Поглощение света реферат по физике

Обновлено: 30.06.2024

Поглощение света – это уменьшение интенсивности оптического излучения (света), проходящего сквозь прозрачную среду.
В идеализированной однородной среде колеблющиеся электроны возвращают всю падающую энергию в виде вторичных волн, и поглощения света не происходит. В реальном теле часть падающей световой энергии переходит в другие формы (главным образом, в тепловую) – наблюдается поглощение света.

Особый интерес представляет случай, когда частота световой волны ω совпадает с частотой собственных колебаний электронов ωоi . При этих частотах энергия световой волны полностью поглощается веществом. Такое явление называется резонансным поглощением света, а соответствующая частота – резонансной. Именно в области резонансного поглощения наблюдается аномальное поведение дисперсии. Вещество, состоящее из атомов или молекул с определенным набором частот собственных колебаний электронов ωоi даст в спектре прошедшего через него света узкие линии поглощения. Коэффициент преломления окажется постоянным в областях, далеких от линий поглощения, и будет быстро меняться с частотой и сильно отличаться от единицы вблизи каждой линии поглощения, где взаимодействие света с веществом велико.

Экспериментальная зависимость показателя преломления n и коэффициента поглощения от длины волны вблизи одной из резонансных частот ( – длина волны, соответствующая резонансной частоте ωо) представлена на рис. 6-1.

Рис. 6-1. Зависимость показателя преломления n и коэффициента поглощения от вблизи одной из резонансных частот (λо – длина волны, соответствующая резонансной частоте ωо).
Из представленной экспериментальной зависимости (рис.6-1) следует, что коэффициент преломления n принимает большие значения с длинноволновой стороны полосы поглощения и малые – с ее коротковолновой стороны. Внутри самой полосы поглощения коэффициент преломления убывает с уменьшением длины волны (аномальная дисперсия). Как видно, коэффициент преломления может быть меньше единицы, значит, фазовая скорость волны может превышать скорость света с. Это не противоречит теории относительности, так как скорость передачи энергии равна групповой скорости, которая не превышает значение (см. И.В.Савельев. Курс общей физики. Том 2. Электричество и магнетизм. Волны. Оптика. 2006 г., с. 461).

Опыт показывает, что интенсивность I плоской световой волны, прошедшей сквозь прозрачный диэлектрик, обнаруживает уменьшение своего значения согласно закону Бугера (установленного экспериментально Бугером и обоснованного теоретически И. Ламбертом):


Рис.6-2. Иллюстрация к закону поглощения Бугера.

I0 – интенсивность световой волны, вступающей в вещество, d – толщина слоя вещества, пройденного светом, - коэффициент поглощения, зависящий от длины световой волны, химической природы и состояния вещества.

Коэффициент поглощения физическая величина, обратно пропорциональная слою вещества, при прохождении которого интенсивность падающего света убывает в е (е = 2,7) раз. При измерении коэффициента поглощения необходимо учитывать, что часть света отражается от границы исследуемого вещества. Закон справедлив при не слишком больших интенсивностях света и только для монохроматического излучения, так как для каждого вещества зависит от длины волны .

Для растворов закон Бугера принимает вид:

где, d – толщина слоя раствора, через который прошел свет,
– коэффициент поглощения, не зависящий от концентрации С и характерный только для молекулы поглощающего вещества.
В таком виде закон поглощения принято называть законом Бугера – Ламберта – Бера.
Оптическая плотность (D) - мера непрозрачности слоя вещества толщиной d для световых лучей; характеризует ослабление оптического излучения в слоях различных веществ (красителях, светофильтрах, растворах, газах и т.п.). Для не отражающего слоя оптическая плотность равна: D = lg I0/I = , где I – интенсивность излучения,прошедшего поглощающую среду; I0 – интенсивность падающего излучения. Оптическая плотность может быть определена и как логарифм величины, обратной коэффициенту пропускания , т.е., D = lg (1/ ).

Коэффициент поглощения и оптическая плотность D связаны соотношением:

Цветные прозрачные тела, красители, растворы обнаруживают селективность (избирательность) поглощения в области видимых лучей, то есть различно поглощают лучи различных длин волн. Например, красными является стекло или раствор, слабо поглощающие красные и оранжевые лучи и сильно поглощающие зеленые и фиолетовые. В общем случае коэффициент зависит от длины волны (или частоты) света. Поглощение велико лишь в области частот, близких к частотам собственных колебаний электронов в атомах. У веществ, атомы (молекулы) которых практически не взаимодействуют (газы и пары металлов при невысоком давлении), коэффициент поглощения для большинства длин волн близок к нулю, и лишь для очень узких областей спектра имеет резкие максимумы (рис.6-3). Эти максимумы соответствуют резонансным частотам колебаний электронов. Газы при высоких давлениях, жидкости и твердые тела дают широкие полосы поглощения (рис.6-4).

Рис.6-3. Зависимость коэффициента поглощения вещества от частоты света для газов и паров металлов при невысоких давлениях.

Рис.6-4. Зависимость коэффициента поглощения вещества от частоты света для жидкостей, твердых тел, а также для газов при высоком давлении.

Гост

ГОСТ

Затухание (поглощение)

Поглощением света называют потери энергии волны при прохождении ее сквозь вещество, в результате преобразования ее энергии в другие формы (внутреннюю энергию, вторичное излучение). Результатом поглощения света является уменьшение интенсивности света.

Поглощение в классической теории дисперсии учитывают, рассматривая некоторую диссипативную силу. Эта сила очень мало искажает собственные колебания электрона за один период, значит, ее можно положить пропорциональной скорости движения электрона ($\frac$). Так, сила сопротивления, действующая на электрон имеет вид:

где $g$ коэффициент, зависящий от природы среды. Соответственно, амплитуда колебаний убывает по закону:

Если колебания затухают слабо, то есть справедливы выражения:

такое затухание, вызванное излучением, называют естественным затуханием. При этом время естественного затухания по энергии $_$, за которое энергия убывает в $e$ раз, будет равно:

Уширение спектральных линий

Затухание приводит к тому, что колебания становятся немонохроматическими. Что в свою очередь ведет к уширению спектральных линий. Так, естественной шириной спектральной линии называют ширину соответствующей линии, которая вызвана затуханием в результате излучения. Для того чтобы найти такую ширину требуется поле излучения:

требуется разложить в интеграл Фурье. В таком случае квадраты коэффициентов полученного разложения определят относительные спектральные плотности излучения $I\left(\omega \right):$

Форма линии спектра изображена на рис.1. Ширину спектральной линии обычно характеризуют расстоянием между точками $AA'$ (рис.1). Эти точки располагаются по разные стороны от центра лини. В них интенсивность света равна половине интенсивности в центре линии. Такое расстояние называют полушириной спектральной линии.

Готовые работы на аналогичную тему


Естественная полуширина спектральной линии равна:

В квантовой физике время излучения связано со временем жизни возбужденного состояния.

Естественное затухание свечения изолированных атомов и уширение линий спектра эмпирически исследовал В. Вин. Он заставлял каналовые лучи, которые состояли из светящихся атомов, проходить сквозь узкое отверстие в область, где поддерживался вакуум. В такой области атомы двигались без столкновений, при этом их свечение затухало, при увеличении расстояния от входа. Так оценивалось время естественного затухания. Средняя скорость движения атомов каналовых лучей измерялась по смещению линий спектра Доплера.

Причины поглощения света

Все, что было сказано ранее, относилось к излучению изолированного атома. В веществе атом не только теряет энергию, излучая, но и получает ее от излучения других атомов. Если среда является полностью оптически однородной, то процесс излучения и процесс поглощения взаимно компенсируют друг друга. Если бы отсутствовали другие причины затухания, то плоская бегущая волна распространялась в веществе без ослабления.

При нарушении оптической однородности вещества (тепловых флуктуаций, посторонних включений в вещество) ситуация изменяется. Потери атомами энергии при излучении ведет к ослаблению волны. Но требуется отметить, что это рассеяние света, а истинное его поглощение. Истинным поглощением света называют процесс, при котором происходит превращение энергии волны света в тепло (другие формы энергии).

Причиной поглощения света считают столкновения атомов друг с другом в процессе их колебаний. Так, в теории уширения линий спектра, которая вызвана столкновениями атомов (молекул) газа, подобное изменение размера спектральных линий называют ударным. Ударное уширение спектральных линий определяют выражением:

где $_\approx \frac$ -- среднее время свободного пробега атома между столкновениями. $N$- количество атомов в единице объема, $\sigma $ - газокинетическое сечение атома, $v$ -- средняя скорость теплового движения атома.

Следующей причиной поглощения света является взаимодействие излучающего атома с силовыми (прежде всего электрическими) полями, которые создают окружающие атомы.

Закон поглощения света

Относительно изменения интенсивности световой волны, которая проходит через вещество и испытывает поглощение, работает закон Бугера:

где $I_0$ -- интенсивность волны света на входе в вещество, $I$ - интенсивность волны света на выходе, $x$ -- толщина слоя вещества, $\alpha $ -- коэффициент поглощения вещества, который связан с длиной волны света, веществом.

Явление поглощения применяют в спектральном анализе смесей газов. Этот прием основан на измерении спектров частот и интенсивностей полос поглощения, так как спектральную структуру при поглощении определяет состав молекул.

Во сколько раз изменится интенсивность света ($\frac$), если толщина слоя вещества, которое он прошел, равна $2x.$ Тогда как если свет в этом же веществе прошел путь $x$, его интенсивность уменьшается в три раза.

Решение:

В качестве основы для решения задачи используем закон Бугера:

Запишем закон (1.1) для случая, когда свет прошел путь $x$, и его интенсивность уменьшилась в три раза:

Возьмем натуральный логарифм от обеих частей выражения (1.3) получим:

Используем результат, полученный в (1.4), запишем интенсивность света на выходе из слоя ($I_2$) заданного вещества, если путь света равен $2x$:

Найдем искомое отношение:

Задание: Почему одной из причин возникновения поглощения света называют столкновения атомов в веществе друг с другом?

Решение:

Атомы, внутри которых идут колебания, совершая тепловое движение, сталкиваются между собой. В результате каждого столкновения резко изменяются амплитуды и фазы гармонических колебаний. В результате этого идет переход энергии колебательных движений в тепло (то есть поглощение света).

Ударные затухания особенно сильно проявляются в плотных газах и при высоких температурах. В обычных условиях столкновения оказывают большее влияние на затухание, чем излучение.

С классической точки зрения процесс рассеяния света заключается в том, что свет, проходя через вещество, возбуждает колебания электронов в атомах. Колеблющиеся электроны становятся источниками вторичных волн. Вторичные волны являются когерентными и поэтому должны интерферировать.

В случае однородной среды вторичные волны гасят друг друга во всех направлениях, кроме направления распространения первичной волны. Поэтому рассеяние света, то есть перераспределение его по разным направлениям, отсутствует. В направлении первичной волны вторичные волны, интерферируя с первичной волной, образуют результирующую волну, фазовая скорость которой отлична от скорости света в вакууме. Этим объясняется дисперсия света.

Основная часть Поглощение света

Поглощением (абсорбцией) света называется явление потери энергии световой волной, проходящей через вещество.

Свет поглощается в тех случаях, когда проходящая волна затрачивает энергию на различные процессы. Среди них: преобразование энергии волны во внутреннюю энергию – при нагревании вещества; затраты энергии на вторичное излучение в другом диапазоне частот (фотолюминесценция); затраты энергии на ионизацию – при фотохимических реакциях и т.п. При поглощении света колебания затухают и амплитуда электрической составляющей уменьшается по мере распространения волны. Для плоской волны, распространяющейся вдоль оси x, имеем


Здесь – амплитудное значение напряженности электрического поля волны в точках с координатой x; – амплитуда в точке с координатой x = 0; t – время, за которое волна распространилась на расстояние, равное x; β – коэффициент затухания колебаний; - коэффициент поглощения, зависящий от химической природы среды и от длины волны проходящего света.

Интенсивность волны будет изменяться по закону Бугера (П. Бугер (1698 – 1758) – французский ученый):


,


где – интенсивность волны на входе в среду.

При , . Следовательно, коэффициент поглощения – физическая величина, численно равная обратному значению толщины слоя вещества, в котором интенсивность волны убывает в е = 2,72 раз.

Зависимость коэффициента поглощения от длины волны определяет спектр поглощения материала. В веществе (например, в газе) может присутствовать несколько сортов частиц, участвующих в колебаниях под действием распространяющейся электромагнитной волны. Если эти частицы слабо взаимодействуют, то коэффициент поглощения мал для широкого спектра частот, и лишь в узких областях он резко возрастает (на рисунке под буквой а).

Эти области соответствуют частотам собственных колебаний оптических электронов в атомах разных видов. Спектр поглощения таких веществ линейчатый и представляет собою темные полосы на радужной окраске спектра, если это видимая область. При увеличении давления газа полосы поглощения уширяются. В жидком состоянии они сливаются, и спектр поглощения принимает вид, показанный на рисунке под буквой б. Причиной уширения является усиление связи атомов (молекул) в среде.


Коэффициент поглощения, зависящий от длины волны λ (или частоты ω), для различных веществ различен. Например, одноатомные газы и пары металлов (т.е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения, и лишь для очень узких спектральных областей (примерно м) наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Коэффициент поглощения для диэлектриков невелик (примерно ), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда α резко возрастает и наблюдаются сравнительно широкие полосы поглощения (примерно м), т.е. диэлектрики имеют сплошной спектр поглощения. Коэффициент поглощения для металлов имеет большие значения (примерно ), и поэтому металлы практически непрозрачны для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.

На рисунке представлена типичная зависимость коэффициента поглощения α от частоты света ν и зависимость показателя преломления n от ν в области полосы поглощения. Из рисунка следует, что внутри полосы поглощения наблюдается аномальная дисперсия (n убывает с увеличением ν). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления.


Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, с помощью наблюдений спектра Солнца был открыт гелий.

Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные в 1814 году И. Фраунгофером.

С помощью спектрального анализа узнали, что звезды состоят из тех же самых элементов, которые имеются и на Земле.

Явление поглощения широко используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется составом и строением молекул, поэтому изучение спектров поглощения является одним из основных методов количественного и качественного исследования веществ.

Выполнил: Рыбачук Д.И.,
студент 2 курса группы Эк(б)-201.

Проверила: Сергеева А.Ю.,
старший преподавателькафедры

Мурманск
2011
Содержание

Введение ………………………………………………………………..…….……3
Глава 1. Поглощение света …………………………………………………. ….4
Глава 2. Рассеяние света ………………………………………………………….8
Глава 2.1. Рассеяние света в атмосфере…………………………..………..…..…9
Выводы…………………………………………………………………………….11
Литературные источники……………………………………………………. 12Введение
Свет — электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом, воспринимаемое человеческим глазом. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра.
В физике свет изучается в разделе Оптика.
Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которойпостоянна, либо как поток фотонов: частиц, обладающих определённой энергией и нулевой массой покоя.
Свет может распространяться там, где звук уже не существует (если смотреть через прозрачный колпак, из-под которого выкачали воздух, то видно, как бьётся молоточек колокольчика под колпаком, а звука не слышно). Значит, световые колебания распространяются в особой среде, эту среду Гюйгенс назвал эфиром(современная наука отрицает существование эфира).
Скорость света в вакууме с = 299 792 458 м/с
Физические величины, связанные со светом: яркость, освещённость, световой поток, световая отдача.
Видимый свет — электромагнитное излучение с длинами волн ≈ 380—760 нм (от фиолетового до красного).


Глава 1. Поглощение света
Поглощение света- это уменьшение интенсивности оптическогоизлучения при прохождении через к--л. среду за счёт взаимодействия с ней, в результате которого световая энергия переходит в др. виды энергии или в оптического излучение др. спектрального состава. Основным законом поглощения света, связывающим интенсивность I пучка света, прошедшего слой поглощающей среды толщиной l с интенсивностью падающего пучка I0, является закон Бугера
[pic]
Не зависящийот интенсивности света коэффициент[pic] называется показателем поглощения, причём[pic] как правило, различен для разных длин волн[pic] Этот закон был экспериментально установлен П. Бугером и впоследствии теоретически выведен И. Ламбертом при очень простых предположениях, что при прохождении любого слоя вещества интенсивность светового потока уменьшается на определённую долю, зависящую только от[pic]и толщины слоя l, т. е. dI/l =[pic]
Решением этого уравнения и является Бугера - Ламберта - Бера закон. Физический смысл его состоит в том, что сам процесс потери фотонов пучка в среде, характеризуемый[pic] не зависит от их плотности в световом пучке, т. е. от интенсивности света, и от толщины поглощающего слоя l. Это справедливо при не слишком больших интенсивностях излучения.Зависимость[pic] от длины волны света[pic] называется спектром поглощения вещества. Спектр поглощения изолированных атомов (напр., разреженные газы) имеет вид узких линий, т. е.[pic] отличен от нуля только в некоторых узких диапазонах длин волн (сотые - тысячные доли нм), соответствующих частотам собственных колебаний электронов внутри атомов. Спектр поглощения молекул, определяемый колебаниями атомов в них, состоит изсущественно более широких областей длин волн (т. н. полосы поглощения, десятые доли - сотни нм). Поглощение твёрдых тел характеризуется, как правило, очень широкими областями (сотни и тысячи нм) с большим значением[pic] ; качественно это объясняется тем, что в конденсированных средах сильное взаимодействие между частицами приводит к быстрой передаче всему коллективу частиц.

Читайте также: