрязнением. Существует еще много очень важных вопросов, касающихся прикладной гидрогеологии. Отсюда следует очевидный вывод о том поистине жизненном значении, которое приобретает наука о подземных водах.

Библиография

1. Киссин И.Г. Вода под землей. М., Наука, 1976.

2. Короновский Н.В. Общая геология. Издательство Московского университета, 2002.

3. Плотников Н.И. Подземные воды – наше богатство. М., Недра, 1976.

4. Пиннекер Е.В. Подземная гидросфера. Наука. Сиб. Отд., Новосибирск, 1984.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

ООО Учебный центр

Реферат по дисциплине:

Портянкина Альбина Ивановна

Москва 2017 год

Охрана пресной воды и рациональное использование ………….………..10

Вода – это жизнь. Без воды человек не может прожить более трех суток, но, даже понимая всю важность роли воды в его жизни, он все равно продолжает жестко эксплуатировать водные объекты, безвозвратно изменяя их естественный режим сбросами и отходами. Прежде неисчерпаемый ресурс - пресная чистая вода - становиться исчерпаемым.

Из всего доступного объема самый большой запас пресной воды на планете (примерно треть) находится в Южной Америке. В Азии еще четверть. 29 стран объединённых по экономическому признаку в организацию ОСЭР, владеют пятой частью доступного объема водных ресурсов. Государства бывшего СССР – более двадцати процентов. Всё остальное, составляющее в грубом приближении около 2 %, приходится на долю Ближнего Востока и Северной Африки.

Острая потребность в чистой пресной воде ощущается в Китае, Индии и Соединенных Штатах. Россия богата всем, в том числе и водой. Наиболее яркий пример того, какими сокровищами обладает наша страна, – озеро Байкал, в котором локально сосредоточена пятая часть всего водного запаса планеты, к тому же превосходного качества. По данным Всемирной организации здравоохранения до 80% заболеваний населения планеты обусловлено использованием недоброкачественной питьевой воды.

Цель работы изучить виды и ресурсы пресных вод. . При выполнении данной работы основными методами исследования являлись синтез и анализ найденной информации.

1.Ресурсы пресной воды

Выявить точное количество запасов воды во всем мире довольно сложно, поскольку вода динамичная и находится в постоянном движении, изменяя свое состояние от жидкого до твердого и газообразного, и наоборот. Как правило, общее количество водных ресурсов мира оценивается как совокупность всех вод гидросферы. Это вся свободная вода, существующая во всех трех агрегатных состояниях в атмосфере, на поверхности Земли и в земной коре до глубины 2000 метров. Текущие оценки показали, что на нашей планете содержится огромное количество воды - около 1386000000 кубических километров (1,386 млрд. км³). Однако 97,5% этого объема - соленая вода и только 2,5% - пресная.

Источниками пресной воды являются:

Ледники — 24 000 000 км 3 (85% от общих запасов), 90% сконцентрировано во льдах Антарктики;

Озёра и другие пресноводные водохранилища — 155 000 км 3 (0,6%);

Почвенная влага — 83 000 км 3 (0,3%);

В атмосфере — 14 000 км 3 (0,06%);

Реки — 1 200 км 3 (0,04%).

Итого, суммарный объем всей пресной воды на Земле составляет — 28 253 200 км3, а это не более 3% от запасов всех вод планеты.

2.Виды пресных вод

Пресная вода бывает обычная и минеральная. К тому же существуют еще искусственные пресные воды, которые делят на:

- шунгитную и серебряную;

Дистиллированная вода – это вода с ничтожными, практически неопределимыми химическими и физическими методами примесями инородных веществ. Используется она лишь для медицинских или исследовательских целей, например для того, чтобы вымыть пробирки для проведения тонких химических опытов. Ее производят путем выпаривания обычной пресной воды с последующей конденсацией пара. Точно так же мы можем поступить с морской водой, чтобы избавить ее от солей и минеральных включений. Дистиллированную воду можно вырабатывать в домашних условиях, сделав самодельный дистиллятор либо купив специальную установку. Дистиллированная вода для человека бесполезна: она не поддерживает жизненно важных процессов в организме человека и животного. Необходимая нам питьевая вода вовсе не идеально чистый субстрат, а раствор, содержащий минеральные добавки. В этих добавках – железе, меди, солях натрия, калия, кальция и других элементах – главная суть. Если мы не получим их в нужном количестве через воду, возникнут различные функциональные расстройства: нарушение сердечного ритма, головные боли, мышечные судороги, а также проблемы с зубами и костными тканями. Словом, дистиллированная вода, не содержащая солей, способна разбалансировать работу нашего организма. Дистиллированную воду пьют, компенсируя отсутствие в ней нужных веществ специальной диетой, сыроедением, овощами, фруктами, препаратами микроэлементов и т. д. Именно такой вариант предложил всемирно известный диетолог Поль Брэгг. Сегодня эта идея стала еще более конструктивной: так, на Западе появились фирмы, поставляющие дистиллированную воду для питья, а к ней – таблетки с полным набором жизненно необходимых минеральных веществ.

Минеральная вода - природная вода с повышенным содержанием минеральных компонентов классифицируется на четыре группы.

1. Минеральные лечебные воды с общей минерализацией более 8 г/л. Сюда же относят и менее минерализованную воду, содержащую повышенное количество бора, мышьяка и других элементов. Ее принимают только по назначению врача.

2. Минеральные лечебно-столовые воды с общей минерализацией 2–8 г/л. Они применяются с лечебными целями по назначению врача, но можно использовать их в качестве столового напитка.

3. Минеральные столовые воды с минерализацией 1–2 г/л.

4. Столовые воды с минерализацией менее 1 г/л.

Своим происхождением минеральные воды обязаны, как правило, подземным водоносным слоям или бассейнам, расположенным среди особых горных пород, в течение долгого периода обогащающих воду целебными минералами, которые диссоциируют в растворе на положительно заряженные катионы и отрицательно заряженные анионы.

Колодезная вода или вода из колодцев, которой пользуются лишь в сельской местности, так как шурф глубиною 5—10 м не способен обеспечить большого выхода воды – для этого надо бурить скважины в 20—180 м, в зависимости от глубины залегания подземных вод. Колодцы же питаются подпочвенными водами и могут обеспечить водопотребление до 100–150 л/ч (в редких случаях – до 500 л/ч). Они очень уязвимы в смысле загрязнений: все, что попадает в почву – нитраты, нитриты, ПАВ, пестициды и тяжелые металлы, – может оказаться в колодезной воде.

Воды глубокого залегания лучше защищены от различных промышленных и бактериальных загрязнений. В центральных областях России есть два водоносных горизонта: песчаный залегает на глубине 15–40 м и отделен от верхнего слоя почвы глинистыми пластами, которые и защищают его от загрязнений, а на глубине 30—230 м и более находятся известняковые водоносные слои, так называемые артезианские . Известно, что состав артезианских вод зависит от глубины их залегания. Такая вода может иметь повышенную жесткость и содержать бактерии и органические вещества. Кроме того, из-за плохого соединения труб в скважинах в артезианскую воду могут просачиваться загрязнения из более высоких водоносных слоев. Обычно эту воду необходимо фильтровать и очищать, что делается с помощью очистных систем скорее промышленного, чем бытового назначения.

Родниковая и ключевая вода - это небольшой водный поток, бьющий непосредственно из земных недр. Природа у родниковой воды такая же, как у колодезной или артезианской, так как она поступает с какого-то подземного водоносного горизонта, или бассейна. На территории России количество родников неисчислимо, они различаются качеством и составом вод. О родниках ходят легенды – и воды многих действительно обладают лечебными свойствами, они свежи и приятны на вкус. Но родники так же, как артезианские скважины и колодцы, подвержены загрязнению. В наше время невозможно гарантировать неизменное качество родниковой воды, так как оно зависит не только от сезонных обстоятельств (ливни, паводки), но и от выбросов близлежащих промышленных предприятий.

Талая вода обладает рядом полезных свойств. Но готовить ее, растапливая снег или лед с улицы, не рекомендуется: она будет содержать бензапирен, относящийся к органическим канцерогенным соединениям, которые характеризуются первым классом опасности. Его источником являются выхлопные газы автомобилей.

3.Характеристики пресной воды

Как уже упоминалось, пресные воды рек и озер, нашего основного источника водоснабжения, различны. Эти различия возникли изначально и связаны с климатической зоной и особенностями местности, в которой находится водоем. Вода – универсальный растворитель, а это значит, что ее насыщенность минералами зависит от почвы и залегающих под нею горных пород. Кроме того, вода подвижна, и, следовательно, на ее состав влияют выпадающие осадки, таяние снегов, половодье и притоки, впадающие в более крупную реку или озеро. Взять, например, Неву, основной источник питьевой воды Петербурга: в основном ее питает водой Ладожское озеро, одно из самых пресных озер мира. Ладожская вода содержит мало солей кальция и магния, что делает ее очень мягкой, мало в ней алюминия, марганца и никеля, зато довольно много азота, кислорода, кремния, фосфора. Наконец, микробиологический состав воды зависит от водной флоры и фауны, от лесов и лугов на берегах водоема и еще от множества других причин, не исключая факторы космического свойства. Так, патогенность микробов резко возрастает в годы солнечной активности: прежде почти безвредные становятся опасными, а опасные – просто смертельными.

pH = 7 – нейтральная среда;

pH > 7 – щелочная среда.

Это очень важный показатель, причем не только для обыкновенной или минеральной воды, но и для человеческого организма, кислотный баланс которого должен выдерживаться в очень жестких рамках: допустимые значения pH составляют от 7,38 до 7,42 и не могут отклоняться даже на 10 % от этого диапазона. При pH = 7,05 человек впадает в предкоматозное состояние, при pH = 7,00 наступает кома, а при pH = 6,80 – смерть.

Жесткостью называется свойство воды, обусловленное содержанием в ней ионов кальция Ca 2+ и магния Mg 2+ . Жесткость определяют по специальной методике, описанной в ГОСТах на питьевую воду, а единицы ее измерения – моль на кубический метр (моль/м3) или миллимоль на литр (ммоль/л).

Различаются несколько видов жесткости – общая, карбонатная, некарбонатная, устранимая и неустранимая.

Под органолептическими характеристиками воды понимаются ее запах, вкус, цвет и мутность. Запах определяют, нюхая воду (землистый, хлорный, запах нефтепродуктов и т. д.) и оценивая интенсивность запаха по пятибалльной шкале (ноль соответствует полному отсутствию запаха):

1 – очень слабый, практически неощутимый запах;

2 – запах слабый, заметный лишь в том случае, если обратить на него внимание;

3 – запах легко замечается и вызывает неодобрительный отзыв о воде;

4 – запах отчетливый, обращает на себя внимание и заставляет воздержаться от питья;

5 – запах настолько силен, что делает воду непригодной к употреблению.

Вкус воды характеризуется определениями солёный, кислый, сладкий, горький, а все остальные вкусовые ощущения называют привкусами. Оценивают вкус по такой же пятибалльной шкале, как и запах, с градациями: очень слабый, слабый, заметный, отчетливый, очень сильный.

Цвет воды определяют фотометрически, путем сравнения испытуемой воды с эталонными растворами, имитирующими цвет природной воды. Оценивают цвет по специальной шкале цветности с градациями от нуля до 14. Сходным образом исследуют мутность .

4. Охрана пресной воды и рациональное использование

Загрязнение воды - наиболее острая проблема нашего времени . Чистой воды на Земле все меньше и меньше, следовательно, опасность для жизни все больше и больше. Это показывает, что настало время разработки принципиально новой парадигмы сохранения гидросферы в условиях интенсивного ее использования и мощного техногенного воздействия. Главенствующим приоритетом должна стать мысль о недопустимости загрязнения водных источников, а не идея очистки загрязненных вод . Идея чистой, а не очищенной воды в природе - пример гидросферного мышления.

Дефицит пресной воды уже сейчас становится мировой проблемой. Все более возрастающие потребности промышленности и сельского хозяйства в воде заставляют все страны, ученых мира искать разнообразные средства для решения этой проблемы. Подсчитано, что в связи с ростом промышленного производства и увеличением населения по сравнению с 1980 г. потребность на Земле в воде к 2000 г. увеличилась в 2 раза, а количество пресной воды на одного человека сократилось примерно на треть.

Техногенную нагрузку и ее отрицательное влияние на окружающую среду можно существенно уменьшить, но не путем ограничения численности населения, свертывания промышленного и сельскохозяйственного производства, а на основе регулирования и оптимизации отношений человеческого общества с природой, что, в свою очередь, должно быть обеспечено рациональным использованием и воспроизводством природных ресурсов. На современном этапе определяются такие направления рационального использования водных ресурсов: более полное использование и расширенное воспроизводство ресурсов пресных вод; разработка новых технологических процессов, позволяющих предотвратить загрязнение водоемов и свести к минимуму потребление свежей воды.

Обострение дефицита пресной воды стало одним из главных сюжетов в сценариях будущего. По оценкам Всемирного банка, к середине XXI в. уже 40% населения Земли будет испытывать дефицит воды, 20% - серьезно страдать от него. Этот безрадостный прогноз не учитывает глобальных изменений климата, которые, по всей вероятности, могут лишь усугубить ситуацию.

Второй Всемирный форум по водным ресурсам в Гааге в 2000 г. и Международная конференция в Бонне в 2001 г. наметили пути улучшения управления водными ресурсами в целях устойчивого развития. Гаагский форум сформулировал семь основных направлений будущих действий:

-удовлетворение базовых потребностей людей в безопасной питьевой воде и в благоприятных санитарно-гигиенических условиях;

-обеспечение продовольственной безопасности посредством более эффективного использования водных ресурсов;

-защита экосистем и обеспечение их целостности путем устойчивого управления водными ресурсами;

-совместное использование различными хозяйствующими субъектами и государствами водных ресурсов на основе устойчивого управления ими;

-защита от опасностей, связанных с водой, путем управления рисками;

-управление водными ресурсами на основе определения ценности воды в экономическом, социальном, экологическом, культурном аспектах и установление такой цены на воду, которая не ляжет тяжелым бременем на бедные и уязвимые слои населения;

-рациональное управление водными ресурсами при общественном контроле и соблюдении интересов всех слоев населения.

Позднее эти направления были дополнены еще четырьмя:

-развитие более экологически безопасной промышленности, не наносящей ущерба качеству воды и потребностям в ней других потребителей;

-учет ключевой роли воды в выработке энергии для обеспечения растущих потребностей в ней;

-значение воды для быстро урбанизирующегося мира;

-обеспечение для всех доступности информации о водных ресурсах и водопользовании.

Однако все предпринятые до сих пор меры недостаточны и проблему дефицита пресной воды отнюдь не решают.

Запасы воды на Земле колоссальны, но возможность их использования ограничена в первую очередь природными факторами, в том числе экологическими (хотя все еще нередко встречаются оценки, например, гидроэнергетического потенциала, при расчете которых экологические ограничения совсем не принимаются во внимание). Огромная масса воды в Мировом океане имеет высокую соленость, запасы пресной воды в ледниковых покровах малодоступны из-за удаленности и состояния в твердой фазе, как и грунтовые льды мерзлых пород. Значительная часть подземных вод минерализована и залегает на больших глубинах, половина массы озерной воды также засолена. Поэтому количество пресной воды, доступной для потребления, оказывается существенно ограниченным (в сопоставлении с современными потребностями цивилизации).

Обеспечение чистой пресной водой, охрана ее от истощения и загрязнения, воспроизводство водных ресурсов — таковы аспекты водной проблемы на Земле.

Таким образом, мы выяснили, что запасы пресной воды потенциально велики, но в любом районе мира они могут истощиться из-за нерационального водопользования или загрязнения. Число таких мест растет, охватывая целые географические районы.

Наилучшим способом получения данных о процессах в водной среде является гидрогеохимическое картирование с последующим обоснованием сети мониторинга. Информация, собранная в ходе долгих режимных наблюдений, служит основой для прогноза состояния водной системы во времени. В настоящее время для экологического прогнозирования используется компьютерное моделирование гидрогеохимических процессов загрязнения поверхностных и подземных вод, вовлекающее в сферу изучения огромные массивы данных и позволяющие получить качественно новую информацию.

Большое значение для рационального использования водных ресурсов, как считают ученые-гидрологи, имеет расширение знаний о них, более глубокое исследование имеющихся на планете запасов воды, пригодной для удовлетворения нужд человека. С этой целью Всемирная Метеорологическая Организация (при поддержке ЮНЕСКО и Всемирного банка) выдвинула предложение о создании международной организации, задача которой заключалась бы в сборе данных о наличии в мире ресурсов пресной воды и выработке рекомендаций по их разумному использованию человеком, промышленностью и сельским хозяйством.

Воды суши — это воды озёр, рек, болот, ледников, водо­хранилищ, а также подземные воды.

Подземные воды — это воды, которые находятся под поверх­ностью земли, т. е. в толщах гор­ных породах верхней части зем­ной коры.

Подземные воды — составная часть природных вод и один из важ­нейших геологических ресурсов. Они играют огромную роль в пи­тании и регулировании стока рек, используются для водоснабжения населённых пунктов, орошения, лечения людей.

Наибольшее распространение подземные воды имеют в зоне избыточного увлажнения с низменным рельефом.

Горные породы в зависимости от способности пропускать воду бывают водопроницаемые (например, пески) и водоупорные (глины и кристаллические породы). Воды, прошедшие через водопроницаемые породы, скапливаются на глубине, задерживаясь там над водоупорным слоем и образуя тем самым водоносные слои. Выход такого слоя на по­верхность мы наблюдаем в виде родников.

Подземные воды, заключённые между двумя водонепроницаемыми слоями, называются артезианскими.

В глубоких водоносных пластах залегают артезианские воды. Огромные запасы подземных вод сосредоточены в артезианских бас­сейнах (например, в России — Московском, Западно-Сибирском). На первом от поверхности земли водоупорном слое образуются грунтовые воды. Их запасы и глубина залегания зависят в первую очередь от климатических факторов. В зонах избыточного увлажнения (тундре, лесной) уровень грун­товых вод находится близко от дневной поверхности, и они часто бьют в виде родников и ключей.

На юге испарение превышает осадки и уровень грунтовых вод понижается. Проходя через различные горные породы, подземные воды немного растворяют их и выходят на поверхность в виде минеральных источ­ников. Исключительно высокое качество имеют пресные воды: это лучшая питьевая вода. Минеральные воды с повы­шенным содержанием минеральных веществ и газов обладают эф­фективными лечебными свойствами. В местах запасов минеральных вод строятся бальнеологические санатории. Большой известностью пользуется район Кавказских Минеральных Вод с их знаменитыми нарзанами: серные воды Пятигорска, щелочно-солевые воды Ессентуков, углекислые воды Кисловодска, железистые минеральные воды Железноводска.

Гидросфера – водная оболочка нашей планеты Земли. В настоящее время гидросфера охвачена невиданными по скорости и размерам преобразованиями, связанными с технической деятельностью человека.
Гидросфера играет очень большую роль в жизни планеты: она накапливает солнечное тепло и перераспределяет его на Земле; с Мирового океана на сушу поступают атмосферные осадки.
Общий объём воды на земном шаре 1390 млн. км3, основная его часть приходится на моря и океаны – 96,4 %. На суше наибольшее количество воды содержат ледники и постоянные снега – около 1,86 % (при этом в горных ледниках – 0,2 %). Около 1,7 % от общего объёма гидросферы приходится на подземные воды и примерно 0,02 % – на воды суши (реки, озёра, болота, искусственные водоёмы). Пресная вода составляет лишь 2,64 %. Изучением подземных вод занимается наука гидрогеология.

Содержание

Введение…………………………………………………………………………4
1 Классификация подземных вод………………………………………………. 6
2 Процессы формирования подземных вод……………………………………10
3 Минеральные воды……………………………………………………………11
4 Роль подземных вод в формировании географической оболочки…………17
5 Биосферная роль подземных вод……………………………………………..20
6 Экономическое значение подземных вод……………………………………21
7 Проблема охраны и рационального использования подземных вод…….…23
8 Заключение…………………………………………………………………… 31
9 Список использованных источников……………………………………….

Вложенные файлы: 1 файл

курсовая.docx

Министерство образования Республики Беларусь

«Гомельский государственный университет

Подземные воды как элемент географической оболочки Земли

студентка группы ГЭ-12 _________________ В.С. Кузьменко

экологии _________________ И.А. Шелякин

Курсовая работа 33 страницы, 20 источников.

Ключевые слова: гидросфера, гидрогеология, подземные воды, минеральные воды.

Объект исследования: географическая оболочка Земли

Предмет исследования: подземные воды как элемент географической оболочки Земли

Методы исследования: анализ литературных источников

Задачи курсовой работы:

– изучение классификации подземных вод

– изучение процессов формирования подземных вод

– определение роли подземных вод в формировании географической оболочки Земли

– определение биосферной роли подземных вод

– оценка экономического значения подземных вод

– изучение проблемы охраны и рационального использования подземных вод

Выводы: в ходе проделанной работы выяснилось, что подземные воды являются сложной составляющей географической оболочки. Некоторые подземные воды могут обладать лечебными свойствами.

Подземные воды играют немаловажную роль в формировании географической оболочки. Реки и подземные воды, перемещая минеральные вещества, участвуют в изменении рельефа.

Подземные воды питают реки и озера, благодаря им реки не мелеют летом, когда выпадает мало дождей, и не пересыхают подо льдом. Человек широко использует подземные воды. В настоящее время довольно остро стоит проблема охраны и рационального использования подземных вод, так как они находятся под угрозой загрязнения и истощения.

1 Классификация подземных вод………………………………………………. 6

2 Процессы формирования подземных вод……………………………………10

4 Роль подземных вод в формировании географической оболочки…………17

5 Биосферная роль подземных вод……………………………………………..20

6 Экономическое значение подземных вод……………………………………21

7 Проблема охраны и рационального использования подземных вод…….…23

9 Список использованных источников………………………………………. 33

Гидросфера – водная оболочка нашей планеты Земли. В настоящее время гидросфера охвачена невиданными по скорости и размерам преобразованиями, связанными с технической деятельностью человека.

Гидросфера играет очень большую роль в жизни планеты: она накапливает солнечное тепло и перераспределяет его на Земле; с Мирового океана на сушу поступают атмосферные осадки.

Общий объём воды на земном шаре 1390 млн. км 3 , основная его часть приходится на моря и океаны – 96,4 %. На суше наибольшее количество воды содержат ледники и постоянные снега – около 1,86 % (при этом в горных ледниках – 0,2 %). Около 1,7 % от общего объёма гидросферы приходится на подземные воды и примерно 0,02 % – на воды суши (реки, озёра, болота, искусственные водоёмы). Пресная вода составляет лишь 2,64 %. Изучением подземных вод занимается наука гидрогеология.

Гидрогеология (от гидро – вода и геология), согласно большинству существующих определений, является наукой, которая изучает подземные воды планеты: закономерности их распространения в земной коре, условия залегания и движения, их свойства и состав, взаимодействие с горными породами, а также условия и возможности их хозяйственного использования.

Более правильно считать, что гидрогеология как подразделение наук естественного цикла изучает подземную часть гидросферы планеты, законы ее строения и развития, процессы, протекающие в ней в естественных условиях и в условиях интенсивного антропогенного воздействия.

Гидрогеология тесно связана с гидрологией и геологией (в том числе и с инженерной геологией), метеорологией, геохимией, геофизикой и другими науками о Земле; опирается на данные математики, физики, химии и широко использует их методы исследования.

Все воды земной коры, находящиеся ниже поверхности Земли в горных породах в газообразном, жидком и твёрдом состояниях, называются подземными водами.

Подземные воды составляют часть гидросферы – водной оболочки земного шара. Они встречаются в буровых скважинах на глубине до нескольких километров.

По данным В.И. Вернандского, подземные воды могут существовать до глубины 60 км в связи с тем, что молекулы воды даже при температуре 2000 о Сдиссоциированы всего на 2 %. Приблизительные подсчёты запасов пресной воды в недрах Земли до глубины 16 километров дают величину 400 миллионов кубических километров, т.е. около 1/3 вод Мирового океана.

Накопление знаний о подземных водах, начавшееся с древнейших времен, ускорилось с появлением городов и поливного земледелия.

Искусство сооружения копаных колодцев до несколько десятков метров было известно за 2000-3000 тысячи лет до н.э. в Египте, Средней Азии, Индии, Китае. В этот же период появилось и лечение минеральными водами.

Изучению подземных вод способствовало расширение работ, связанных с водоснабжением, строительством каптажных сооружений (например, кяризов у народов Кавказа, Ср. Азии), добычей соленых вод для выпаривания соли путем копания колодцев, а затем и бурения (территория России, 12-17 века).

До середины 19 века учение о подземных водах развивалось как составная часть геологии. Затем оно обособляется в отдельную дисциплину.
Общая гидрогеология изучает происхождение подземных вод, их физические и химические свойства, взаимодействие с вмещающими горными породами.

Изучение подземных вод в связи с историей тектонических движений, процессов осадконакопления и дианогенеза позволило подойти к истории их формирования и способствовало появлению в 20 веке новой отрасли гидрогеологии – палеогидрогеологии (учение о подземных водах прошлых геологических эпох).
Динамика подземных вод изучает движение подземных вод под влиянием естественных и искусственных факторов, разрабатывает методы количественной оценки производительности эксплуатационных скважин и запасов подземных вод.
Учение о режиме и балансе подземных вод рассматривает изменения в подземных водах (их уровне, температуре, химическом составе, условиях питания и движения), которые происходят под воздействием различных природных факторов.

Во второй половине 20 века начали разрабатываться методы прогноза режима подземных вод, что имеет важное практическое значение при эксплуатации подземных вод, гидротехническом строительстве, орошаемом земледелии и решении других вопросов.

– изучение подходов к классификации подземных вод

– изучение процессов формирования подземных вод

– изучение роли подземных вод в формировании географической оболочки

– изучение биосферной роли подземных вод

– изучение экономического значения подземных вод

– изучение проблем охраны и рационального использования подземных вод

Подземные воды, обладающие теми или иными лечебными свойствами, называются бальнеологическими.

Подземные воды, обладающие теми или иными лечебными свойствами, называются бальнеологическими.

До настоящего времени единой общепринятой классификации подземных вод не существует. В основу классификации подземных вод могут быть положены различные признаки: способ образования, условия залегания, гидравлические свойства, литологический состав водоносных пород, их возраст, физические свойства подземных вод, их химический состав.

По условиям образования подземные воды подразделяются на различные группы, из которых важнейшее значение имеют воды инфильтрационные и частично конденсационные.

По условиям залегания и характеру вмещающих горных пород подземные воды делятся на следующие типы:

– п о р о в ы е, залегающие и циркулирующие в порах горных пород, которые слагают самую поверхностную часть земной коры;

– п л а с т о в ы е, залегающие и циркулирующие в порах или трещинах осадочных горных пород, перекрываемых и подстилаемых водоупорными породами; в свою очередь подразделяются на порово- пластовые и трещинно-пластовые;

– т р е щ и н н ы е, циркулирующие в скальных (магматических, метаморфических и осадочных породах, пронизанных равномерной трещиноватостью;

– к а р с т о в ы е, циркулирующие в массивах карбонатных, гипсоносных и соленосных раскарстованных пород;

– т р е щ и н н о - ж и л ь н ы е, циркулирующие в отдельных тектонических трещинах и зонах тектонических разломов.

По гидравлическим свойствам подземные воды делятся на без напорные, или воды со свободной поверхностью, и напорные, когда водоносный горизонт перекрыт сверху водоупорной породой и находящаяся в нем подземная вода испытывает гидростатическое давление, обусловливающее напор.

В зависимости от возраста водовмещающих пород подземным водам присваивается соответствующее наименование: воды каменноугольных отложений, юрских, меловых, третичных и т. п.

По степени минерализации, или по содержанию растворенных солей, подземные воды подразделяются на следующие виды:

– пресные, содержащие до 1 г/ л растворенных веществ

– солоноватые, содержащие 1 —10 г/л солей

– соленые (10—50 г/л); 4) рассолы (свыше 50 г/л)

По температуре подземные воды подразделяются на четыре типа:

– холодные с температурой ниже 20° С

– т е п л ы е (20— 37° С)

– горячие (т е р м ы) с температурой свыше 42° С

В практике существенное значение при характеристике и оценке подземных вод имеет не только общее содержание растворенных солей, но и состав этих солей.

В зависимости от преобладания растворенных в воде солей различают воды гидрокарбонатные, сульфатные и хлоридные, а по катионам – кальциевые, магниевые и натриевые.

Помимо солей в подземных водах всегда содержатся различные газы – углекислота, азот, сероводород и др., часто имеющие большое практическое значение.

В зависимости от практической значимости растворенного в воде газа различают углекислые, сероводородные, радоновые и другие виды подземных вод.

В большинстве случаев подобные воды имеют лечебное значение (углекислые воды Кисловодска, сероводородные воды Мацесты, радоновые воды Цхалтубо и др.).

Подземные воды, обладающие теми или иными лечебными свойствами, называются бальнеологическими.

1.1 Жесткость подземных вод. Виды жесткости. Классификация подземных вод по величине общей жесткости.

Для пресной воды различают общую, временную и постоянную жесткость. Общая жесткость обусловлена содержанием в воде ионов кальция и магния. Временную жесткость придают воде карбонаты кальция и магния, осаждающиеся при кипячении воды в виде накипи.

Разность между общей и временной жесткостью называют постоянной жесткостью, она связана с присутствием сульфатов и галоидов кальция и магния. Жесткость принято выражать в миллиграммах-эквивалентах на литр.

1.2 Классификация вод по жесткости

Для пресной воды различают общую, временную и постоянную жесткость. Общая жесткость обусловлена содержанием в воде ионов кальция и магния. Временную жесткость придают воде карбонаты кальция и магния, осаждающиеся при кипячении воды в виде накипи.

Читайте также: