Первые сведения об электричестве и магнетизме реферат

Обновлено: 17.05.2024

В старину электрические явления в виде молнии и грома вызывали людей жуткий страх. Позднее мы научились использовать электричество для своих нужд. А магнетизм, некогда не более чем диковинное явление, сегодня играет одну из важнейших ролей в гигантских генераторах, обеспечивающих нас энергией.

Некоторые ткани сильно электризуются, когда пошитую из них одежду снимают через голову. Иногда заряд бывает настолько мощный, что можно услышать треск электрических искр, а в темном помещении - даже увидеть их. Эти искры представляют собой молнию в миниатюре и, подобно последней, возникают в результате резкого электрического разряда. Во время грозы наэлектризованное облако разряжается, при этом выделяется огромное количество энергии в виде света и тепла. Свет воспринимается нами как вспышки молнии, а тепловой поток вызывает внезапное, взрывоподобное расширение окружающего воздуха - и мы слышим раскаты грома. Все окружающие нас объекты содержат миллионы электрических зарядов, состоящих из частиц, находящихся внутри атомов - основы всей материи. Центральная часть, или ядро, большинства атомов включает два вида частиц: нейтроны и протоны. Нейтроны не имеют электрического заряда, в то время как протоны несут в себе положительный заряд. Вокруг ядра вращаются еще одни частицы - электроны, имеющие отрицательный заряд. Как правило, каждый атом имеет одинаковое количество протонов и электронов, чьи равные по величине, но противоположные заряды уравновешивают друг друга. В результате мы не ощущаем никакого заряда, а вещество считается незаряженным. Однако, если мы каким-либо образом нарушим это равновесие, то данный объект будет обладать общим положительным или отрицательным зарядом в зависимости от того, каких частиц в нем останется больше - протонов или электронов.

Электричество и трение

Различные материалы иногда электризуются при трении друг о друга, поскольку при этом происходит переход электронов из одного материала в другой. Например, если вы пользуетесь пластмассовой расческой, электроны волос переходят на нее. В результате расческа оказывается отрицательно заряженной, а волосы имеют положительный заряд, так как теперь в них больше протонов, чем электронов. Заряженные объекты притягивают незаряженные, и поэтому к расческе пристают небольшие кусочки бумаги.

Притяжение и отталкивание

Заряженные объекты либо притягивают, либо отталкивают друг друга. Если они имеют противоположные заряды, то между ними действует сила притяжения. Но если у них одноименные заряды, то тогда имеет место сила отталкивания.

Считается, что объект, наэлектризованный за счет трения, обладает статическим электричеством, поскольку заряд может оставаться внутри него почти бесконечно. Такой объект останется заряженным до тех пор, пока в нем не будет восстановлен баланс положительных и отрицательных частиц. Это достигается путем предоставления возможности "перетекания" заряженных частиц из данного объекта или в него. Например, объект, получивший отрицательный заряд ввиду передачи ему дополнительного количества электронов можно разрядить, если позволить лишним электронам вновь покинуть его. А положительно заряженный объект в результате потери некоторого количества электронов можно разрядить, дав возможность недостающим электронам вернуться назад. Любое подобное движение заряженных частиц называется электрическим током.

Вещества, позволяющие току проходить через них, называются проводниками. Металлы и графит, а также обычная разновидность углерода являются хорошими проводниками электричества. К материалам, которые обычно не проводят электричество, относятся янтарь, нефть, воск, стекло, бумага и пластмасса. Такие материалы называются диэлектриками.

В XVIII веке многие ученые проводили опыты с электричеством, используя машины, обеспечивающие трение одного материала о другой для получения мощного электрического заряда. Однако такой заряд быстро исчезал в результате внезапного выброса тока при подсоединении проводника к оборудованию. Гораздо более пригодным для многих опытов был бы источник, способный производить достаточно стабильный ток в течение более длительного периода времени. В 1790-е годы итальянский ученый Алессандро Вольта нашел нужное решение - он изобрел гальванический элемент и батарею.

Элементы и цепи

Гальванический элемент преобразует химическую энергию в электричество. Эти элементы часто соединяют друг с другом или группируют для получения более мощного источника электроэнергии в точках подключения, или полюсах. Такие соединения называются батареи. Однако единичные элементы также часто именуют батареями. Цепь состоит из источника электричества (такого как батарея) и пути тока, по которому ток может протекать от одного полюса источника к другому. Электроток представляет собой поток электронов; его можно сравнить с потоком воды, движущимся по трубе. Чтобы заставить воду течь по трубе, необходимо создать давление, то же самое нужно сделать с электронами, чтобы заставить их протекать, но проводу. Такое электрическое давление, или напряжение, создаваемое, например, батареей, измеряется в вольтах, а образуемый при этом ток - в амперах. Поток воды, получаемый при определенном давлении, зависит от вида используемой трубы. Например, длинная и узкая труба будет оказывать сопротивление потоку воды внутри нее. А длинный и тонкий провод будет оказывать большее сопротивление электротоку, чем короткий и толстый провод из того же материала.

Единицей измерения электрического сопротивления является Ом. Поскольку медь имеет относительно низкое сопротивление и, следовательно, является хорошим проводником электричества, она широко применяется в кабелях. Еще лучшим проводником является серебро, но оно слишком дорогостояще для широкого применения. В некоторых цепях используются элементы, которые намеренно изготовлены с высоким сопротивлением. Такие устройства - резисторы - часто используются для ограничения протекания тока на отдельных участках электронных схем.

Считается, что греческий философ Фалес Милетский первым изучал странное притяжение магнитным железняком обычного железа. Это происходило около 600 года до н. э., и прошли века, прежде чем магнетизм нашел практическое применение в виде магнитного компаса. Вероятно, в Китае приблизительно к 200 году н. э. уже имелся несовершенный образец магнитного компаса, однако в Европе он появился не ранее 1200 г .

На протяжении многих столетий никто не мог разгадать тайну, почему кусок природного магнитного железняка (если он мог свободно перемещаться) всегда указывал одно и то же направление. Сегодня нам известно, что железо и другие магнитные материалы состоят из крошечных намагниченных частиц, называемых доменами. Обычно они располагаются в различных направлениях, а металл не проявляет в целом никаких магнитных свойств. Если же домены выстраиваются таким образом, что все они направлены в одну сторону, то металл намагничивается и притягивает другие куски железа.

Все магниты такого рода имеют одну общую черту: их намагниченность сконцентрирована на двух участках, которые называются северный и южный полюсы магнита. Они получили такое название в связи с тем, что, когда магнит может свободно вращаться (в подвешенном или плавучем состоянии), эти части магнита поворачиваются в направлении Северного и Южного полюсов Земли, которая сама по себе является гигантским магнитом. В этом заключается принцип действия магнитного компаса. Оба полюса магнита притягивают не намагниченное железо. Но если приблизить два магнита, северный полюс одного из них будет притягивать южный полюс другого. Другими словами, разноименные полюса притягиваются. И наоборот - два северных полюса будут отталкивать друг друга так же, как и два южных. Поэтому говорят, что одноименные полюса взаимно отталкиваются. В таком случае, однако, может показаться странным, что северный полюс магнита склонен поворачиваться в сторону Северного полюса Земли. Это происходит потому, что магнитный север (магнитный полюс вблизи области, которую мы называем Северным полюсом) фактически является южным магнитным полюсом.

Между электричеством и магнетизмом существует тесная связь, но об этом стало известно лишь в 1819 году, когда датский профессор физики Ханс Эрстед продемонстрировал своим студентам некоторые свойства электричества.

Эрстед подсоединил провод к полюсам батареи, чтобы показать, что он нагревается при прохождении через него сильного электрического тока. Однако произошло нечто совершенно неожиданное. Когда он подсоединил провод к батарее, стрелка находившегося рядом компаса отклонилась и больше не указывала на север. Эрстед понял, что проходящий через провод электроток создавал магнетизм, воздействующий на компас. Так он открыл одно из важнейших явлений в науке - электромагнетизм.

Ток, проходящий через провод, создает относительно слабый магнетизм. Но вскоре ученые нашли способ усиления этого явления. Более выраженные магнитные свойства можно было получить, сделав проволочную обмотку в форме катушки и намотав ее вокруг железного стержня. Такое устройство называется электромагнитом.

Двигатели и генераторы

Если провод, находящийся вблизи постоянного магнита, подсоединить к батарее, он может переместиться под действием создаваемого магнетизма. В 1821 г . английский ученый Майкл Фарадей построил простую машину, в которой токонесущий провод двигался вокруг постоянного магнита.

Эрстед показал, что электричество может создавать магнетизм, а Фарадей сообразил, что можно использовать магнетизм для получения электричества. Он впервые продемонстрировал это в 1831 г ., когда получил электричество, перемещая стержневой магнит внутри проволочной катушки. Он также показал, что результат остается неизменным независимо от того, двигался ли магнит или катушка. Этот принцип применяется в современных генераторах, снабжающих электроэнергией наши дома, магазины, офисы и заводы.

Самые первые сведения об электричестве и магнетизме были известны еще в древности, и на протяжении всей истории развития человеческой мысли это учение претерпело большие изменения. Лишь в восемнадцатом веке появились первые достоверные факты. И начался бурный этап развития электричества. Гильберт описал явление магнитной индукции, способы намагничивания железа, стали и т.д. Книга Гильберта явилась первым научным исследованием магнитных явлений. В 1729 г. англичанин Грей открыл явление электропроводности. Он установил, что электричество способно передаваться от одних тел другим по металлической проволоке. По шелковой нити электричество не распространялось. В середине XVIII в. появляются уже более содержательные теории электрических явлений.

Содержание работы

Введение
Оглавление……………………………………………………………………………… 1
Первые сведения об электричестве и магнетизме……………………………………..2
Первые успехи в исследовании магнитных явлений в средние века………………. 2
Развитие учения об электричестве в XVII и XVIII вв.
до изобретения лейденской банки……………………………………………………. 3
Изобретение лейденской банки и первые электрические приборы………………….4
Первые теории электричества………………………………………………………….6
История открытия закона Кулона…………………………………………………….. 8
Введение понятия потенциалов в электростатику…………………………………. 10
РАЗВИТИЕ ЭЛЕКТРОДИНАМИКИ.
История изобретения гальванического элемента…………………………………….12
Открытие электромагнетизма…………………………………………………………15
Открытие электромагнитной индукции………………………………………………17
Начало развития электротехники……………………………………………………. 18
Заключение……………………………………………………………………………. 21
Список использованной литературы………………………………………………. 22

Содержимое работы - 1 файл

Первые сведения об электричестве и магнетизме.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ТАТАРСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНО-ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКОГО ОБРАЗОВАНИЯ

КАФЕДРА ФИЗИЧЕСКОЙ ГЕОГРАФИИ И ГЕОЭКОЛОГИИ

ПЕРВЫЕ СВЕДЕНИЯ ОБ ЭЛЕКТРИЧЕСТВЕ И МАГНЕТИЗМЕ

Подготовила: студентка ФЕГО

Сергеева Татьяна Александровна

Хакимов Эдвард Муратович

Самые первые сведения об электричестве и магнетизме были известны еще в древности, и на протяжении всей истории развития человеческой мысли это учение претерпело большие изменения. Лишь в восемнадцатом веке появились первые достоверные факты. И начался бурный этап развития электричества. Гильберт описал явление магнитной индукции, способы намагничивания железа, стали и т.д. Книга Гильберта явилась первым научным исследованием магнитных явлений. В 1729 г. англичанин Грей открыл явление электропроводности. Он установил, что электричество способно передаваться от одних тел другим по металлической проволоке. По шелковой нити электричество не распространялось. В середине XVIII в. появляются уже более содержательные теории электрических явлений.

Великие умы пытались разгадать загадку их происхождения и удивительных свойств. Могу смело сказать, их усилия на сегодняшний день оценены по достоинству. Наши глубокие познания в области электрических и магнитных явлений тому факт.

Начиная работать над своим рефератом, я поставила цель изучить тему как можно шире, на основе доступных источников и материалов. В ходе выполнения работы в список поставленных мною задач входило поиск и описание открытий и изобретений, сделанных в данной области целой плеядой ученых, которые рассмотрены ниже.

  1. Оглавление…………………………………………………… ………………………… 1
  2. Первые сведения об электричестве и магнетизме……………………………………..2
  3. Первые успехи в исследовании магнитных явлений в средние века………………. 2
  4. Развитие учения об электричестве в XVII и XVIII вв.

до изобретения лейденской банки……………………………………………………. 3

  1. Изобретение лейденской банки и первые электрические приборы………………….4
  2. Первые теории электричества…………………………………………… …………….6
  3. История открытия закона Кулона…………………………………………………….. 8
  4. Введение понятия потенциалов в электростатику…………………………………. 10
  5. РАЗВИТИЕ ЭЛЕКТРОДИНАМИКИ.

История изобретения гальванического элемента…………………………………….12

  1. Открытие электромагнетизма………………………………… ………………………15
  2. Открытие электромагнитной индукции………………………………………………17
  3. Начало развития электротехники………………………………………… …………. 18
  4. Заключение…………………………………………………… ………………………. 21
  5. Список использованной литературы……………………………………………….. .22

Первые сведения об электричестве и магнетизме.

Изучение электрических и магнитных явлений по- настоящему начинается только в XVIII в. Но первые сведения об этих явлениях были известны уже древним.

Древние греки знали свойство натертого янтаря притягивать мелкие предметы. Само слово "электричество" происходит от греческого слова "электрон", что значит по-русски янтарь.

Древние греки знали также, что существует особый минерал - железная руда (магнитный железняк), способный притягивать железные предметы.3алежи этого минерала находились возле города Магнесии. Название этого города послужило источником термина "магнит".

Древние не исследовали ни электрических, ни магнитных явлений. Однако они попытались дать объяснение этим явлениям.

Самое первое объяснение свойств магнита притягивать железо заключалось в том, что магниту приписывалась "душа", которая заставляла магнит притягивать железо или притягиваться к железу.

При этом магнит представляли подобно живому существу. Живое существо, например собака, видит кусок мяса и стремится к нему приблизиться. Подобно этому магнит как бы видит железо и стремится к нему притянуться.

Это объяснение весьма примитивно с нашей точки зрения. Однако такого рода объяснения, когда предметы неживой природы одушевлялись, были характерными для древних, которые верили в существование целого ряда богов, духов и т. д.

Но в древности начала развиваться и материалистическая философия. Философы-материалисты Древней Греции отвергали существование духов и пытались объяснить все явления природы естественными законами.

Они учили, что все тела состоят из мелких материальных неделимых частиц - атомов. По их мнению, кроме атомов и пустоты, в которой атомы движутся, ничего не существует. Все явления природы объясняются движением атомов. Само слово "атом" греческого происхождения. Оно означает "неделимый".

Философы, верившие в существование атомов, из которых состоит природа, получили название атомистов. Одним из родоначальников этой философии был древнегреческий философ Демокрит (460 - 370 до н.э.). Философы-атомисты пытались дать объяснение электрическим и магнитным явлениям без обращения к специальным "душам" и "духам".

Первые успехи в исследовании магнитных явлений в средние века.

В средние века изучение магнитных явлений приобретает практическое значение. Это происходит в связи с изобретением компаса.

Уже в XII в. в Европе стал известен компас как прибор, с помощью которого можно определить направление на части света. О компасе европейцы узнали от арабов, которым было уже к этому времени известно свойство магнитной стрелки. Еще раньше, вероятно, такое свойство знали в Китае.

Начиная с XII в. компас все шире применялся в морских путешествиях (для определения курса корабля в открытом море).

Практическое применение магнитных явлений приводило к необходимости их изучения. Постепенно выяснялся целый ряд свойств магнитов.

В 1600 г. вышла книга английского ученого У.Гильберта "О магните, магнитных телах и большом магните - Земле". В ней автор описал уже известные свойства магнита, а также собственные открытия.

Еще раньше узнали, что магнит всегда имеет два полюса. Они были названы по имени частей света - северный полюс и южный полюс. В числе свойств магнита Гильберт указывал на то, что одинаковые полюсы отталкиваются, а разноименные притягиваются.

Гильберт предполагал, что Земля представляет собой большой магнит. Чтобы подтвердить это предположение, Гильберт проделал специальный опыт. Он выточил из естественного магнита большой шар. Приближая к поверхности шара магнитную стрелку, он показал, что она всегда устанавливается в определенном положении, так же как стрелка компаса на 3емле.

Гильберт описал явление магнитной индукции, способы намагничивания железа и стали и т.д. Книга Гильберта явилась первым научным исследованием магнитных явлений.

Развитие учения об электричестве в XVII и XVIII вв. до изобретения лейденской банки.

В своей книге Гильберт коснулся и электрических явлений. Нужно отметить, что хотя в то время магнетизм и электричество рассматривались как явления разной природы, тем не менее, очень давно ученые заметили в них много общего. Поэтому не случайно во многих работах исследовались одновременно и магнитные и электрические явления. В частности, изучение магнетизма вызвало интерес к исследованию электрических явлений.

Так было и у Гильберта. Изучая магнитные явления, что, как мы говорили, имело практический интерес, он уделил внимание и электричеству, хотя оно в то время в практике не использовалось.

Гильберт открыл, что наэлектризовать можно не только янтарь, но и алмаз, горный хрусталь и ряд других минералов. В отличие от магнита, который способен притягивать только железо (других магнитных материалов в то время не знали), наэлектризованное тело притягивает многие тела.[ист. 1]

Новый шаг к изучению электрических явлений был сделан немецким ученым Герике. В 1672 г. вышла его книга, в которой были описаны опыты по электричеству. Наиболее интересным достижением Герике было изобретение им "электрической машины". "Электрическая машина" представляла собой шар, сделанный из серы и посаженный на железный шест. Герике вращал этот шар и натирал его ладонью руки. Впоследствии ученый несколько раз усовершенствовал свою "машину".

Несмотря на простоту прибора, Герике смог с его помощью сделать некоторые открытия. Так, он обнаружил, что легкие тела могут не только притягиваться к наэлектризованному шару, но и отталкиваться от него.

В XVIII в. изучение электрических явлений пошло быстрее. В первой половине этого столетия были открыты новые факты.

В 1729 г. англичанин Грей открыл явление электропроводности. Он установил, что электричество способно передаваться от одних тел другим по металлической проволоке. По шелковой нити электричество не распространялось. В связи с этим Грей разделил все тела на проводники и непроводники электричества.

3атем французский ученый Дюфе спустя пять лет выяснил, что существует два рода электричества. Один вид электричества получается при натирании стекла, горного хрусталя, шерсти и некоторых других тел. Это электричество Дюфе назвал стеклянным

Второй вид электричества получается при натирании янтаря, шелка, бумаги и других веществ. Этот вид электричества Дюфе назвал смоляным. Ученый установил, что тела, наэлектризованные одним видом электричества, отталкиваются, а разными видами, -

Впоследствии стеклянное электричество было названо положительным, а смоляное - отрицательным. Это название предложил американский ученый и общественный деятель Франклин. При этом он исходил из своих взглядов на природу электричества.[ист. 4]

Изобретение лейденской банки и первые электрические приборы.

Очень важным шагом в развитии учения об электричестве было изобретение лейденской банки, т. е. электрического конденсатора.

Лейденская банка была изобретена почти одновременно немецким физиком Клейстом и голландским физиком Мушенбруком в 1745-1746гг. Свое название она получила по имени города Лейдена, где Мушенбрук впервые проделал с ней опыты по изучению электрических явлений.

Мушенбрук так описывал свое изобретение в письме к французскому ученому Реомюру: "Хочу сообщить Вам новый, но ужасный опыт, который не советую повторять. Я занимался изучением электрической силы. Для этого я подвесил на двух шелковых голубых нитях железный ствол, получающий электричество от стеклянного шара, который быстро вращался вокруг оси и натирался руками. На другом конце висела медная проволока, конец которой был погружен в стеклянный круглый сосуд, заполненный наполовину водой, который я держал в правой руке; левой же рукой я пытался извлекать из электрического ствола искру. Вдруг моя правая рука была поражена ударом с такой силой, что все тело содрогнулось, как от удара молнии.

Несмотря на то что сосуд, сделанный из тонкого стекла, не разбивается и кисть руки обычно не смещается при таком потрясении, тем не менее локоть и все тело поражаются столь страшным образом, что я не могу выразить словами, я думал, что пришел конец".

Вскоре лейденская банка была усовершенствована: внешнюю и

внутреннюю поверхность стеклянного сосуда стали обклеивать металлической фольгой. В крышку банки вставляли металлический стержень, который сверху заканчивался металлическим шариком, а нижний конец стержня при помощи металлической цепочки соединялся с внутренней обкладкой.

Лейденская банка является обычным конденсатором. Когда внешнюю обкладку ее заземляют, а металлический шарик соединяют с источником электричества, то на обкладках банки скапливается значительный электрический заряд и при ее разряде может протекать значительный ток. Получение больших зарядов с помощь лейденской банки значительно способствовало развитию учения об электричестве.

Прежде всего усовершенствовалась аппаратура для исследования электрических явлений, в частности электрические маслины. Это были, как и первая машина Герике, такие устройства, в которых электрический заряд получался в результате натирания стеклянного или эбонитового диска кожей или другими подобными материалами.

На протяжении всей летописи население земли в той либо другой мере наблюдало проявления Электра явлений. Поначалу наверное была молния, коия наводила на людей кошмар и ей причисляли священное возникновение. Дальше в древние эпохи в древней Греции были раскрыты электрические характеристики янтаря. В Средние века почти все эксперты изучили характеристики магнитов, была открыта лейденская банка – 1-ый конденсатор электрической энергии.
Инновационная жизнь немыслима в отсутствии радио и TV, телефонных аппаратов и телеграфа, различных осветительных и нагревательных устройств, автомашин и приборов, в базе каких лежит вероятность применения электрического тока. На протяжении всей летописи населения земли происходило формирование Электра энергии, и изменялись представления человека о природе электрического тока, его свойствах. Разрешено отметить некоторое количество таковых шагов становления преставлений о природе электро энергии: древний шаг, средние века по открытия лейденской банки и после, шаг развития передовых воззрений о электричестве.
Целью работы имеется обсуждение шагов становления преставлений населения земли об электричестве и магнетизме со старейших пор и по нашего времени.

Зарегистрируйся, чтобы продолжить изучение работы

На протяжении всей летописи население земли в той либо другой мере наблюдало проявления Электра явлений. Поначалу наверное была молния, коия наводила на людей кошмар и ей причисляли священное возникновение. Дальше в древние эпохи в древней Греции были раскрыты электрические характеристики янтаря. В Средние века почти все эксперты изучили характеристики магнитов, была открыта лейденская банка – 1-ый конденсатор электрической энергии.
Инновационная жизнь немыслима в отсутствии радио и TV, телефонных аппаратов и телеграфа, различных осветительных и нагревательных устройств, автомашин и приборов, в базе каких лежит вероятность применения электрического тока. На протяжении всей летописи населения земли происходило формирование Электра энергии, и изменялись представления человека о природе электрического тока, его свойствах. Разрешено отметить некоторое количество таковых шагов становления преставлений о природе электро энергии: древний шаг, средние века по открытия лейденской банки и после, шаг развития передовых воззрений о электричестве.
Целью работы имеется обсуждение шагов становления преставлений населения земли об электричестве и магнетизме со старейших пор и по нашего времени.


Бог проявил щедрость,
когда подарил миру такого человека.

Светлане Плачковой посвящается

Издание посвящается жене, другу и соратнику, автору идеи, инициатору и организатору написания этих книг Светлане Григорьевне Плачковой, что явилось её последним вкладом в свою любимую отрасль – энергетику.

Книга 2. Познание и опыт - путь к современной энергетике

5.1. Первые сведения об электричестве трения и магнетизме

Начальные знания об электризации трением и магнитных свойствах относятся к глубокой древности. К примеру, известный египтолог Бругш Паша предполагал, что в египетских храмах существовали… молниеотводы! Они представляли собой высокие деревянные мачты с металлической обшивкой. Такие же шесты, только сделанные из железа, были известны древним индусам.

Также бывает, что попеременно порода железа
Может от камня отскакивать или к нему привлекаться.
Также и то наблюдал я, как прыгают в медном сосуде
Самофракийские кольца железные или опилки
В случае, если под этим сосудом есть камень магнитный.

Первые достоверно известные упоминания об электрических и магнитных явлениях связаны с именем выдающегося английского физика и врача, лейб-медика королевы Елизаветы Уильяма Гильберта.


Фалес Милетский (ок. 625 – ок. 547 гг. до н.э.) – древнегреческий мыслитель, родоначальник античной философии и науки, основатель милетской школы. Он происходил из знатного рода. Побуждаемый жаждой знаний, он много путешествовал по разным странам, в том числе предпринял путешествие в Египет, где познакомился с астрономическими, математическими и механическими познаниями египтян. Был всесторонним ученым и мыслителем, изобрел несколько астрономических приборов, удачно предсказал солнечное затмение 585 года до н.э. Известно, что ему были знакомы сила притяжения магнитов и электрические свойства янтаря, обретаемые им при трении. Он создал стройное философское учение, касающееся вопросов мироздания. В области науки ему принадлежит заслуга определения времени солнцестояний, равноденствий, установления продолжительности года в 365 дней, открытие факта движения Солнца по отношению к звездам. Он также имеет заслуги в области математики.


Уильям Гильберт (1544–1603) родился на юго-востоке Англии в городе Кольчестере, образование получил сначала в Кембридже, затем в Оксфорде. Гильберт в 1560-х годах успешно занимается врачебной практикой. Заинтересовавшись целебными свойствами магнитов, о которых узнал в рукописях древних и современных ему авторов, Гильберт приступил к фундаментальному изучению магнитных и электрических явлений, воспроизвел и проверил достоверность описанных опытов, поставил ряд собственных оригинальных экспериментов. Исследованиям магнетизма и электричества Уильям Гильберт посвятил 18 лет своей жизни, поставил свыше 600 опытов (все это делая в свободное от основной работы время) и в обеих этих областях сделал выдающиеся открытия.

Известно также, что во время своих морских путешествий знаменитый Колумб сделал ряд научных открытий, среди которых наибольшее значение имеют его наблюдения над земным магнетизмом и компасом. Он определил величину магнитного отклонения стрелки компаса и заметил, что для различных точек земной поверхности она различна. Впервые это было констатировано 13 сентября 1492 года.

Природа электрических явлений оставалась долго сокрытой от человеческого исследования. Причина этого, может быть, заключается в том, что мы открываем данные явления только по сопровождающему их механическому, световому или тепловому действию.

В будущем дальнейшее изучение явления электризации трением показало, что оно вызывается электрическими зарядами, которые есть в любом веществе, так как электрически заряженные частицы являются составными частями атомов всех веществ. Но с того времени, как Гильберт показал, что трением можно привести в электрическое состояние очень большое число тел, расцветавшее тогда естествоиспытание с рвением взялось за дальнейшее исследование.

Магдебургский бургомистр и физик Отто фон Герике придумал и соорудил первое устройство для получения статического электричества.


Стеклянный шар он заливал серой, а затем отбиванием удалял стекло. Получившийся шар из серы он снабжал деревянной осью с подшипниками. С помощью шнурка шар мог быть приведен в быстрое вращение. При трении шара о приложенную к нему руку между ним и свободно подвешенным перед ним металлическим стержнем проскакивали маленькие искорки. Стержень являлся проводником (кондуктором) и мог отдавать свой заряд руке или другим близко находящимся предметам. Первая электрическая машина трения Отто фон Герике и иллюстрация действия притягивающей силы электричества показаны на рис. 5.1.

Характерной чертой конца XVII и начала XVIII веков стало то, что исследование электрических и магнитных явлений занимает ведущее место. Эти исследования проявились в огромном числе опытов, которые, казалось, не имели никакой связи между собой, но из которых постепен


Отто фон Герике (1602–1686) – немецкий ученый, дипломат, бургомистр – по окончании Магдебургского училища изучал науки в университетах Лейпцига, Хельмштадта, Иены, Лейдена, увлекался правом, физикой, прикладной математикой, механикой, фортификацией, изучал явление вакуума, изобрел вакуумную откачку и осуществил известный эксперимент с магдебургскими полушариями. Также он занимался исследованиями в области электричества, обнаружил явление взаимного отталкивания двух наэлектризованных тел. но возникает знание законов электричества и магнетизма, в конце концов применяющееся на практике и достигающее своего кульминационного момента в беспримерном развитии современной электротехники. Внимание ученых в начале XVIII века было направлено на изучение различных атмосферных явлений, связанных с электричеством и магнетизмом. Так, в 1716 году английский астроном и геофизик Эдмунд Галлей (1656–1742) обнаружил, что появившееся в этом году северное сияние, видимое почти на всем континенте, отклонилось от точки севера почти настолько, насколько отклоняется магнитная стрелка. В этом он увидел связь явления северного сияния с земным магнетизмом.

Рис. Первый опыт с лейденской банкой

Электрические явления, по Гильберту, коренным образом отличаются от магнитных.

В сочинении Гильберта много интересных наблюдений и догадок, смешанных с фантастическими объяснениями в духе средневековых алхимиков. Но главное значение его труда в том, что он положил твердое основание изучению электрических и магнитных явлений и на этом основании началось интенсивное развитие этого важного раздела науки и техники.

Электричество и Ньютон

Электрическими опытами занимался и Ньютон, который наблюдал электрическую пляску кусочков бумаги, помещенных под стеклом, положенным на металлическое кольцо. При натирании стекла бумажки притягивались к нему, затем отскакивали, вновь притягивались и т. д. Эти опыты Ньютон производил еще в 1675 г.

Г. В. Рихман

Рис. Г. В. Рихман

Эксперименты по электричеству проводили и другие члены Лондонского Королевского общества. Бойль, повторив опыты Герике с шаром, установил, что наэлектризованное тело не только притягивает не наэлектризованное, но и, в свою очередь, притягивается последним. Он показал, что электрические взаимодействия наблюдаются и в вакууме.

В 1700 г. доктор Уолл извлек из натертого большого куска янтаря электрическую искру, проскочившую с треском в палеи руки экспериментатора. Электрическую искру получил в 1705 г. Хауксби, заменивший серный шар Ге рике стеклянным.

Опыты Грея, опубликованные в 1731 и 1732 гг., обратили на себя внимание французского естествоиспытателя Шарля Дюфэ (1698—1739), создавшего первую теорию электрических явлений. Повторяя опыты Грея по электризации изолированного человеческого тела, он сам ложился на шелковые шнурки, и его электризовали настолько сильно, что из тела при приближении руки другого человека выскакивали искры.

Первый проект электрического указателя

Рис. Первый проект электрического указателя. Рисунки Рихмана

Этот закон был опубликован Дюфэ в Мемуарах Парижской Академии наук за 1733 г.

Новые открытия в области электричества и усовершенствование электрических машин, получивших кондуктор, подушки для натирания и, наконец, сенсационное изобретение лейденской банки в 1745—1746 гг., возбудили в обществе большой интерес к электричеству.

Электрические опыты проводились в светских салонах и королевских дворцах, на заседаниях ученых обществ и в частных домах. За Европой последовали Америка и Россия. Франклин, Рихман, Ломоносов, Эпинус внесли существенный вклад в науку об электричестве.

Рихман и опыты с электричеством

Георг Вильгельм Рихман родился 11 июля 1711 г. в г. Пярну (тогда Пернове) в Эстонии. Рихман учился в германских университетах в Галле и Иене, а с 1735 г. в университете Петербургской Академии наук. В 1740 г. он становится адъюнктом, а в следующем, 1741 г.— профессором академии.

Расположение приборов в электрических опытах Рихмана

Рис. Расположение приборов в электрических опытах Рихмана

На эту чашку я положил 30 гранов; поскольку равновесие было нарушено, коромысло с указанной стороны наклонилось и дно другой чашки удалилось на 1 дюйм от железной подставки. Когда проволока СДВ и весь аппарат были наэлектризованы, железная чашка тянула книзу и ударялась о подставку, слышался треск и одновременно был виден свет между подставкой В и чашкой весов.

«Я придумал и другой способ сравнивать электрические силы. К железной проволоке СВ, отводящей электричество, я подвесил льняную нитку DE, затем на расстоянии 492 лондонских линий я укрепил шелковую голубую нитку, параллельную горизонту, а в g поместил тяжелое тело. Шелковую нитку Eg я разделил на десятые доли лондонского фута, обозначив точки деления льняными нитками.

Электрометры Рихмана

Установка состояла из электрической машины Гравезанда. От электризуемого шара машины электричество отводилось железной проволокой к железной подставке, помещенной на смоле, заполнившей конический сосуд. Подставка сообщалась с электрическим указателем, состоящим из вертикальной железной линейки, к верхнему концу которой прикреплялась льняная нить определенной длины и веса.

К столу, на котором находился сосуд со смолой, прикреплялся деревянный квадрант с делениями, образующий шкалу указателя. Нить немного не доходила до шкалы. К другому концу железной подставки присоединялась также железная линейка, от которой электричество могло передаваться различным телам.

Электрический указатель, применявшийся при исследовании грозы. Рисунок Рихмана

Рис. Электрический указатель, применявшийся при исследовании грозы. Рисунок Рихмана

«Восемь лет назад,— пишет Рихман в 1753 г.,— я приступил… к исследованию электрических явлений. Совершенный электрометр, т. е. инструмент для определения электрической силы, вне всякого сомнения, может сильно способствовать развитию электрической теории. Вот почему с самого начала я сразу же стал размышлять об удобном способе определять интенсивность электрической силы.

Для создания такого инструмента потребовалось более ста лет. Электрометры были созданы во второй половине XIX столетия.

В этой же работе Рихман описывает оба типа своих приборов и основные опыты, произведенные с ними, в том числе и опыты с электричеством грозы, приведшие к трагической гибели ученого 26 июля 1753 г. Его классическая работа, о которой мы здесь говорили, была опубликована в 1758 г., спустя пять лет после смерти ученого.

В своей работе Рихман упоминает Франк лина и его теорию положительного и отрицательного электричества. Обратимся к исследованиям этого ученого.

Франклин в изучении магнетизма

Основоположник американской науки Веньямин (Бенджамин) Франклин родился в семье бостонского мыловара 17 января 1706 г. Отец его, бедный ремесленник, обремененный большой семьей (Веньямин был пятнадцатым ребенком), выехал в Америку из Англии в поисках лучшей жизни. Веньямину рано пришлось начать трудовую жизнь, сначала помогая отцу, а затем брату, владевшему небольшой типографией.

Работая в типографии, Франклин много читал и занимался самообразованием. Когда его брат начал издавать газету, Франклин стал пробовать свои силы в журналистике, тайно подбросив написанную им статью. Статья была опубликована, за нею появились другие, привлекшие внимание общественности.

Раскрытие авторства Франклина привело к ухудшению его отношений с братом. Веньямин расторг контракт с ним и уехал в поисках работы в Нью-Йорк, а оттуда в Филадельфию. Трудолюбие и терпение привели Франклина после долгих лет лишений к успеху. Он достиг независимого и обеспеченного положения в Филадельфии, стал одним из уважаемых сограждан, крупным общественным деятелем.

Его избрали секретарем Собрания провинции Пенсильвания, он становится директором почт и в дальнейшем генерал-почтмейстером американских колоний. Наряду с этим он развернул широкую просветительскую деятельность, орга низовал в Филадельфии библиотеку, основал Пенсильванский университет, Филадельфийское философское общество.

Б. Франклин

Рис. Б. Франклин

Большую роль сыграл Франклин в борьбе за независимость американских колоний (1775—1783). Он принимал участие в работе континентального конгресса и созданного им комитета по выработке декларации независимости.

Посланный новым государством во Францию в качестве посла, он сумел добиться поддержки Франции в борьбе с Англией. Это существенно повлияло на исход борьбы. В 1783 г. Франклин вместе с двумя другими уполномоченными конгресса Соединенных Штатов Северной Америки (так было названо новое государство) подписал мирный договор с Англией.

Франклин принимал активное участие в выработке конституции Соединенных Штатов, горячо боролся против порабощения негров, за демократические принципы управления государством. Умер Франклин 17 апреля 1790 г.

Таким образом, Франклин был одним из основателей Соединенных Штатов Америки, одним из создателей нового государства. Он был также основателем науки этого государства, учредителем одного из первых университетов, первого научного общества — Филадельфийского философского общества. Он внес своими трудами большой вклад в американскую и мировую науку. Среди этих трудов первое место занимают его исследования по электричеству.

Теория Франклина

К 1749 г. теория электричества Франклина была завершена. В письме Коллинсону от 29 июля 1750 г. он так формулирует ее основные положения.

Франклин показывает, что электрическая атмосфера обволакивает шар равномерно, с остриев ее легче отобрать, чем с граней. Он демонстрирует стенание электричества с острия на различных опытах. Заметим, что это свойство острия и углов было еще раньше открыто и исследовано Рихманом.

Существенно, что в теории Франклина электричество является субстанцией, которую нельзя создать или уничтожить, а можно только перераспределить. Закон сохранения электрического заряда — основное положение теории Франклина, предшественницы электронной теории.

Франклин высказал также гипотезу, что молния представляет собой разряд наэлектризованных туч. Он произвел знаменитый опыт с воздушным змеем, запуская его при приближении грозовых туч. К верхнему концу вертикальной планки крестовины змея он прикреплял заостренную проволоку. К концу бечевки привязывал ключ и шелковую ленту, которую держал рукой. «Как только грозовая туча окажется над змеем, заостренная проволока станет извлекать из нее электрический огонь и змей вместе с бечевой наэлектризуется…

Опыты Франклина и его идея громоотвода вызвали широкий резонанс. Их повторяли в Европе. Жан Далибар (1703—1779) во Франции, установив на подставке из электрика (т. е. изолятора) в саду железный заостренный шест высотой 40 футов, извлекал из него искры во время грозы. Аналогичные наблюдения проводили Ломоносов и Рихман в Петербурге. Как мы уже знаем, во время наблюдений грозы 26 июля 1753 г. Рихман был убит молнией.

Об этом сообщал в своей посмертно опубликованной статье и сам Ломоносов. Рихман и Ломоносов не приняли теории Франклина. Ломоносов разрабатывал свою теорию электрических явлений, в которой сделал попытку объяснить электричество движением частиц эфира. Сопоставляя это с идеей Рихмана об электрическом поле, можно констатировать, что если Франклин предвосхитил будущую электронную теорию, то петербургские академики предвосхитили будущую теорию поля Фарадея—Максвелла.

В основу своей теории Эпинус кладет представление об электрической и магнитной жидкостях, частицы которых взаимодействуют с материей и между собой притягательными и отталкивательными силами. Следуя примеру Ньютона, Эпинус не рассматривает природу этих сил, а описывает с помощью их экспериментальные факты.

Эпинус исследовал экспериментально электрическую индукцию в проводниках и изоляторах, при этом он установил, что в изоляторах она выражена слабее, чем в проводниках. Таким образом, Эпинус по сути дела открыл поляризацию диэлектриков.

Опыт Кавендиша

Опыт Кавендиша заключался в следующем. Шар диаметром 12,1 дюйма, покрытый оловянной бумагой (станиолем), помещался внутри другого шара 13,3 дюйма в диаметре, так чтобы он был изолирован от наружного шара. Наружный шар состоял из двух полушарий, также покрытых станиолем, которые можно было раздвигать.

Через небольшое отверстие в наружном шаре можно было устанавливать проводящий контакт между ним и внутренним шаром с помощью проволочки, привязанной к шелковине. В начале опыта, когда полушария сближены и установлен проводящий контакт, наружную сферу заряжают от лейденской банки. Затем с помощью шелковинки контактную проволоку удаляют, раздвигают наружные полушария и исследуют электризацию внутреннего шара.

Электроскоп не обнаружил заряда этого шара. Кавендиш исследовал чувствительность электроскопа и показал, что он мог бы обнаружить заряд внутреннего шара, равный 1 /60 заряда внешней сферы. Отсюда Кавендиш вывел, что сила взаимодействия электрических частиц убывает с расстоянием по закону r -n , где n отличается от двух не более чем на 1 /50.

Генри Кавендиш

Одинокий, чудаковатый джентльмен, он неохотно публиковал свои работы, и в частности свои электрические исследования. Они оставались неизвестными до 1879 г., когда их опубликовал Максвелл, первый профессор лаборатории Кавендиша, открытой на средства потомка Генри Кавендиша в Кембридже в 1873 г.

Максвелл повторил опыты Кавендиша с электрометром Томсона и показал, что п может отличаться от 2 не более чем на 1/21600.

Крутильные весы Кулона

Рис. Крутильные весы Кулона

Французский военный инженер, а с 1781 г. член Парижской Академии наук Шарль Огюстен Кулон (1736—1806), в 1777 г. исследовал кручение волос, шелковых и металлических нитей. Результатом этих исследований явилось открытие закона кручения:

φ = C((Pl)/r n )

где φ — угол кручения, Р — закручивающая сила, l — длина нити, r — ее радиус.

В 1784 г. Кулон сконструировал чувствительный прибор — крутильные весы. С по мощью этих весов он открыл законы электрических и магнитных взаимодействий. Его опы ты и выводы из них опубликованы им в 1782— 1785 гг. в семи мемуарах. Аппарат Кулона представлял собой стеклянный цилиндр, имеющий на окружности измерительную шкалу, в крышке цилиндра имеются центральное и боковое отверстия.

В центральное отверстие пропущена серебряная нить, закрепленная на измерительной головке и проходящая по оси высокого стеклянного цилиндра, заканчивающегося упомянутой головкой. Нить несет легкое стеклянное коромысло, заканчивающееся шариком и противовесом. В боковое отверстие пропускается стерженек, несущий наэлектризованный шарик.

В первом мемуаре 1785 г. Кулон исследует отталкивающую силу и находит, что при угловых расстояниях между шариками (которые первоначально при контакте получают одинаковые заряды) 36°, 18°, 9° нить закручивалась соответственно на 36°, 144° и 576°, т. е. силы росли обратно пропорционально квадратам расстояний.

Во втором мемуаре Кулон нашел закон взаимодействия магнитных полюсов.

Существенным моментом в работе Кулона было установление метода измерения количества электричества и количества магнетизма (магнитных масс). В научной системе единиц законы Кулона дают основную базу системы электрических и магнитных единиц. После Кулона стало возможным построение математической теории электрических и магнитных явлений.

Статья на тему История электричества и магнетизма

Похожие страницы:

Луиджи Гальвани Родился в Болонье 9 сентября 1737 г. Он изучал сначала богословие, а затем медицину, физиологию и анатомию. В 1762 г. он был.

Минерал франклинит — (Zn, Mn)Fe2O4 Назван по месторождению Франклин-Фернес (Нью Джерси, США). Химический состав: ZnO — 17,25%; МnО — 15,04%; Fe2O3 —.

БИОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В ВОЗБУДИМЫХ ТКАНЯХ Возникновение и распространение возбуждения сопровождаются электрическими явлениями в тканях. Открытие электрических явлений в возбудимых тканях.

История физики Возникновение физики Античная наука Возникновение атомистики Аристотель Атомистика в после Аристотелевскую эпоху Архимед Наука средневекового востока Европейская средневековая.

ПРЕОБРАЗОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В ТЕПЛОВУЮ Электрический ток представляет собой направленное движение электрических частиц. При столкновении движу­щихся частиц с ионами или.

ЭЛЕКТРИЧЕСКАЯ ИЗОЛЯЦИЯ Всякая электрическая цепь должна иметь не только токопровод, т. е. путь, по которому проходит электрический ток, но и.

Читайте также: