Предварительно изолированные трубы реферат

Обновлено: 05.07.2024

Десятки, сотни, тысячи километров трубопроводов протянулись по всей России, по одним транспортируется газ, по другим нефть, некоторые транспортируют тепло и воду в наши жилища, а другие удаляют использованную жидкость из наших жилищ. Трубы трудятся везде, на заводах и фабриках, школах и институтах, больницах, прачечных, охлаждают турбины ГРЭС, они словно вены человеческого организма опоясали всю Россию, без них никуда.

Содержание

Введение. Тепловая изоляция оборудования и трубопроводов ………….…. 3
Цели использования теплоизоляции труб ………………………………….…4
1.1. Обеспечения заданной температуры на поверхности изоляции. …..….…4
1.2. Предотвращения замерзания содержащейся в них жидкости ……….…4
1.3. Предотвращения конденсации влаги на поверхности изоляции ……. …5
1.4. Теплоизоляция трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки……………………………………………..…5
Виды и материалы теплоизоляции для трубопроводов…………………..……5
2.1. .Предизолированные трубопроводы: ………………………………………7
2.2. Минеральная вата……………………………………………………..……10
2.3.Базальтовая теплоизоляция Батиз……………………………….…………12
2.4 .Батиз- Шнур……………………………………………………………. …14
2.5. Вспененный синтетический каучук ……………………. ………………15
2.6. Порилекс НПЭ-Т ………………………………………….………………17
2.7. Астратек……………………………………………………….……………18
2.8. Засыпучие уплотнители……………………………………. ……………19
2.9. . Монолитные теплоизоляционные конструкции. ………….……………20
2.10. Пенополимерминерал (полимербетон) …………………………………23
Подведение итогов………………………………………………………………23
Литература………………………………

Прикрепленные файлы: 1 файл

popytka_3.doc

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

Инженерные системы зданий и сооружений

Реферат на тему

Выполнил студент 2 курса гр.1206 ВалетовД.С

Проверил Старший преподаватель: Семикова Е.Н.

Введение. Тепловая изоляция оборудования и трубопроводов ………….…. 3

1.1. Обеспечения заданной температуры на поверхности изоляции. …..….…4

1.2. Предотвращения замерзания содержащейся в них жидкости ……….…4

1.3. Предотвращения конденсации влаги на поверхности изоляции ……. …5

1.4. Теплоизоляция трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки……………………………………………..…5

  1. Виды и материалы теплоизоляции для трубопроводов…………………..……5

2.1. .Предизолированные трубопроводы: ………………………………………7

2.3.Базальтовая теплоизоляция Батиз……………………………….…………12

2.5. Вспененный синтетический каучук ……………………. ………………15

2.8. Засыпучие уплотнители……………………………………. …… ………19

2.9. . Монолитные теплоизоляционные конструкции. ………….……………20

2.10. Пенополимерминерал (полимербетон) …………………………………23

Введение. Тепловая изоляция оборудования и трубопроводов

Десятки, сотни, тысячи километров трубопроводов протянулись по всей России, по одним транспортируется газ, по другим нефть, некоторые транспортируют тепло и воду в наши жилища, а другие удаляют использованную жидкость из наших жилищ. Трубы трудятся везде, на заводах и фабриках, школах и институтах, больницах, прачечных, охлаждают турбины ГРЭС, они словно вены человеческого организма опоясали всю Россию, без них никуда.

Что же такое трубопровод?

Трубопроводом называется устройство предназначенное для транспортировки жидких, газообразных или сыпучих веществ. Основные виды трубопроводов приведены на рисунке ниже.

В зависимости от транспортируемой среды применяются термины: водопровод, газопровод, паропровод, нефтепровод, воздухопровод, маслопровод, кислотопровод, кислородопровод, бензопровод, молокопровод и т.д.

Основными общими параметрами трубопровода и арматуры являются: условный диаметр

1. цели использования теплоизоляции труб

На большей части перечисленных трубопроводов необходимо применять теплоизоляционные материалы и в зависимости от особенностей трубопровода область применения теплоизоляции может быть разной:

1.1 теплоизоляция трубопроводов с целью обеспечения заданной температуры на поверхности изоляции.

Тепловую изоляцию трубопроводов по заданной температуре на поверхности выполняют в случае, когда тепловые потери трубопровода не регламентированы, но в соответствии с требованиями техники безопасности необходимо защитить обслуживающий персонал от ожогов или снизить тепловыделения в помещении. В соответствии с санитарными нормами и требованиями СНиП 2.04.14-88 температура поверхности расположенных в помещении изолированных трубопроводов при температуре теплоносителя ниже 100°С не должна превышать 35°С, а при температуре теплоносителя 100°С и более не должна превышать 45°С.
В обслуживаемой зоне на открытом воздухе температура поверхности изоляции не должна превышать 60°С.

1.2 теплоизоляция трубопроводов с целью предотвращения замерзания содержащейся в них жидкости

Тепловую изоляцию с целью предотвращения замерзания жидкости при прекращении ее движения предусматривают для трубопроводов, расположенных на открытом воздухе. Как правило, это актуально для трубопроводов малого диаметра, имеющих малый запас аккумулированного тепла. Время, на которое тепловая изоляция может предохранить транспортируемую жидкость от замерзания при остановке её движения, зависит от температуры жидкости и окружающего воздуха, скорости ветра, внутреннего диаметра, толщины и материала стенки трубопровода, параметров транспортируемой жидкости. К параметрам, влияющим на длительность периода до начала замерзания, относятся: плотность, температура замерзания, удельная теплоемкость, скрытая теплота замерзания.

Чем больше скорость ветра и ниже температура жидкости (холодной воды) и окружающего воздуха, меньше диаметр трубопровода, тем больше вероятность замерзания жидкости. Уменьшает вероятность замерзания холодной воды применение изолированных неметаллических трубопроводов.

1.3 ьеплоизоляция трубопроводов с целью предотвращения конденсации влаги на поверхности изоляции

Применение тепловой изоляции с целью предотвращения конденсации влаги из воздуха на поверхности изоляции выполняют для трубопроводов, расположенных в помещении, содержащих вещества с температурой ниже температуры окружающего воздуха, в том числе холодную воду. На величину толщины теплоизоляционного слоя для предотвращения конденсации влаги из воздуха на поверхности теплоизоляционной конструкции влияют относительная влажность окружающего воздуха, температура воздуха в помещении и вид защитного покрытия. При использовании покрытия с высоким коэффициентом излучения (неметаллического) расчетная толщина изоляции существенно ниже.

1.4 теплоизоляция трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки

На сегодняшний день вопрос теплоизоляции трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки, с ростом стоимости энергоносителей, вопрос энергосбережения стоит особенно остро.

2.виды и материалы теплоизоляции для трубопроводов

Универсального теплоизоляционного материала, который бы подходил для всех трубопроводов на сегодняшний день - нет. Для каждого отдельного проекта необходимо подбирать свой теплоизоляционный материал, который обеспечит необходимые задачи теплоизоляции трубопровода.

К основным требованиям, предъявляемым к теплоизоляционным материалам и конструкциям, относят следующие:

- эксплуатационная надежность и долговечность;

- пожарная и экологическая безопасность.

Основными показателями, характеризующими физико-технические и эксплуатационные свойства теплоизоляционных материалов, являются: плотность, теплопроводность, температуростойкость, сжимаемость и упругость (для мягких материалов), прочность на сжатие при 10 % деформации (для жестких и полужестких материалов), вибростойкость, формостабильность, горючесть, водостойкость и стойкость к воздействию химически агрессивных сред, содержание органических веществ и биостойкость[1].

Теплотехническая эффективность конструкций промышленной тепловой изоляции определяется в первую очередь коэффициентом теплопроводности теплоизоляционного материала, который определяет требуемую толщину теплоизоляционного слоя, а следовательно, и нагрузки на изолируемый объект, конструктивные и монтажные характеристики конструкции. Расчетные значения коэффициента теплопроводности принимаются с учетом его зависимости от температуры, степени уплотнения теплоизоляционных материалов в конструкции, шовности конструкции, наличия крепежных деталей. При выборе теплоизоляционного материала учитывают: температуростойкость теплоизоляционных материалов, возможную линейную усадку, потери прочности и массы, степень выгорания связующего при нагреве, прочностные и деформационные характеристики изолируемого объекта, допустимые нагрузки на опоры и изолируемые поверхности и другие влияющие факторы.

Долговечность теплоизоляционных конструкций зависит от их конструктивных особенностей и условий эксплуатации, включающих месторасположение изолируемого объекта, режим работы оборудования, степень агрессивности окружающей среды, интенсивность механических воздействий. Срок службы теплоизоляционного материала и теплоизоляционной конструкции в целом в значительной степени определяется качеством защитного покрытия[6].

Санитарно-гигиенические требования особенно важны при проектировании объектов с технологическими процессами, требующими высокой чистоты, например, в микробиологии, радиоэлектронике, фармацевтической промышленности. В этих условиях применяются материалы или конструкции, не допускающие загрязнения воздуха в помещениях.На сегодняшний день на Российском рынке представлено довольно много утеплителей для трубопроводов, они производятся в виде матов, трубок, сегментов, цилиндров и полуцилиндров, рулонная изоляция, в виде мастик и красок, в виде услуги по напылению теплоизоляции. Так же трубопроводы могут быть предизолированы, т. е. на рынке предлагается готовое решение пробрести трубу, на которой уже присутствует теплоизоляция и гидроизоляция (если она необходима)[2].

2.1 предизолированные трубопроводы:

На предизолированные трубы в России действует Межгосударственный стандарт ГОСТ 30732-2001

"Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке. Технические условия"

Изделия предназначенные для подземной бесканальной прокладки тепловых сетей с расчетными параметрами теплоносителя: рабочим давлением до 1,6 МПа и температурой до 130°С (допускается кратковременное повышение температуры до 150°С).

2.1.1 трубы в пенополиуретановой изоляции

Преимущества: В них сочетаются эластичность и, в то же время, твердость, которые дают широкий диапазон использования; Низкий коэффициент теплопроводности (0,027 ват/мк); Долговечность и надежность службы 25-30 лет; Высокая технологичность на современном оборудовании; устойчивость против коррозии; Биологически нейтральна, химически стойка к воздействию слабых кислот и щелочей, морской воды и действию микроорганизмов, плесени, гниению; Низкое водопоглощение; За счет наличия системы ОДК, контроль целостности трубы во время эксплуатации осуществляется без проведения земляных работ; Трубы в ППУ изоляции могут эксплуатироваться при температуре окружающей среды от -80°C до +130°C; Минимальная глубина при бесканальном способе прокладки принимается в пределах 0,5 - 0,7м от поверхности грунта. Максимальное залегание тепломагистрали рассчитывается, исходя из условия соблюдения прочности конструкции. Обычно оно не превышает 3 м. Имеется возможность вариации толщиной слоя изоляции для учета требований различных климатических условий, это использование более толстого слоя изоляции для северных районов страны. Возможность бестраншейной прокладки.

Развитие цивилизации, научно-технический прогресс, современные технологии и материалы, — все это понятия, связанные с движением человечества вперед. Это движение определяет многие социальные процессы, к которым, вне сомнения, относится урбанизация. В связи с этим специалистам приходится решать проблемы мегаполисов, крупных городов в области создания комфортных условий жизни. Отвод и обезвреживание бытовых стоков, подача в дома чистой воды, обеспечение электроэнергией, обогрев жилища в холодное время, контроль сохранности и эффективности жилого и нежилого фонда — здесь описана лишь часть тех задач, которые ежедневно решают коммунальные службы наших городов.

А известно ли вам, какой вид коммуникаций наших городов является наиболее дорогостоящим, наименее долговечным и наиболее аварийным? Речь идет о тепловых сетях. Какие же факторы приводят к тому, что ежегодно огромные средства вкладывают в теплоснабжение? Анализ повреждаемости (отказов) стальных трубопроводов тепловых сетей показывает, что основным вредным воздействием, приводящим к поломкам, является коррозия труб. Коррозия может возникнуть, например, от попадания коррозийных растворов на поверхность трубопроводов, из-за наличия электрических полей, создаваемых электрическими токами (так называемая электрохимическая коррозия), из-за некачественной химподготовки теплоносителя. Самой частой причиной коррозии является воздействие неблагоприятных факторов на наружную поверхность трубопроводов. Так, наиболее аварийными (по числу отказов) являются теплопроводы, проложенные бесканальным методом и в непроходных каналах. Основные проблемы указанных методов — практическая сложность обеспечения сплошности и долговечности антикоррозийных покрытий, отсутствие дренажа, сезонное затопление каналов и т.д. Для осознания масштабов проблемы позволю себе привести некоторые цифры. Основным видом прокладки тепловых сетей в Советском Союзе традиционно являлась подземная прокладка в каналах (84%), 78% из которых — непроходные. Бесканальная прокладка занимала 6% и надземная 10%.

. повышение долговечности (ресурс трубопроводов) в 2-3 раза;
. снижение тепловых потерь в 2-3 раза;
. снижение эксплуатационных расходов в 9 раз (удельная повреждаемость снижается в 10 раз);
. снижение капитальных затрат в строительстве в 1,3 раза;
. наличие системы оперативного дистанционного контроля за увлажнением теплоизоляции.
ПИ-трубы успешно используются для строительства сетей теплоснабжения, технологических трубопроводов, нефтепроводов.

. применяемые трубные системы должны обладать высокими теплоизоляционными свойствами (коэффициент теплопроводности материала при температуре 20°С не должен превышать 0,028 Вт/(м°С));
. долговечностью (стойкостью к действию воды, химической и биологической агрессии);
. морозостойкостью;
. легко монтироваться;
. обладать механической прочностью;
. обладать экологической безопасностью, т.е. быть безопасной для жизни и здоровья людей и окружающей природной среды.

Теперь давайте определим назначение каждого из элементов и попробуем выяснить тот необходимый набор качеств, которыми они должны обладать.

Защитные оболочки обычно изготавливаются в виде тонкостенных труб (кожухов) из полиэтилена высокой плотности. Они предназначены для трубопроводов, расположенных в земле, и обеспечивают их водонепроницаемость и механическую защиту (табл. 1). Для трубопроводов, расположенных над поверхностью земли, применяют защитную оболочку из оцинкованной стали с толщиной цинкового покрытия не менее 70 мкм.

. минимальной длительной прочности (MRS — Minimum Required Strength);
. стойкости к медленному растрескиванию (Slow Crack Growth);
. стойкости к быстрому растрескиванию (Rapid Crack Propagation).
Обозначение полиэтилена с учетом мировой системы классификации приведено в табл. 2.

Обратите внимание на то, что показатель минимальной длительной прочности MRS наиболее полно характеризует эксплуатационные свойства трубопроводов. Появившиеся в последние годы в результате применения новых технологий полимеризации полиэтилен РЕ80 (второе поколение ПЭ) и РЕ100 (третье поколение ПЭ) позволяют существенно уменьшить толщину стенки трубы по сравнению с традиционно используемым для оболочек труб полиэтиленом РЕ63, повысив при этом прочностные свойства. Оболочки из полиэтилена РЕ80 обеспечивают повышенное сопротивление возникновению и распространению трещин в стенке трубы. Эти свойства становятся решающими, когда полиэтиленовые трубы используются в качестве оболочки ПИ-трубы для подземной прокладки, при которой на поверхности полиэтиленовой трубы-оболочки могут появиться царапины, которые со временем трансформируются в трещины. Как это происходит? Например, при засыпке в результате ударного воздействия острыми гранями песка. Или в результате горизонтальных и вертикальных смещений грунта, при которых происходит исцарапывание поверхности оболочки. В зависимости от формы трещин и уровня напряжений в стенках ПЭ-оболочки трещины могут распространяться в толщу стенки трубы-оболочки. Происходит фактическое уменьшение действительной толщины стенки в конкретном месте, далее напряжение в этом сечении достигает критической величины, и труба трескается полностью по всей толщине стенки. Скорость распространения и уровень напряжений, при котором это случается, зависит в первую очередь от свойств собственно материала, из которого изготовлена труба-оболочка.

Так с какой оболочкой следует выбирать систему ПИ-труб? С дешевой и недолговечной или с качественной, но более дорогой? Чтобы получить объективный ответ, необходимо проведение испытаний на определение стойкости к медленному растрескиванию на этапе выходного контроля проверки качества оболочки, результаты которых необходимо требовать у производителя. В последнее время изготовители труб и соединительных деталей из полиэтилена переходят на классификацию полиэтилена в соответствии с ISO 161 и 9080 с указанием показателя MRS. В России такая классификация использована в ГОСТ Р 50838.

Что же представляют собой пенополиуретаны (далее ППУ)?
Собственно к пенополиуретанам относят гетероцепные (т.е. с несколькими цепочками) полимеры, содержащие значительное количество уретановых групп. Пенополиуретаны получают по реакции поликонденсации изоцианатов с полиолами (гликолями, триолами, простыми и сложными полиэфирами) с последующим вспениванием полимерной массы.

Взаимодействие между многоатомным спиртом и изоцианатом приводит к образованию уретана и представляет собой реакцию развития цепи.
В зависимости от частоты поперечных связей пенополиуретаны делятся на эластичные и жесткие. Эластичными называют пенополиуретаны с низкой плотностью сшивки, а жесткими — с высокой. В ПИ-трубах применяются жесткие ППУ.
ППУ относится к горючим веществам, но горит только при наличии источника пламени. ППУ взрывобезопасен.

Показатели ППУ изоляции определяются применяемыми при изготовлении компонентами и их соотношением. Так, при получении ППУ протекают реакции роста цепи, сшивания (структурирования) и газообразование. Скорость подъема пены и ее отвержения, а также плотность, прочность и другие свойства образующегося пеноматериала находятся в прямой зависимости от соотношения скоростей этих реакций. Следует знать, что слишком быстрое протекание процессов структурирования может привести к малому подъему пены и даже ее деструкции под действием тепла, накапливающегося в системе (реакция уретанообразования экзотермична). С другой стороны, при недостаточном количестве катализатора скорости реакций уретанообразования и сшивания могут быть столь малы, что нарастание вязкости системы будет отставать от газообразования. В этом случае нарушается соотношение между давлением газа в ячейке и прочностью стенки ячейки, что может повлечь разрушение пены.

Важными факторами, влияющими на теплопроводность, является средний размер ячеек и распределение их по размерам, при этом зависимость теплопроводности от среднего размера ячеек имеет линейных характер. Как правило, увеличение плотности ППУ приводит к увеличению теплопроводности. Здесь следует знать, что теплоперенос в газовой фазе является одной из составляющих суммарной теплопроводности, а природа вспенивающего агента, применяемого при получении жесткого ППУ, вносит основной вклад в этот процесс. В таблице 5 представлены свойства основных вспенивателей, включая запрещенный теперь фреон11. Ранее применялись также фреон113, фреон12, отличающиеся прежде всего температурой испарения. Одним из важных преимуществ фторуглеродов является то, что вспенивающий газ действует как охлаждающий агент, уменьшая тем самым скорость желатинизации, или склонность к термодеструкции. Кроме того, при вспенивании фреоном получается ППУ с большим числом закрытых ячеек, с более высокими диэлектрическими показателями и меньшим водопоглощением.

Примечание. Приняты следующие обозначения: ФХУВ — фторхлоруглеводороды; ФУВ — фторуглеводороды; УВ — углеводороды.

Давайте зададимся вопросом: а знают ли некоторые производители дешевой продукции обо всех этих нюансах? Ведь дешевизна — это зачастую экономия на технологах и технологии. Готов ли заказчик к восприятию, что ПИ-труба — это сложная инженерная система?
Пенополиуретановая теплоизоляция обычно наносится на трубы в заводских условиях, а места стыков теплоизолируются на месте строительства, после сварки и испытания трубопровода.

В результате реакции VORACOR CG 657 модифицированного полиола и VORACOR CS 510 изоцианата образуется пена с хорошими показателями роста и распределением плотности по всему объему Производство операции запенивания осуществляется в помещении при температуре +20°С плюс-минус один градус. Этот показатель жестко контролируется.

Используемый пенополиуретан не оказывает вредного влияния на окружающую среду и обеспечивает высококачественную эксплуатацию изоляции при температурах до 130°С. Принцип производства — одностадийный. Полиольный компонент уже представляет собой смесь олигоэфира, катализатора, ПАВ, вспенивающего агента и других добавок (know-how поставщика). Использование высококачественных компонентов позволяет предотвратить обуглероживание среднего слоя ППУ. Таблица 6 показывает основные свойства компонентов системы.

Свойства готовой системы приведены в таблице 7.

Способ производства ПИ-труб

Существует несколько способов производства ПИ-труб. Каждый из них имеет свои достоинства и недостатки. Можно выделить две основные группы технологий: периодические и непрерывные. Возможность применения того или иного способа заливки зависит от конкретного производителя. При использовании периодической технологии внутри вспомогательной полиэтиленовой (ПЭ) трубы располагается внутренняя стальная труба, имеющая большую длину. Для удержания стальной трубы в центре вспомогательной по всей ее длине расположены держатели — центраторы. С обоих концов зазор между стальной и полиэтиленовой трубой закрыт плотно прилегающими крышками, имеющими отверстия для ввода пены и вентиляции. Таким способом можно получать трубы любой длины до 16 м.
Ключевыми параметрами для качественного заполнения труб являются температурный контроль химических компонентов и труб, правильная обработка поверхности стальной трубы, входная плотность компонентов ППУ и время. Температуры компонентов ППУ должны составлять, как правило, +20-23°С. Трубы должны быть, особенно в зимнее время, обязательно прогреты до 20-23°С, в противном случае будет происходить слишком быстрая потеря тепла пеной, что приведет к недостаточной реакционной способности на границе пены и трубы. Следствием этого может стать повышенная хрупкость пены в зоне примыкания ППУ к внутренней поверхности стенки оболочки и, соответственно, слабая адгезия пены к трубе. Для полного заполнения трубы может также понадобиться большее количество пены. Для лучшей адгезии стальная труба должна быть освобождена от газов, масла и ржавчины. Для обеспечения хорошего сцепления пены с ПЭ оболочкой рекомендуется обработать полиэтиленовую трубу пламенем, электроразрядом или специальным химическим реагентом.
Здесь уместно отметить, что трубы из ПЭ63 и ПЭ80 отличаются друг от друга по адгезионным возможностям после обработки. Расход пены заливочной машиной должен быть таким, чтобы расчетное количество смешанных компонентов было введено в трубу за время старта системы. Минимальный объем заполнения должен быть достаточно большим, чтобы пена заполнила трубу до начала нитеобразования, иначе ячейки пены будут вытянутыми. Это приведет к плохим механическим свойствам пены на концах трубы.

Существуют:
- заливка трубы снизу,
- заливка трубы сверху,
- заливка трубы по центру,
- заливка с движущейся головкой,
- заливка с протяжкой.

При этом методе предварительно собранные трубы также располагают под углом от 1° до 15° к горизонтали (см. рис. 2.). Требуемое количество смеси для пены вводят в область между стальной и ПЭ оболочкой через отверстие в верхней крышке. Сила тяжести заставляет массу относительно низкой вязкости стекать вниз по трубе. Скорость этого потока зависит от угла, под которым расположены трубы, чем он больше, тем быстрее масса стекает вниз. Этот метод также предполагает начальное распределение пены вдоль трубы, существующее до того, как пена быстро начнет расширяться. Пена далее заполняет трубу из центра к концам. Опыт показывает, что наилучшее распределение свойств получается, когда пена достигает нижнего вентиляционного отверстия примерно на двадцать секунд раньше, чем верхнего. Естественно, сразу после этого вентиляционные отверстия запечатываются.

Начальное распределение материала уменьшает путь, который должна пройти расширяющаяся пена до полного заполнения пространства между трубами. Это позволяет уменьшить переполнение или минимальный объем заполнения. Так легче заполнять более длинные трубы. Высокая однородность ППУ системы и узкое распределение ее плотности достигается, если выбран правильный угол расположения труб. В данном случае этот угол играет более значимую роль, чем при заливке снизу, поэтому мастерство оператора играет важную роль. Наши операторы пользуются таблицами, содержащими соответствующие данные об углах заполнения.
Многие ли заказчики интересуются методами производства ППУ труб у поставщиков? Понимают ли отличия каждого из методов? Мне иногда кажется, что это риторические вопросы, и на рынке ПИ-труб сейчас властвует некомпетентность принятия решений по использованию конкретных ПИ-трубных систем, что, в общем-то, весьма скоро может привести к дискредитации идеи использования ПИ-труб.

В статье использованы материалы публикаций и научных работ различных авторов

Строительство и недвижимость. Статья была опубликована в номере 30 за 2005 год в рубрике инженерное оборудование

ПИ-труба

Развитие цивилизации, научно-технический прогресс, современные технологии и материалы, — все это понятия, связанные с движением человечества вперед. Это движение определяет многие социальные процессы, к которым, вне сомнения, относится урбанизация. В связи с этим специалистам приходится решать проблемы мегаполисов, крупных городов в области создания комфортных условий жизни. Отвод и обезвреживание бытовых стоков, подача в дома чистой воды, обеспечение электроэнергией, обогрев жилища в холодное время, контроль сохранности и эффективности жилого и нежилого фонда — здесь описана лишь часть тех задач, которые ежедневно решают коммунальные службы наших городов.

А известно ли вам, какой вид коммуникаций наших городов является наиболее дорогостоящим, наименее долговечным и наиболее аварийным? Речь идет о тепловых сетях. Какие же факторы приводят к тому, что ежегодно огромные средства вкладывают в теплоснабжение? Анализ повреждаемости (отказов) стальных трубопроводов

тепловых сетей показывает, что основным вредным воздействием, приводящим к поломкам, является коррозия труб. Коррозия может возникнуть, например, от попадания коррозийных растворов на поверхность трубопроводов, из-за наличия электрических полей, создаваемых электрическими токами (так называемая электрохимическая коррозия), из-за некачественной химподготовки теплоносителя. Самой частой причиной коррозии является воздействие неблагоприятных факторов на наружную поверхность трубопроводов. Так, наиболее аварийными (по числу отказов) являются теплопроводы, проложенные бесканальным методом и в непроходных каналах. Основные проблемы указанных методов — практическая сложность обеспечения сплошности и долговечности антикоррозийных покрытий, отсутствие дренажа, сезонное затопление каналов и т.д. Для осознания масштабов проблемы позволю себе привести некоторые цифры. Основным видом прокладки тепловых сетей в Советском Союзе традиционно являлась подземная прокладка в каналах (84%), 78% из которых — непроходные. Бесканальная прокладка занимала 6% и надземная 10%.

. повышение долговечности (ресурс трубопроводов) в 2-3 раза;
. снижение тепловых потерь в 2-3 раза;
. снижение эксплуатационных расходов в 9 раз (удельная повреждаемость снижается в 10 раз);
. снижение капитальных затрат в строительстве в 1,3 раза;
. наличие системы оперативного дистанционного контроля за увлажнением теплоизоляции.
ПИ-трубы успешно используются для строительства сетей теплоснабжения, технологических трубопроводов, нефтепроводов.

. применяемые трубные системы должны обладать высокими теплоизоляционными свойствами (коэффициент теплопроводности материала при температуре 20°С не должен превышать 0,028 Вт/(м°С));
. долговечностью (стойкостью к действию воды, химической и биологической агрессии);
. морозостойкостью;
. легко монтироваться;
. обладать механической прочностью;
. обладать экологической безопасностью, т.е. быть безопасной для жизни и здоровья людей и окружающей природной среды.

Теперь давайте определим назначение каждого из элементов и попробуем выяснить тот необходимый набор качеств, которыми они должны обладать.

Оболочка

Защитные оболочки обычно изготавливаются в виде тонкостенных труб (кожухов) из полиэтилена высокой плотности. Они предназначены для трубопроводов, расположенных в земле, и обеспечивают их водонепроницаемость и механическую защиту (табл. 1). Для трубопроводов, расположенных над поверхностью земли, применяют защитную оболочку из оцинкованной стали с толщиной цинкового покрытия не менее 70 мкм.

Таблица 1. Требования к свойствам ПЭ оболочки

Показатель Значение показателя
Предел текучести при растяжении, МПа, не менее 19
Относительное удлинение при разрыве, %, не менее 350
Изменение длины труб-оболочек после прогрева при 110°С, %, не более 3
Стойкость при температуре 80°С и постоянном внутреннем давлении (при начальном напряжении в стенке трубы 3,2 МПа), ч, не менее 1000
Плотность, г/см3 0,94-0,96
Коэффициент теплового линейного расширения 1/(10-4 • °С) 2
Показатель текучести расплава полиэтилена, г/10 мин. 0,3-0,5
Теплопроводность, Вт/(м°С) >0,42

. минимальной длительной прочности (MRS — Minimum Required Strength);
. стойкости к медленному растрескиванию (Slow Crack Growth);
. стойкости к быстрому растрескиванию (Rapid Crack Propagation).
Обозначение полиэтилена с учетом мировой системы классификации приведено в табл. 2.

Таблица 2. Показатель MRS в соответствии с ISO 4427

Длительнаяпрочность,
МПа
MRS, МПа Обозначение Расчетные напряжения
(среда — вода, коэффициент
запаса прочности — — 1,25), МПа
3,20-3,99 3,2 РЕ32 2,5
6,30-7,99 6,3 РЕ63 5,0
8,00-9,99 8,0 РЕ80 6,3
10,00-11,19 10,0 РЕ100 8,0

Обратите внимание на то, что показатель минимальной длительной прочности MRS наиболее полно характеризует эксплуатационные свойства трубопроводов. Появившиеся в последние годы в результате применения новых технологий полимеризации полиэтилен РЕ80 (второе поколение ПЭ) и РЕ100 (третье поколение ПЭ) позволяют существенно уменьшить толщину стенки трубы по сравнению с традиционно используемым для оболочек труб полиэтиленом РЕ63, повысив при этом прочностные свойства. Оболочки из полиэтилена РЕ80 обеспечивают повышенное сопротивление возникновению и распространению трещин в стенке трубы. Эти свойства становятся решающими, когда полиэтиленовые трубы используются в качестве оболочки ПИ-трубы для подземной прокладки, при которой на поверхности полиэтиленовой трубы-оболочки могут появиться царапины, которые со временем трансформируются в трещины. Как это происходит? Например, при засыпке в результате ударного воздействия острыми гранями песка. Или в результате горизонтальных и вертикальных смещений грунта, при которых происходит исцарапывание поверхности оболочки. В зависимости от формы трещин и уровня напряжений в стенках ПЭ-оболочки трещины могут распространяться в толщу стенки трубы-оболочки. Происходит фактическое уменьшение действительной толщины стенки в конкретном месте, далее напряжение в этом сечении достигает критической величины, и труба трескается полностью по всей толщине стенки. Скорость распространения и уровень напряжений, при котором это случается, зависит в первую очередь от свойств собственно материала, из которого изготовлена труба-оболочка.

Так с какой оболочкой следует выбирать систему ПИ-труб? С дешевой и недолговечной или с качественной, но более дорогой? Чтобы получить объективный ответ, необходимо проведение испытаний на определение стойкости к медленному растрескиванию на этапе выходного контроля проверки качества оболочки, результаты которых необходимо требовать у производителя. В последнее время изготовители труб и соединительных деталей из полиэтилена переходят на классификацию полиэтилена в соответствии с ISO 161 и 9080 с указанием показателя MRS. В Белоруссии такая классификация использована в ГОСТ Р 50838.

Ед.изм. VORACOR* CG 657 Полиол VORACOR CS 510 Изоцианат Тестовый метод
Гидрооксильное число мг КОН / г 352 -- ASTM D 4274d
Содержание NCO групп % 31,0 ASTM D 5155
Вязкость мПа.с 270 (20 0C) 210 (25 0C) ASTM D 445
Удельный вес - 1,09 (25/25 0C) 1,23 (25/25 0C) ASTM D 891

Данная система имеет улучшенные изоляционные характеристики, отличную адгезию с оболочкой и стальной трубой и, что очень важно, высокую термическую стабильность.

Свойства готовой системы приведены в таблице 7.

Таблица 7. Свойства полимера

Ед.изм. Пределы Тестовый метод
Плотность в форме Кг/м3 400 ASTM D 1622
Содержание закрытых ячеек % Не менее 95 ASTM D 2856
Твердость поверхности Шор D 55 ASTM D 2240
Прочность на разрыв Кг/см2 75 UNI 8071
Отн. удлинение при разрыве % 9 UNI 8071
Cила упругости Кг/см2 165 UNI 7219
Модуль упругости Кг/см2 5300 UNI 7219
Стабильность размеров (линейные изменения)
% 1 мах UNI 8069
- 48 часов при –25°С % 1 мах
- 48 часов при 70°С


Еще раз позволю себе заметить, что качество не признает компромиссов.

Способ производства ПИ-труб

Существует несколько способов производства ПИ-труб. Каждый из них имеет свои достоинства и недостатки. Можно выделить две основные группы технологий: периодические и непрерывные. Возможность применения того или иного способа заливки зависит от конкретного производителя. При использовании периодической технологии внутри вспомогательной полиэтиленовой (ПЭ) трубы располагается внутренняя стальная труба, имеющая большую длину. Для удержания стальной трубы в центре вспомогательной по всей ее длине расположены держатели — центраторы. С обоих концов зазор между стальной и полиэтиленовой трубой закрыт плотно прилегающими крышками, имеющими отверстия для ввода пены и вентиляции. Таким способом можно получать трубы любой длины до 16 м.
Ключевыми параметрами для качественного заполнения труб являются температурный контроль химических компонентов и труб, правильная обработка поверхности стальной трубы, входная плотность компонентов ППУ и время. Температуры компонентов ППУ должны составлять, как правило, +20-23°С. Трубы должны быть, особенно в зимнее время, обязательно прогреты до 20-23°С, в противном случае будет происходить слишком быстрая потеря тепла пеной, что приведет к недостаточной реакционной способности на границе пены и трубы. Следствием этого может стать повышенная хрупкость пены в зоне примыкания ППУ к внутренней поверхности стенки оболочки и, соответственно, слабая адгезия пены к трубе. Для полного заполнения трубы может также понадобиться большее количество пены. Для лучшей адгезии стальная труба должна быть освобождена от газов, масла и ржавчины. Для обеспечения хорошего сцепления пены с ПЭ оболочкой рекомендуется обработать полиэтиленовую трубу пламенем, электроразрядом или специальным химическим реагентом.
Здесь уместно отметить, что трубы из ПЭ63 и ПЭ80 отличаются друг от друга по адгезионным возможностям после обработки. Расход пены заливочной машиной должен быть таким, чтобы расчетное количество смешанных компонентов было введено в трубу за время старта системы. Минимальный объем заполнения должен быть достаточно большим, чтобы пена заполнила трубу до начала нитеобразования, иначе ячейки пены будут вытянутыми. Это приведет к плохим механическим свойствам пены на концах трубы.

Существуют:
- заливка трубы снизу,
- заливка трубы сверху,
- заливка трубы по центру,
- заливка с движущейся головкой,
- заливка с протяжкой.


При этом методе предварительно собранные трубы также располагают под углом от 1° до 15° к горизонтали (см. рис. 2.). Требуемое количество смеси для пены вводят в область между стальной и ПЭ оболочкой через отверстие в верхней крышке. Сила тяжести заставляет массу относительно низкой вязкости стекать вниз по трубе. Скорость этого потока зависит от угла, под которым расположены трубы, чем он больше, тем быстрее масса стекает вниз. Этот метод также предполагает начальное распределение пены вдоль трубы, существующее до того, как пена быстро начнет расширяться. Пена далее заполняет трубу из центра к концам. Опыт показывает, что наилучшее распределение свойств получается, когда пена достигает нижнего вентиляционного отверстия примерно на двадцать секунд раньше, чем верхнего. Естественно, сразу после этого вентиляционные отверстия запечатываются.

Рис. 2

Начальное распределение материала уменьшает путь, который должна пройти расширяющаяся пена до полного заполнения пространства между трубами. Это позволяет уменьшить переполнение или минимальный объем заполнения. Так легче заполнять более длинные трубы. Высокая однородность ППУ системы и узкое распределение ее плотности достигается, если выбран правильный угол расположения труб. В данном случае этот угол играет более значимую роль, чем при заливке снизу, поэтому мастерство оператора играет важную роль. Наши операторы пользуются таблицами, содержащими соответствующие данные об углах заполнения.
Многие ли заказчики интересуются методами производства ППУ труб у поставщиков? Понимают ли отличия каждого из методов? Мне иногда кажется, что это риторические вопросы, и на рынке ПИ-труб сейчас властвует некомпетентность принятия решений по использованию конкретных ПИ-трубных систем, что, в общем-то, весьма скоро может привести к дискредитации идеи использования ПИ-труб.

Трубы ПНД – это современные пластиковые трубы, которые изготавливаются из полиэтилена низкого давления (ПНД), произведенного промышленным методом полимеризации этилена при низком давлении.

Качественные комплектующие и трубы предизолированные для теплосетей – гарантия длительной эксплуатации коммуникаций в любой климатической зоне. Сама технология выпуска этой продукции и квалифицированный монтаж с соблюдением технологии обеспечивает безупречную работу теплосети на долгий срок без потребности в ремонте.

Предизолированные трубы

Предизолированные трубы — незаменимые изделия для прокладки теплотрасс

В чем отличие предизолированных труб от прочих?

Такой способ утепления труб для тепловых сетей на практике подтверждает свою эффективность и надежность – высокий КПД трубопровода при сроке эксплуатации не менее 25 лет. Предизолированное изделие способна выдерживать кратковременные амплитудные скачки теплоносителя при рекордно низкой температуре внешней среды в зимний период. Специфическая форма изделия с внутренней изоляцией используется не только для горячей воды, но и для транспортировки других жидких и газообразных сред.

Основная труба – стальная, внешний слой не всегда сплошной металлический с оцинковкой, особенно когда в этом нет надобности. Пенополиуретановая прослойка может быть защищена гибкой оболочкой, обвивающей пористый наполнитель в виде спирали. Каждый слой многослойных изделий изготавливается по особой технологии, снабженной системой спецконтроля влажности изолирующего слоя и вероятных дефектов в сегменте магистрали.

Предизолированные трубы

Предизолированные трубы по конструкции схожи с сендвич-дымоходами, но внешняя оболочка может быть из полиэтилена

Составляющие предварительно изолированных труб

Труба в ППУ изоляции выпускается из таких компонентов:

1. Стержневая основа или функциональная стальная труба. Выпуск сертифицированных изделий осуществляется по ГОСТ:

  • 8731;
  • 8733-77;
  • 10704;
  • 10706;
  • 20295;
  • ПБ 03-75-94 и пр.

3. Внешняя оболочка или защитный кожух призван защищать слой ППУ от повреждений и проникновения влаги. Отсутствие доступа влаги извне обеспечивает сохранность всех слоев предизолированных труб — от коррозии стержневой основы и крошения полиуретана. Полиэтиленовая оболочка выпускается по ГОСТ 16330 из термо-свето-стабилизированного сырья высокой плотности черного цвета. Возможно использование оболочки другого типа – по другим стандартам.

Наиболее востребованные предизолированные стальные трубы (ППУ-ПЭ ГОСТ 30732):

  • 57*3,5-1;
  • 57*3,5-2;
  • 76*3,5-1;
  • 76*3,5-2;
  • 89*3,5-1.

Предизолированные трубы

Внешняя оболочка предохраняет трубы от вредного воздействия окружающей среды и способствует увеличению срока эксплуатации теплотрассы

Требования к качеству изделий

Все процессы выпуска труб с ППУ тщательно контролируются на соответствие нормам стандартизации. Например, вспенивание и отвердение пенополиуретана – быстрый процесс, где недопустимы отклонения от норм. Буквально через секунды сырьё обретает завершающий вид и готов к использованию. Есть ППУ разной плотности и жесткости – в пределах 1 кг/м³. Его изолированные пористые ячейки тоже имеют разные размеры – до 1 мм в диаметре.

Требования по теплоизоляционному наполнителю:

  • водопоглощение ППУ по объему – в пределах 10% (испытывается при 1,5 часовом кипячении);
  • плотность – в пределах 60 кг/м³;
  • упругость на сжатие – от 0,3 МПа (в пределах 10% деформации во всех направлениях);
  • изменение длины изделия после прогревания до 110°C должно быть минимальным – до 3%.

Обязательное тестирование по основным качественным показателям проходят не только сами предизолированные трубы, но и все комплектующие. Перед реализацией их проверяют лабораторным способом на плотность, величину закрытых пор и теплопроводность.

Это интересно! Пена в изоляционном слое внешне напоминает желтоватый кондитерский крем после взбивания. Но эта однородная паста имеет плотную мелкоячеистую структуру, которая не оседает, не слипается. Торцы ППУ изоляции не имеют защитного слоя, и очевидно, что термозащита составляет не более 1/3 общей толщины изделия.

Одна из характеристик предизолированных труб с пенополиуретаном — сцепление внешнего и внутреннего слоев. Для этого должны выполняться технологические нормы:

  • зачистка поверхности стальной трубы от ржавчины, с обязательным образованием шероховатости, с которой у вспененного ППУ лучше адгезия;
  • поддержка заданного температурного режима для равномерного вспенивания сырья;
  • обработка внутренней оболочки разрядом для большего сцепления с пенным наполнителем.

Предизолированные трубы

Для труб в теплоизоляции также существуют ГОСТы, согласно которым они производятся

Благодаря полученным свойствам, предварительно изолированные трубы используют при сооружении магистральных нефте-, газо- и паропроводов. А также широко используют в теплосетях для горячего водоснабжения и в различных технических трубопроводах – в цехах на горячем производстве.

Важно! ППУ производился несколькими способами, но на сегодня закрепилась практика – брать за основу углекислый газ и фреона 141b (F-141b). Эта смесь опасна, поэтому используется только в промышленном способом, из-за взрывоопасности вероятности возгорания. Но вспенивающие реактивы дают максимальный эффект при получении необходимого содержимого в межтрубном пространстве. Все нормы регулируются единой стандартизацией – ГОСТ 30732-2001.

Преимущества предизолированных труб с ППУ

Положительных качеств и подобных изделий немало.

Предизолированные трубы

Монтаж предизолированных труб осуществляется с минимальными затратами времени и средств

Технология изготовления предизолированных труб

Хорошо налаженный процесс предполагает залив пенообразующего сырья в просвет между внешней оболочкой и стальной трубой. Технология продумана таким образом, чтобы производство изделий для теплоцентралей выполнялось при минимуме операций.

Пена ППУ с минимальной теплопроводностью заливается поверх стальной трубы, которая закреплена тельфером на специальном монтажном столе. Центраторы и СОДК контролируют процесс формовки изделий. Изделие электролебедкой помещают во внешнюю оболочку. Конвейер смещает изделие в термокамеру – для дальнейшей термостатики.

Тепловентиляторы прогревают горячей струей воздуха внутреннюю поверхность трубы до 350°C – горячая основа для заливки пенополиуретана готова. Специальное устройство вращает трубу на поворотной оси. С двух сторон торцы изделие снабжают заглушками с небольшими дренажными просветами для воздуха вывода проволоки.

Винтами крепят заглушки, чтобы предупредить отток не застывшего сырья из пространства между трубами. Заливочная машинка регулируется на пульте управления, где выставляют основные параметры заливки. Они зависят от типа сырья, длины и формы труб. Лейку для впрыскивания ППУ заливочной машины подводят к отверстию трубы и производят быстрый ввод смеси. Дальнейшая цель – отвердение термоизоляционного слоя в межтрубном пространстве.

Далее изделия переводятся на участок контроля и лабораторной проверки качества. Сертифицированные изделия сортируют, маркируют и упаковывают. По завершении процесса гидроизоляции на торцах труб для тепловых сетей их штабелируют на стеллажах – до 5-6 изделий.

Обратите внимание! В Европе основные требования к предварительной изоляции из ППУ для прокладки подземных коммуникаций регулировались европейским стандартом – EN253. Он отражался и в сопроводительной документации.

В РФ производители предизолированных изделий, технологи и разработчики выработали единый российский стандарт – ГОСТ 30732-2001. Стандартизация вступила в законную силу 01.07.2001 года. В нормативном документе отражены требования к изделиям ППУ изоляции и комплектующим к предизолированным трубам. Эксплуатация предизолированных изделий в коммуникациях предполагает учет теплопроводности газов. Этот показатель растет по мере повышения температуры. Однако этот показатель не способен существенно повлиять на сами трубы и изолирующий слой пенополиуретана.

Читайте также: