Подготовьте реферат о ракетных двигателях используя справочник

Обновлено: 02.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Темы: Виды реактивных двигателей, физические основы реактивного движения при разных скоростях.

В современной авиации гражданской и военной, в космической технике широкое применение получили реактивные двигатели, в основу создания которых положен принцип получения тяги за счёт силы реакции, возникающей при отбросе от двигателя некоторой массы (рабочего тела), а направление тяги и движения отбрасываемого рабочего тела противоположны. При этом величина тяги пропорциональна произведению массы рабочего тела на скорость её отброса. Так упрощённо можно описать работу реактивного двигателя, а настоящая научная теория наглости современных реактивных двигателей разрабатывалась несколько десятков лет. И в её основе и конструкции реактивных двигателей лежат труды русских учёных и изобретателей, которые в развитии реактивных двигателей и вообще в ракетной техники всегда занимали ведущее место. Конечно, к началу работ по ракетной технике в России относится к 1690г., когда было построено специальное заведение при активном участии Петра 1 для производства пороховых ракет, которые гораздо ранее были использованы в древнем Китае. Тем не менее пороховые ракеты образца 1717г. благодаря своим высоким по тому времени качествам использовались почти без изменения в течение около ста лет. А первые попытки создания авиационного реактивного двигателя следует наверно отнести к 1849 году, когда военный инженер И.М. Третесский предложил для передвижения аэростата использовать силу реактивной струи сжатого газа. В 1881 Кибальчич разработал проект летательного аппарата тяжелее воздуха с реактивным двигателем. Конечно, это были первые попытки использовать силу реактивной струи для летательных аппаратов, а конечно Н.Е.Жуковский, "отец русской авиации", впервые разработавший основные вопросы теории реактивного движения, является по праву основоположником этой теории.

Труды Российских и советских учёных и конструкторов вместе с трудами наших выдающихся соотечественников Н.Е.Жуковского, К.Э.Циолковского, В.В.Уварова, В.П.Мишина и многих других являются основой современной реактивной техники, что позволило создать высокоскоростные истребители типа……, тяжёлые транспортные самолёты типа Руслан, сверхзвуковой лайнер Ту- 144, ракетоноситель Энергия и орбитальную станцию Мир и многое другое, что является нашей славной историей и гордостью России.

I. Физические основы работы реактивного двигателя.

В основе современных мощных реактивных двигателях различных типов лежит принцип прямой реакции, т.е. принцип создания движущей силы (или тяги) в виде реакции (отдачи) струи вытекающего из двигателя "рабочего вещества", обычно - раскалённых газов.

Во всех двигателях существует два процесса преобразования энергии. Сначала химическая энергия топлива преобразуется в тепловую энергию продуктов сгорания, а затем тепловая энергия используется для совершения механической работы. К таким двигателям относятся поршневые двигатели автомобилей, тепловозов, паровые и газовые турбины электростанций и т.д.

Рассмотрим этот процесс применительно к реактивным двигателям. Начнем с камеры сгорания двигателя, в котором тем или иным способом, зависящим от типа двигателя и рода топлива, уже создана горючая смесь. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или, наконец, какое-нибудь твёрдое топливо пороховых ракет. Горючая смесь может сгорать, т.е. вступать в химическую реакцию с бурным выделением энергии в виде тепла. Способность выделять энергию при химической реакции, и есть потенциальная химическая энергия молекул смеси. Химическая энергия молекул связана с особенностями их строения, точнее, строения их электронных оболочек, т.е. того электронного облака, которое окружает ядра атомов, составляющих молекулу. В результате химической реакции, при которой одни молекулы разрушаются, а другие возникают, происходит, естественно, перестройка электронных оболочек. В этой перестройке - источник выделяющейся химической энергии. Видно, что топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много тепла, а также образуют при этом большое количество газов. Все эти процессы происходят в камере сгорания, но остановимся на реакции не на молекулярном уровне (это уже рассмотрели выше), а на "фазах" работы. Пока сгорание не началось, смесь обладает большим запасом потенциальной химической энергии. Но вот пламя охватило смесь, ещё мгновение - и химическая реакция закончена. Теперь уже вместо молекул горючей смеси камеру заполняют молекулы продуктов горения, более плотно "упакованные". Избыток энергии связи, представляющей собой химическую энергию прошедшей реакции сгорания, выделился. Обладающие этой избыточной энергией молекулы почти мгновенно передали её другим молекулам и атомам в результате частых столкновений с ними. Все молекулы и атомы в камере сгорания стали беспорядочно, хаотично двигаться со значительно более высокой скоростью, температура газов возросла. Так произошел переход потенциальной химической энергии топлива в тепловую энергию продуктов сгорания.

Подобных переход осуществлялся и во всех других тепловых двигателях, но реактивные двигатели принципиально отличаются от них в отношении дальнейшей судьбы раскалённых продуктов сгорания.

После того, как в тепловом двигателе образовались горячие газы, заключающие в себя большую тепловую энергию, эта энергия должна быть преобразована в механическую. Ведь двигатели для того и служат, чтобы совершать механическую работу, что-то "двигать", приводить в действие, все равно, будь то динамо-машина на просьба дополнить рисунками электростанции, тепловоз, автомобиль или самолёт.

Чтобы тепловая энергия газов перешла в механическую, их объём должен возрасти. При таком расширении газы и совершают работу, на которую затрачивается их внутренняя и тепловая энергия.

В случае поршневого двигателя расширяющиеся газы давят на поршень, движущийся внутри цилиндра, поршень толкает шатун, а тот уже вращает коленчатый вал двигателя. Вал связывается с ротором динамомашины, ведущими осями тепловоза или автомобиля или же воздушным винтом самолёта - двигатель совершает полезную работу. В паровой машине, или газовой турбине газы, расширяясь, заставляют вращать связанное с валом турбиной колесо - здесь отпадает нужда в передаточном кривошипно-шатунном механизме, в чем заключается одно из больших преимуществ турбины

Расширяются газы, конечно, и в реактивном двигателе, ведь без этого они не совершают работы. Но работа расширения в том случае не затрачивается на вращение вала. Связанного с приводным механизмом, как в других тепловых двигателях. Назначение реактивного двигателя иное - создавать реактивную тягу, а для этого необходимо, чтобы из двигателя вытекала наружу с большой скоростью струя газов - продуктов сгорания: сила реакции этой струи и есть тяга двигателя. Следовательно, работа расширения газообразных продуктов сгорания топлива в двигателе должна быть затрачена на разгон самих же газов. Это значит, что тепловая энергия газов в реактивном двигателе должна быть преобразована в их кинетическую энергию - беспорядочное хаотическое тепловое движение молекул должно замениться организованным их течением в одном, общем для всех направлении.

Для этой цели служит одна из важнейших частей двигателя, так называемое реактивное сопло. К какому бы не все в там правда типу не принадлежал тот или иной реактивный двигатель, он обязательно снабжен соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы - продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например, в ракетных или прямоточных двигателях. В других, турбореактивных, - газы сначала проходят через турбину, которой отдают часть своей тепловой энергии. Она расходует в этом случае для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя - через него текут газы, перед тем как покинуть двигатель.

Реактивное сопло может иметь различные формы, и, тем более, разную конструкцию в зависимости от типа двигателя. Главное заключается в той скорости, с которой газы вытекают из двигателя. Если эта скорость истечения не превосходит скорости, с которой в вытекающих газах распространяются звуковые волны, то сопло представляет собой простой цилиндрический или суживающий отрезок трубы. Если же скорость истечения должна превосходить скорость звука, то соплу придается форма расширяющейся трубы или же сначала суживающейся, а за тем расширяющейся (сопло Лавля). Только в трубе такой формы, как показывает теория и опыт, можно разогнать газ до сверхзвуковых скоростей, перешагнуть через "звуковой барьер".

II. Классификация реактивных двигателей и особенности их использования

Однако этот могучий ствол, принцип прямой реакции, дал жизнь огромной кроне "генеалогического дерева" семьи реактивных двигателей. Чтобы познакомиться с основными ветвями его кроны, венчающей "ствол" прямой реакции. Вскоре, как можно видеть по рисунку (см. ниже), этот ствол делится на две части, как бы расщепленный ударом молнии. Оба новых ствола одинаково украшены могучими кронами. Это деление произошло по тому, что все "химические" реактивные двигатели делятся на два класса в зависимости от того, используют они для своей работы окружающий воздух или нет.

Один из вновь образованных стволов - это класс воздушно-реактивных двигателей (ВРД). Как показывает само название, они не могут работать вне атмосферы. Вот почему эти двигатели - основа современной авиации, как пилотируемой, так и беспилотной. ВРД используют атмосферный кислород для сгорания топлива, без него реакция сгорания в двигателе не пойдет. Но все же в настоящее время наиболее широко применяются турбореактивные двигатели

(ТРД), устанавливаемые почти на всех без исключения современных самолётах. Как и все двигатели, использующие атмосферный воздух, ТРД нуждаются в специальном устройстве для сжатия воздуха перед его подачей в камеру сгорания. Ведь если давление в камере сгорания не будет значительно превышать атмосферное, то газы не станут вытекать из двигателя с большей скоростью - именно давление выталкивает их наружу. Но при малой скорости истечения тяга двигателя будет малой, а топлива двигатель будет расходовать много, такой двигатель не найдёт применения. В ТРД для сжатия воздуха служит компрессор, и конструкция двигателя во многом зависит от типа компрессора. Существует двигатели с осевым и центробежным компрессором, осевые компрессоры могут иметь спасибо за пользование нашей системой меньшее или большее число ступеней сжатия, быть одно-двухкаскадными и т.д. Для приведения во вращение компрессора ТРД имеет газовую турбину, которая и дала название двигателю. Из-за компрессора и турбины конструкция двигателя оказывается весьма сложной.

Значительно проще по конструкции безкомпрессорные воздушно-реактивные двигатели, в которых необходимое повышение давления осуществляется другими способами, которые имеют названия: пульсирующие и прямоточные двигатели.

В пульсирующем двигателе для этого служит обычно клапанная решётка, установленная на входе в двигатель, когда новая порция топливно-воздушной смеси заполняет камеру сгорания и в ней происходит вспышка, клапаны закрываются, изолируя камеру сгорания от входного отверстия двигателя. Вследствие того давление в камере повышается, и газы устремляются через реактивное сопло наружу, после чего весь процесс повторяется.

В бескомпрессорном двигателе другого типа, прямоточном, нет даже и этой клапанной решётки и давление в камере сгорания повышается в результате скоростного напора, т.е. торможения встречного потока воздуха, поступающего в двигатель в полёте. Понятно, что такой двигатель способен работать только тогда, когда летательный аппарат уже летит с достаточно большой скоростью, на стоянке он тяги не разовьет. Но зато при весьма большой скорости, в 4-5 раз большей скорости звука, прямоточный двигатель развивает очень большую тягу и расходует меньше топлива, чем любой другой "химический" реактивный двигатель при этих условиях. Вот почему прямоточные двигатели.

Особенность аэродинамической схемы сверхзвуковых летательных аппаратов с прямоточными воздушно-реактивными двигателями (ПВРД) обусловлена наличием специальных ускорительных двигателей, обеспечивающих скорость движения, необходимую для начала устойчивой работы ПРД. Это утяжеляет хвостовую часть конструкции и для обеспечения необходимой устойчивости требует установки стабилизаторов.

Добавить про пороховые, ядерные и электрические

III.Особенности проектирования и созданиянен н не летательного аппарата.

Рассмотрим реактивного движения при разных скоростях возьмем два типа реактивного движения: дозвуковое и сверхзвуковое. На любой скорости важную роль играет аэродинамика летательного аппарата.

Аэродинамика - наука о движении тел в воздушной среде - является теоретической основной авиации. Без успехов аэродинамики не возможно было бы стремительное развитие авиации, столь характерное для нашего времени. Но успехи аэродинамики были бы немыслимы без проведения экспериментальных работ, в основе которых использование аэродинамических труб, позволяющих производить моделирование полёта летательного аппарата с учётом теории подобия, в результате чего испытуемое изделие закреплялось стационарно, а воздушный поток набегал на него.

Это позволило инженерам решить сложные вопросы аэродинамики крыла, оптимизировать формы фюзеляжа, решить проблемы штопора, флаттера, вопросы преодоления вниз звукового барьера и многие другие, инженерные и научные вопросы теории газодинамики. На лабораторной базе Центрального аэрогидродинамического университета (ЦАГУ) проводились основные исследования, в том числе и реактивных двигателей (вернее их масштабных моделей) при дозвуковом и сверхзвуковом набегающем потоке. Результатами этих работ явились научные труды, позволившие оптимальным образам выбирать характеристики двигателей их компоновку и положение на корпусе фюзеляжа и многое другое. Таким образом, в результате проектных и экспериментальных работ определялся общий вид летательного аппарата.

Но важной особенностью проектных работ являлось выбор двигательной установки, позволившей выполнять изделию заданные технические характеристики. Конечно, на самом деле вопросы выбора двигателя в истории развития авиационной технике шли как бы поэтапно от простого к сложному и соответственно более совершенному, не уменьшая надёжности. Это на современном этапе развития техники мы можем более грамотно (из имеющегося) выбирать компоновку летательного аппарата в соответствии с требуемыми задачами. Поэтому конструктора всегда учитывают особенности двигателей при разных скоростях.

В этих случаях Реактивные двигатели (прямоточные, турбореактивные) используют для своей работы кислород воздуха, поступающий из воздухозаборников, установленных на летательном аппарате.

Размеры воздухозаборных устройств, их число, характер расположения, режимы работы существенно изменяют условия обтекания и аэродинамические свойства летательного аппарата, что в свою очередь влияет на тяговые и экономические характеристики двигателей.

Для обеспечения наименьших потерь полного давления и создания тем самым лучших условий работы двигателей воздухозаборные устройства должны размещаться на летательном аппарате так, чтобы они не затенялись крыльями, оперением и другими впихните свой лицо выступающими частями, т.е. чтобы в зоне входа в воздухозаборное устройство поток испытывал как можно меньшие возмущения

С этой целью нежелательно размещать воздухозаборное устройство вблизи поверхности корпуса на большом удалении от носовой части, если входной канал оказывается в зоне пограничного слоя с достаточно большой толщиной и поступающий воздух будет иметь большие потери полного давления

Вид аэродинамической схемы летательного аппарата с реактивным двигателем зависит от расположения воздухозаборных устройств. При большом удалении воздухозаборника от носовой части летательного аппарата перед входом в него должны быть предусмотрены устройства для отсоса пограничного слоя. Возможно вынесение входного сечения воздухозаборника за пределы пограничного слоя. Всё это предотвращает срыв потока воздуха и улучшает характеристики работы воздухозаборников.

С целью снижения потерь давления воздуха, поступающего в двигатель, и повышения эффективности его работы воздухозаборные устройства вместе с двигателями могут располагаться в виде гондол на крыльях или специальных пилонах. В этом случае для повышения устойчивости и улучшения управляемости предусмотрено хвостовое оперение.

Реактивный двигатель - это машина, которая превращает богатое энергией жидкое топливо в мощную силу толкания, называемую тягой. Тяга от одного или нескольких двигателей толкает самолет вперед, заставляя воздух проходить вдоль крыльев, в результате чего создается восходящая сила, называемая подъемом.

Все реактивные двигатели работают одинаково: втягивают воздух во входное отверстие, сжимают его, сжигают вместе с топливом и выводят выхлопные газы через турбину наружу. Поэтому все реактивные двигатели имеют пять ключевых компонентов: вход, компрессор, камеру сгорания и турбину. Но различные типы двигателей могут значительно отличаться друг от друга. Они могут иметь дополнительные компоненты, управляемые турбиной, входы у них могут работать по-разному, может быть более одной камеры сгорания, два или более компрессоров и несколько турбин.

Турбореактивные двигатели - это базовые реактивные двигатели общего назначения, которые постоянно производят одинаковое количество энергии, поэтому они подходят для небольших малоскоростных реактивных самолетов, которые не должны делать ничего особенно примечательного, например, внезапно ускоряться или перевозить огромные, тяжелые грузы.

Турбовальный двигатель сильно отличается от турбореактивного двигателя, поскольку выхлопной газ производит относительно небольшую тягу. Турбина в турбовальном двигателе передает большую часть мощности на вращение проходящего через нее приводного вала и один или несколько редукторов, которые вращают роторы. Турбовальные двигатели используются на вертолетах, в поездах, танках и лодках.

Современный самолет с пропеллером обычно использует турбовинтовой двигатель. Он похож на турбовальный двигатель в вертолете, но вместо того, чтобы приводить в действие верхний ротор, турбина внутри него вращает пропеллер, установленный спереди, который толкает плоскость вперед. В отличие от турбовального, турбовинтовой двигатель создает прямое движение от выхлопных газов, но большая часть тяги исходит от пропеллера. Поскольку летательные аппараты, управляемые пропеллером, летают медленнее, они тратят меньше энергии на борьбу с сопротивлением воздуха, что делает их очень эффективными для использования в рабочих грузовых самолетах и других небольших легких самолетах.

Гигантские пассажирские самолеты имеют огромные вентиляторы, установленные спереди, которые действуют как сверхэффективные пропеллеры. Вентиляторы работают двумя способами:

  • Немного увеличивают движение воздуха, который течет через центр двигателя, создавая большую тягу с тем же топливом, что делает их более эффективными.
  • Передают часть воздуха на внешнюю оболочку двигателя, полностью обходя внутреннюю часть, вызывая обратный поток воздуха.

Другими словами, турбовентилятор производит тягу частично как турбореактивный двигатель и частично как турбовинтовой. Низкооборотные турбовентиляторы посылают практически весь воздух через сердечник, в то время как обходные направляют больше воздуха вокруг двигателя. Впечатляющая мощность и эффективность делают турбовинтовые двигатели самыми востребованными: от пассажирских самолетов до реактивных истребителей.

Доклад №2

Устройство и роль ракетных двигателей в жизни людей.

Люди начали осваивать космос очень не скоро: не на чем было выбраться за пределы атмосферы Земли. Дело обстояло в том, что не хватало тяги для данной операции. Только в 1961 году удалось впервые полететь в космос. Все благодаря тому, что наконец – то удалось создать такой двигатель, который был способен вынести ракету за пределы орбиты Земли. Но как устроен ракетный двигатель? Что использовали для получения такой огромной мощи? И применяются ли где – нибудь еще подобные двигатели?

Как работает ракетный двигатель?

Создателем ракетного двигателя был А. Циолковский. Один из важных фактов про работу ракетного двигателя – это то, что его действие зависит от закона сохранения импульса. Для тех, кто не знает данный закон, я напомню: сумма импульсов до взаимодействия тел равна сумме импульсов после взаимодействия тел. Кстати говоря, ракетные двигатели работоспособны даже там, где отсутствует воздух. Главный компонент для отличной работы двигателей – это твердое топливо, которое вскоре начинает прогорать. Когда оно сгорит полностью, тогда образуется достаточная масса горючего газа. Весь этот газ образуется в мощную струю, благодаря которой ракета движется в направлении, противоположном направлению газового потока.

Роль ракетных двигателей в жизни людей.

Разновидности ракетных двигателей.

Да, они бывают нескольких видов. Главное их отличие – это источник энергии, он же – топливо для двигателей. Итак, вот эти самые виды:

Самый многочисленный, если подумать. Здесь топливом является реакция определенного горючего и окислителя. Затем всю "смесь" нагревают до высокой температуры, что ведет к расширению топлива, которое следом разгоняют в сопле Лаваля. В итоге, то, что получилось, выталкивает ракету. Стоит отметить, что уже в 2013 году данный вид двигателя улучшили до максимума, а значит, у ракет с химическим двигателем есть свой предел.

Нетрудно догадаться, что в данном случае будет топливом. Импульс электрических двигателей способен достичь отметки 210 километров в час.

Схож с прошлым типом двигателей, только здесь ракета будет ускоряться, когда топливо находится в плазменном состоянии. На данный момент существует только один такой двигатель.

Реактивный двигатель

Армавир - это город, расположенный в Краснодарском крае, на левом берегу реки Кубань. Этот населенный пункт имеет долгую историю. Впервые он упоминается в 1839 году. В это время черкесские армяне основали

Денис Купер - известный американский писатель и художник, родился в богатой купеческой семье в Калифорнии. В очень молодом возрасте Купер познакомился с работами некоторых известных западных

Каждый человек большую часть своей жизни проводит за компьютером и при этом не сразу замечает существенных изменений в состоянии здоровья. Что же происходит с тем, кто сидит за компьютером ежедневно более 6 часов?

Ракетный двигатель – это реактивный двигатель, не использующий для работы окружающую среду (воздух, воду). Наиболее широко применяются химические ракетные двигатели. Разрабатываются и испытываются другие виды ракетных двигателей – электрические, ядерные и другие. На космических станциях и аппаратах широко применяют и простейшие ракетные двигатели, работающие на сжатых газах. Обычно в качестве рабочего тела в них используют азот.

По назначению ракетные двигатели подразделяют на несколько основных видов: разгонные (стартовые), тормозные, маршевые, управляющие и другие. Ракетные двигатели в основном применяются на ракетах (отсюда взято название). Кроме этого ракетные двигатели иногда применяют в авиации. Ракетные двигатели являются основными двигателями в космонавтике.

По виду применяемого топлива (рабочего тела) ракетные двигатели подразделяются на:

Военные (боевые) ракеты обычно имеют твердотопливные двигатели. Это связанно с тем, что такой двигатель заправляется на заводе и не требует обслуживания весь срок хранения и службы самой ракеты. Часто твердотопливные двигатели применяют как разгонные для космических ракет. Особенно широко, в этом качестве, их применяют в США, Франции, Японии и Китае.

Жидкостные ракетные двигатели имеют более высокие тяговые характеристики, чем твердотопливные. Поэтому их применяют для вывода космических ракет на орбиту вокруг Земли и на межпланетные перелёты. Основными жидкими топливами для ракет являются керосин, гептан (диметилгидразин) и жидкий водород. Для таких видов топлива обязательно необходим окислитель (кислород). В качестве окислителя в таких двигателях применяют азотную кислоту и сжиженный кислород. Азотная кислота уступает сжиженному кислороду по окислительным свойствам, но не требует поддержания особого температурного режима при хранении, заправки и использовании ракет.

Двигатели для космических полетов отличаются от земных тем, что они при возможно меньшей массе и объеме должны вырабатывать как можно большую мощность. Кроме того, к ним предъявляются такие требования, как исключительно высокая эффективность и надежность, значительное время работы. По виду используемой энергии двигательные установки космических аппаратов подразделяются на четыре типа: термохимические, ядерные, электрические, солнечно – парусные. Каждый из перечисленных типов имеет свои преимущества и недостатки и может применяться в определенных условиях.

В настоящее время космические корабли, орбитальные станции и беспилотные спутники Земли выводятся в космос ракетами, оснащенными мощными термохимическими двигателями. Существуют также миниатюрные двигатели малой силы тяги. Это уменьшенная копия мощных двигателей. Некоторые из них могут уместиться на ладони. Сила тяги таких двигателей очень мала, но её бывает достаточно, чтобы управлять положением корабля в пространстве.

Известно, что в двигателе внутреннего сгорания, топке парового котла – всюду, где происходит сгорание, самое активное участие принимает атмосферный кислород. В космическом пространстве воздуха нет, а для работы ракетных двигателей в космическом пространстве необходимо иметь два компонента – горючее и окислитель.

В жидкостных термохимических ракетных двигателях в качестве горючего используется спирт, керосин, бензин, анилин, гидразин, диметилгидразин, жидкий водород. В качестве окислителя применяют жидкий кислород, перекись водорода, азотная кислота. Возможно, в будущем будет применяться в качестве окислителя жидкий фтор, когда будут изобретены способы хранения и использования такого активного химического вещества.

Горючее и окислитель для жидкостных реактивных двигателей хранятся раздельно, в специальных баках и с помощью насосов подаются в камеру сгорания. При их соединении в камере сгорания развивается температура до 3000 – 4500 °С.

Продукты сгорания, расширяясь, приобретают скорость от 2500 до 4500 м/с. Отталкиваясь от корпуса двигателя, они создают реактивную тягу. При этом, чем больше масса и скорость истечения газов, тем больше силы тяги двигателя.

Удельную тягу двигателей принято оценивать величиной тяги создаваемой единицей массы топлива сгораемой за одну секунду. Эту величину называют удельным импульсом ракетного двигателя и измеряют в секундах (кг тяги / кг сгоревшего топлива в секунду). Лучшие твердотопливные ракетные двигатели имеют удельный импульс до 190 с., то есть 1 кг топлива сгорающий за одну секунду создает тягу 190 кг. Водородно-кислородный ракетный двигатель имеет удельный импульс 350 с. Теоретически водородно-фторовый двигатель может развить удельный импульс более 400 с.

Обычно применяемая схема жидкостного ракетного двигателя работает следующим образом. Сжатый газ создает необходимый напор в баках с криогенным горючим, для предотвращения возникновения газовых пузырей в трубопроводах. Насосы подают топливо в ракетные двигатели. Топливо впрыскивается в камеру сгорания через большое количество форсунок. Также через форсунки в камеру сгорания впрыскивают и окислитель.

В любой машине при сгорании топлива образуются большие тепловые потоки, нагревающие стенки двигателя. Если не охлаждать стенки камеры, то она быстро прогорит, из какого бы материала она ни была сделана. Жидкостный реактивный двигатель, как правило, охлаждают одним из компонентов топлива. Для этого камеру делают двух стеночной. В зазоре между стенками протекает холодный компонент топлива.

Большую силу тяги создает двигатель, работающий на жидком кислороде и жидком водороде. В реактивной струе этого двигателя газы мчатся со скоростью немногим больше 4 км/с. Температура этой струи около 3000°С, и состоит она из перегретого водяного пара, который образуется при сгорании водорода и кислорода. Основные данные типичных топлив для жидкостных реактивных двигателей приведены в таблице №1

Плотность, кг/м 3

Удельная тяга, с

Удельная теплота сгорания, кДж/кг

Но у кислорода наряду с достоинствами есть и один недостаток – при нормальной температуре он представляет собой газ. Понятно, что применять в ракете газообразный кислород нельзя ведь в этом случае пришлось бы его хранить под большим давлением в массивных баллонах. Поэтому уже Циолковский, первым предложивший кислород в качестве компонента ракетного топлива, говорил о жидком кислороде как о компоненте без которого космические полеты не будут возможны.

Использование наиболее сильного из всех известных химии окислителей – фтора позволит существенно увеличить эффективность жидкостных реактивных двигателей. Однако жидкий фтор очень неудобен в эксплуатации и хранении из-за ядовитости и низкой температуры кипения (-188°С). Но это не останавливает ученых-ракетчиков: экспериментальные двигатели на фторе уже существуют и испытываются в лабораториях и на экспериментальных стендах.

Хотя в предлагаемом описании пока преобладают жидкостные ракетные двигатели, нужно сказать, что первым в истории человечества был создан термохимический ракетный двигатель на твердом топливе – РДТТ.

Топливо – например специальный порох – находится непосредственно в камере сгорания. Камера сгорания с реактивным соплом, заполненная твердым топливом – вот и вся конструкция. Режим сгорания твердого топлива зависит от предназначения РДТТ (стартовый, маршевый или комбинированный). Для твердотопливных ракет применяемых в военном деле характерно наличие стартового и маршевого двигателей. Стартовый РДТТ развивает большую тягу на очень короткое время, что необходимо для схода ракеты с пусковой установки и её первоначального разгона. Маршевый РДТТ предназначен для поддержания постоянной скорости полета ракеты на основном (маршевом) участке траектории полета. Различия между ними заключаются в основном в конструкции камеры сгорания и профиле поверхности горения топливного заряда, которые определяют скорость горения топлива от которой зависит время работы и тяга двигателя. В отличие от таких ракет космические ракеты-носители для запуска спутников Земли, орбитальных станций и космических кораблей, а также межпланетных станций работают только в стартовом режиме со старта ракеты до вывода объекта на орбиту вокруг Земли или на межпланетную траекторию.

В целом твердотопливные ракетные двигатели на имеют много преимуществ перед двигателями на жидком топливе: они просты в изготовлении, длительное время могут храниться, всегда готовы к действию, относительно взрывобезопасны. Но по удельной тяге твердотопливные двигатели на 10-30% уступают жидкостным.

У ядерных ракетных двигателей отпадает необходимость в окислителе и поэтому может быть использована только одна жидкость.

В качестве рабочего тела целесообразно применять вещества, позволяющие двигателю развивать большую силу тяги. Этому условию наиболее полно удовлетворяет водород, затем следует аммиак, гидразин и вода.

Процессы, при которых выделяется ядерная энергия, подразделяют на радиоактивные превращения, реакции деления тяжелых ядер, реакцию синтеза легких ядер.

Радиоизотопные превращения реализуются в так называемых изотопных источниках энергии. Удельная массовая энергия (энергия, которую может выделить вещество массой 1кг) искусственных радиоактивных изотопов значительно выше, чем химических топлив. Так, для 210 Ро она равна 5*10 8 КДж/кг, в то время как для наиболее энергопроизводительного химического топлива (бериллий с кислородом) это значение не превышает 3*10 4 КДж/кг.

К сожалению, подобные двигатели применять на космических ракетах-носителях пока не рационально. Причина этого – высокая стоимость изотопного вещества и трудности эксплуатации. Ведь изотоп выделяет энергию постоянно, даже при его транспортировке в специальном контейнере и при стоянке ракеты на старте.

В простейшей схеме ядерного ракетного двигателя с реактором, работающим на твердом ядерном горючем рабочее тело размещено в баке. Насос подает его в камеру двигателя. Распыляясь с помощью форсунок, рабочее тело вступает в контакт с тепловыделяющим ядерным горючим, нагревается, расширяется и с большой скоростью выбрасывается через сопло наружу.

Ядерное горючее по запасу энергии превосходит любой другой вид топлива. Тогда возникает закономерный вопрос – почему же установки на этом горючем имеют все-таки сравнительно небольшую удельную тягу и большую массу? Дело в том, что удельная тяга твердофазного ядерного ракетного двигателя ограничена температурой делящегося вещества, а энергетическая установка при работе испускает сильное ионизирующее излучение, оказывающее вредное действие на живые организмы. Биологическая защита от таких излучений имеет большой вес не применима на космических летательных аппаратах.

Существуют и более экзотические проекты ядерных ракетных двигателей, в которых делящееся вещество находится в жидком, газообразном или даже плазменном состоянии, однако реализация подобных конструкций на современном уровне техники и технологий нереальна.

Существуют, пока на стадии теоретической или лабораторной следующие проекты ракетных двигателей:

- импульсные ядерные ракетные двигатели использующие энергию взрывов небольших ядерных зарядов;

- термоядерные ракетные двигатели, в которых в качестве топлива может использоваться изотоп водорода. Энергопроизводительность водорода в такой реакции составляет 6,8*10 11 КДж/кг, то есть примерно на два порядка выше производительности ядерных реакций деления;

- солнечно-парусные двигатели – в которых используется давление солнечного света (солнечный ветер), существование которого опытным путем доказал русский физик П.Н. Лебедев еще в 1899 году. Расчетным путем ученые установили, что аппарат массой в 1 т, снабженный парусом диаметром 500 м, может долететь от Земли до Марса примерно за 300 суток. Однако эффективность солнечного паруса быстро уменьшается с удалением от Солнца.

Почти все рассмотренные выше ракетные двигатели, развивают огромную силу тяги и предназначены для вывода космических аппаратов на орбиту вокруг Земли и разгона их до космических скоростей для межпланетных полетов. Совсем другое дело – двигательные установки для уже выведенных на орбиту или на межпланетную траекторию космических аппаратов. Здесь, как правило, нужны двигатели малой мощности (несколько киловатт или даже ватт) способные работать сотни и тысячи часов и многократно включаться и выключаться. Они позволяют поддерживать полет на орбите или по заданной траектории, компенсируя сопротивление полету создаваемое верхними слоями атмосферы и солнечным ветром.

В электрических ракетных двигателях разгон рабочего тела до определенной скорости производится нагреванием его электрической энергией. Электроэнергия поступает от солнечных батарей или атомной электростанции. Способы нагревания рабочего тела различны, но реально применяется в основном электродуговой. Он показал себя очень надежным и выдерживает большое количество включений. В качестве рабочего тела в электродуговых двигателя применяют водород. С помощью электрической дуги водород нагревается до очень высокой температуры и он превращается в плазму - электрически нейтральную смесь положительных ионов и электронов. Скорость истечения плазмы из двигателя достигает 20 км/с. Когда ученые решат проблему магнитной изоляции плазмы от стенок камеры двигателя, тогда можно будет значительно повысить температуру плазмы и довести скорость истечения до 100 км/с.

Первый электрический ракетный двигатель был разработан в Советском Союзе в 1929-1933 гг. под руководством В.П. Глушко (впоследствии он стал создателем двигателей для советских космических ракет и академиком) в знаменитой газодинамической лаборатории (ГДЛ).

Понятие, основные характеристики и классы реактивных двигателей. Понятие и расчет коэффициента полезного действия. Первые представления о реактивном движении, создание первых двигателей. Применение реактивных двигателей и их влияние на экологию.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 19.04.2010
Размер файла 22,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МОУ Кубинская сош №2 имени Героя Советского Союза Безбородова В.П.

Введение

1. Что такое реактивный двигатель?

2. Коэффициент полезного действия

3. История возникновения реактивных двигателей

А)Первые представления о реактивном движении

Б)Создание первых реактивных двигателей

В)Дальнейшее развитее реактивных двигателей

4. Практическое применение реактивных двигателей

В нашей повседневной жизни мы часто сталкиваемся с реактивным движением. Реактивные двигатели приводят в движение самолеты, космические корабли и даже автомобили. Даже шарик, который, спускаясь, беспорядочно движется, совершает реактивное движение, и в своем роде является реактивным двигателем. Но едва ли многие нас осознают природу и причины этого движения. Нас заинтересовала эта тема и мы решили разобраться с этой проблемой. Мы рассмотрели, что представляет из себя реактивный двигатель, изучили историю его возникновения и практическое применения реактивных двигателей в наши дни.

1. Что такое реактивный двигатель?

Реактивный двигатель - двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела; в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в Р. д. могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная). Р. д. (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги, используемой Р. д., необходимы: источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи; рабочее тело, которое в виде реактивной струи выбрасывается из Р. д.; сам Р. д. - преобразователь энергии. Исходная энергия запасается на борту летательного или др. аппарата, оснащенного Р. д. (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца). Для получения рабочего тела в Р. д. может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере Р. д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата. В современных Р. д. в качестве первичной чаще всего используется химическая энергия. В этом случае рабочее тело представляет собой раскалённые газы - продукты сгорания химического топлива. При работе Р. д. химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель. Основной частью любого Р. д. является камера сгорания, в которой генерируется рабочее тело. Конечная часть камеры, служащая для ускорения рабочего тела и получения реактивной струи, называется реактивным соплом.

В зависимости от того, используется или нет при работе Р. д. окружающая среда, их подразделяют на 2 основных класса - воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД - тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а большую часть рабочего тела черпает из окружающей среды. В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащенного РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД единственно пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Основные характеристики Р. д.: реактивная тяга, удельный импульс - отношение тяги двигателя к массе ракетного топлива (рабочего тела), расходуемого в 1 сек, или идентичная характеристика - удельный расход топлива (количество топлива, расходуемого за 1 сек на 1 н развиваемой Р. д. тяги), удельная масса двигателя (масса Р. д. в рабочем состоянии, приходящаяся на единицу развиваемой им тяги).

Для многих типов Р. д. важными характеристиками являются габариты и ресурс.

Тяга - сила, с которой Р. д. воздействует на аппарат, оснащенный этим Р. д., - определяетсяпо формуле

где m - массовый расход (расход массы) рабочего тела за 1 сек; Wc - скорость рабочего тела в сечении сопла; Fc - площадь выходного сечения сопла; pc - давление газов в сечении сопла; pn - давление окружающей среды (обычно атмосферное давление). Как видно из формулы, тяга Р. д. зависит от давления окружающей среды. Она больше всего в пустоте и меньше всего в наиболее плотных слоях атмосферы, т. е. изменяется в зависимости от высоты полёта аппарата, оснащенного Р. д., над уровнем моря, если речь идёт о полёте в атмосфере Земли. Удельный импульс Р. д. прямо пропорционален скорости истечения рабочего тела из сопла. Скорость же истечения увеличивается с ростом температуры истекающего рабочего тела и уменьшением молекулярной массы топлива (чем меньше молекулярная масса топлива, тем больше объём газов, образующихся при его сгорании, и, следовательно, скорость их истечения).

Тяга существующих Р. д. колеблется в очень широких пределах - от долей гс у электрических до сотен тс у жидкостных и твёрдотопливных ракетных двигателей. Р. д. малой тяги применяются главным образом в системах стабилизации и управления летательных аппаратов. В космосе, где силы тяготения ощущаются слабо и практически нет среды, сопротивление которой приходилось бы преодолевать, они могут использоваться и для разгона. РД с максимальной тягой необходимы для запуска ракет на большие дальность и высоту и особенно для вывода летательных аппаратов в космос, т. е. для разгона их до первой космической скорости. Такие двигатели потребляют очень большое количество топлива; они работают обычно очень короткое время, разгоняя ракеты до заданной скорости. Максимальная тяга ВРД достигает 28 тс (1974). Эти Р. д., использующие в качестве основного компонента рабочего тела окружающий воздух, значительно экономичнее. ВРД могут работать непрерывно в течение многих часов, что делает их удобными для использования в авиации. Историю и перспективы развития отдельных видов Р. д. и лит. см. в статьях об этих двигателях.

2. Коэффициент полезного действия

Коэффициент полезного действия (кпд>), характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно

В электрических -- отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника; в тепловых -- отношение полезной механической работы к затрачиваемому количеству теплоты; в электрических трансформаторах -- отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой. Для вычисления разные виды энергии и механическая работа выражаются в одинаковых единицах на основе механического эквивалента теплоты, и др. аналогичных соотношений. В силу своей общности понятие позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и , теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т. д.

Из-за неизбежных потерь энергии на трение, на нагревание окружающих тел и т. п. всегда меньше единицы. Соответственно этому выражается в долях затрачиваемой энергии, т. е. в виде правильной дроби или в процентах, и является безразмерной величиной. тепловых электростанций достигает 35--40%, внутреннего сгорания -- 40--50%, динамомашин и генераторов большой мощности--95%, трансформаторов--98%. процесса фотосинтеза составляет обычно 6--8%, у хлореллы он достигает 20--25%. У тепловых в силу второго начала термодинамики имеет верхний предел, определяемый особенностями термодинамического цикла (кругового процесса), который совершает рабочее вещество. Наибольшим обладает Карно цикл.

Различают отдельного элемента (ступени) машины или устройства и , характеризующий всю цепь преобразований энергии в системе. первого типа в соответствии с характером преобразования энергии может быть механическим, термическим и т. д. Ко второму типу относятся общий, экономический, технический и др. виды . Общий системы равен произведению частных , или ступеней.

В технической литературе иногда определяют т. о., что он может оказаться больше единицы. Подобная ситуация возникает, если определять отношением

может оказаться больше единицы.

3. История возникновения реактивных двигателей

А)Первые представления о реактивном движении

Данное устройство представляло собой бронзовый котел, установленный на опоры. От крышки котла вверх поднимались две трубки, на которых крепилась сфера. Трубки соединялись со сферой таким образом, что она могла свободно вращаться в месте соединения. При этом по этим трубка в сферу мог поступать пар из котла. Из сферы выходили две трубки изогнутые так, что пар, выходивший из них, вращал сферу.

Принцип работы устройства был прост. Под котлом разводили огонь, и когда вода начинала кипеть, пар через трубки поступал в сферу, откуда под давлением вырывался наружу, раскручивая сферу.

Принято считать, что Эолипил в древней Греции использовался только с целью развлечения. Фактически, Эолипил являлся первой известной нам паровой турбиной.

После этого история развития реактивных двигателей остановилась на несколько сотен лет.

Несмотря на несколько попыток создания реактивного двигателя в XIX веке, по-настоящему это удалось лишь в XX веке.

Б)Создание первых реактивных двигателей

В 1903 К. Э. Циолковский в работе "Исследование мировых пространств реактивными приборами" впервые в мире выдвинул основные положения теории жидкостных ракетных двигателей и предложил основные элементы устройства РД на жидком топливе. Первые советские жидкостные ракетные двигатели - ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П.

В 1908 году Рене Лорин запатентовал воздушно-реактивный двигатель (ВРД). Лорин опубликовал свои разработки в 1913 году, но не смог завершить начатое, так и не построив своё изобретение из-за невозможности достижения скорости, необходимой для надлежащего функционирования.

Глушко и под его руководством созданы в 1930-31 в Газодинамической лаборатории (ГДЛ). В 1926 Р. Годдард произвёл запуск ракеты на жидком топливе. Впервые электротермический РД был создан и испытан Глушко в ГДЛ в 1929-33.

В 1939 в СССР состоялись испытания ракет с прямоточными воздушно-реактивными двигателями конструкции И. А. Меркулова. Первая схема турбореактивного двигателя? была предложена русским инженером Н. Герасимовым в 1909.

В 1939 на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Испытаниям созданного двигателя помешала Великая Отечественная война 1941-45. В 1941 впервые был установлен на самолёт и испытан турбореактивный двигатель конструкции Ф. Уиттла (Великобритания). Большое значение для создания Р. д. имели теоретические работы русских учёных С. С. Неждановского, И. В. Мещерского, Н. Е. Жуковского, труды французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. Важным вкладом в создание ВРД была работа советского учёного Б. С. Стечкина "Теория воздушно-реактивного двигателя", опубликованная в 1929.

Первый турбиновинтовой самолет Jendrassik CS-1 был изобретен Венгерским инженер-механиком Джорджем Яндрессиком (Gyцrgy Jendrassik). Он был изготовлен и испытан на заводе Ганц в Будапеште в период с 1938 по 1942 год.

В)Дальнейшее развитее реактивных двигателей

Во второй половине XX века началась активная разработка реактивных двигателей. В 1947 году американским пилотом Чарльзом Йегером на экспериментальном самолете Bell X-1 был преодолен звуковой барьер.

По другую сторону железного занавеса работа так же шла полным ходом. Результаты её были грандиозными - 4 октября 1957 года под руководством главного конструктора Королева С.П. был запущен первый искусственный спутник Земли, а через 4 года человек впервые оказался в космосе. В настоящее время реактивные двигатели широко используются в космической промышленности и в авиации, как в военной, так и в пассажирской.

4. Практическое применение реактивных двигателей

Р. д. имеют различное назначение и область их применения постоянно расширяется. Наиболее широко Р. д. используются на летательных аппаратах различных типов.

Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Эти Р. д. пригодны для полётов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолётов. Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939-45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

5. Окружающая среда

Тепловые двигатели (в том числе и реактивный) - необходимый атрибут современной цивилизации. С их помощью вырабатывается ? 80% электроэнергии. Без тепловых двигателей невозможно представить современный транспорт. В тоже время повсеместное использование тепловых двигателей связано с отрицательным воздействием на окружающую среду.

Сжигание топлива сопровождается выделением в атмосферу углекислого газа, способного поглощать тепловое инфракрасное (ИК) излучение поверхности Земли. Рост концентрации углекислого газа в атмосфере, увеличивая поглощение ИК - излучения, приводит к повышению её температуры (парниковый эффект). Ежегодно температура атмосферы Земли повышается на 0,05 єС. Этот эффект может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана.

Продукты сгорания топлива существенно загрязняют окружающую среду.

Углеводороды, вступая в реакцию с озоном, находящимся в атмосфере, образуют химические соединения, неблагоприятно воздействующие на жизнедеятельность растений, животных и человека.

Потребление кислорода при горении топлива уменьшает его содержание в атмосфере.

Для охраны окружающей среды широко использует очистные сооружения, препятствующие выбросу в атмосферу вредных веществ, резко ограничивают использование соединений тяжелых металлов, добавляемых в топливо, разрабатывают

Двигатели, использующие водород в качестве горючего ( выхлопные газы состоят из безвредных паров воды), создают электромобили и автомобили, использующие солнечную энергию.

Таким образом, мы узнали принцип работы реактивного двигателя. Узнали о истории его создания, которая уходит корнями в античность и продолжается по наши дни. Рассмотрели случаи практического применения реактивных двигателей и их последствия. Без реактивных двигателей невозможно представить современную авиацию и освоение космоса.

Подобные документы

Коэффициент полезного действия теплового двигателя. Основные элементы конструкции и функции газовой турбины. Поршневые двигатели внутреннего сгорания, их классификация. Два основных класса реактивных двигателей и характеризующие их технические параметры.

презентация [3,5 M], добавлен 24.10.2016

Марки реактивных топлив США и России. Различные марки реактивных топлив для реактивных двигателей самолетов. Основные требования к физико-химическим свойствам реактивных топлив, присадкам. Получение и перспективы производства реактивных топлив в России.

реферат [1,7 M], добавлен 21.03.2013

История создания тепловых двигателей и общий принцип их действия. Виды тепловых двигателей: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Использование современных альтернативных источников энергии.

презентация [1,3 M], добавлен 23.02.2011

Термодинамические циклы поршневых двигателей внутреннего сгорания. Прямые газовые изохорные и изобарные циклы неполного расширения. Термодинамические циклы газотурбинных установок и реактивных двигателей. Процессы, происходящие в поршневых компрессорах.

реферат [1,5 M], добавлен 01.02.2012

Регулирование частоты вращения двигателей постоянного тока посредством изменения потока возбуждения. Максимально-токовая защита электропривода. Скоростные характеристики двигателя. Схемы силовых цепей двигателей постоянного тока и асинхронных двигателей.

курсовая работа [2,5 M], добавлен 30.03.2014

Описание устройства и принципа действия двигателей постоянного тока. Коэффициент полезного действия, рабочие и механические характеристики. Анализ основных качеств: пусковой, тормозной и перегрузочный момент, быстродействие и регулируемость вращения.

реферат [166,2 K], добавлен 11.12.2010

Изобретение первого парового двигателя Томасом Ньюкоменом. Использование в первых паровозах и машинах. Эволюция в индустриальную эпоху. Двигатели внутреннего сгорания. Увеличение среднего количества полезного действия. Самый сильный двигатель в мире.

Читайте также: