Первичные источники электропитания реферат

Обновлено: 30.06.2024

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Реферат по теме : “Первичные источники питания”.

ТЕРМОЯДЕРНАЯ ЭНЕРГИЯ

Мы привычно говорим о термоядерном синтезе, как о перспективном источнике энергии. Но вот вопрос: не слишком ли долго он останется всего лишь “перспективным”? Ведь сложилась парадоксальная ситуация: на энергии деления ядер урана уже давно работают атомные электростанции, тогда как управляемый синтез лёгких ядер не даёт положительного баланса энергии. Между тем последний процесс открыли на четыре года раньше, чем первый: в 1934 году в лаборатории Э. Резерфорда был проведён синтез ядер дейтерия с получением трития. А уже через несколько лет теоретики нашли подходящие ядерные процессы, объясняющие механизм “горения” звёзд, который так долго был неразрешимой загадкой. Значит, роль термоядерной реакции, как возможного источника огромных количеств энергии, была осознана давно. Какие же трудности стояли и стоят на пути к овладению этим источником?

Появление новой энергии.

Главная причина устойчивости звёздных термоядерных реакций — громадные размеры реакторов, да и времена циклов реакций исчисляются миллионами лет. Как же в наших ограниченных масштабах сотворить подобное?

В 1945 году на далёком Сахалине у учащегося вечерней средней школы Олега Лаврентьева блеснула дерзновенная идея, которая сулила создание искусственного земного солнца. Как писал сам Олег Александрович, он “сформулировал принцип тепловой изоляции электрическим полем полностью ионизированного газа с целью промышленной утилизации термоядерных реакций” и не долго думая направил предложение прямо в адрес И.В.Сталина. Письмо осталось без ответа, но повторное предложение в ЦК ВКП(б) сработало мгновенно. В 1954 году эта идея, оказавшаяся весьма плодотворной, была воплощена в Институте атомной энергии (ИЭА). Появилась первая исследовательская термоядерная установка токомак. Впоследствии А.Д.Сахаров, уже академик, засвидетельствовал: “Подтверждаю, что в июне или июле 1950 г. я рецензировал работу О.А.Лаврентьева. Ознакомление с работой Лаврентьева послужило толчком, способствующим ускорению моей совместной с И.Е.Таммом работы по магнитной термоизоляции высокотемпературной плазмы”.

Но действительность оказалась сложнее. Выяснилось, что в тороидальном поле частицы за каждый оборот будут смещаться из области более сильной напряжённости (внутренний периметр тороида) в область слабой напряжённости (внешний периметр) и вся плазма “вывалится” на внешнюю стенку, не успев разогреться до термоядерных температур.

Правда, выход быстро нашли: для удержания плазмы в равновесии силовые линии её магнитного поля надо завить по спирали. Двадцать лет спустя эта работа сыграла историческую роль и стала оной из основ теории токамаков.

В 1969 году на международной конференции в Дубне было объявлено, что в плазме токамака Т-3 достигнута фантастическая для того времени температура- 7-10 млн. градусов. Началось всемирное “обращение в токамаки”.

Сейчас на токамаках, кроме России, работают в США, Великобритании, Франции, ФРГ, Италии, Японии, Китае, Австралии, Ливии, Венгрии и других странах.

Оказалось, что в замкнутых магнитных системах положения классической теории парных столкновений

Первичные сами вырабатывают электрическую энергию путем преобразования в нее других видов энергии, полученной в результате химических и прочих реакций.

К ним относятся различные электростанции (тепловые, атомные, гидравлические), химические преобразователи (аккумуляторы, гальванические и топливные элементы), термоэлектрические и фотоэлектрические генераторы (солнечные батареи) и др.

Источники электропитания

Вторичные предназначены для преобразования получаемой от первичного источника электроэнергии в напряжение с требуемыми параметрами. Для питания и нормального функционирования большинства электронных приборов требуется стабильное напряжение с различными значениями.

Вторичные источники имеют вид отдельных блоков или входят в состав различных электронных узлов. Кроме самого источника питания узлы могут включать дополнительные устройства, поддерживающие его нормальную работу при воздействии разных внешних факторов. К вторичным относятся трансформаторные и инверторные преобразователи, выпрямители и т. п.

Понятие первичных и вторичных источников относительно. Например, бытовая электросеть является первичным источником для домашних электроприборов, так как большинство устройств имеет свой внешний или встроенный блок питания, преобразующий входное напряжение до необходимых значений.

В свою очередь, трансформаторная подстанция, от которой питается бытовая электросеть, сама является вторичным источником по отношению к электростанции.

ИСТОЧНИКИ ПЕРВИЧНОГО ПИТАНИЯ

Как было сказано, к первичным источникам относятся устройства, преобразующие различные виды энергии в электроэнергию. Это может быть химическая, механическая энергия, световая, тепловая и энергия атомного распада.

  • гидроэлектростанции – преобразуют в электроэнергию гравитационную энергию воды;
  • химические источники (аккумуляторы, топливные и гальванические элементы) – переводят химическую энергию в электрическую;
  • дизель-генераторы – химическая энергия преобразуется сначала в механическую, потом в электрическую;
  • солнечные батареи – преобразуют энергию солнечного света в электрическую на основе физического закона фотоэффекта;
  • ветряные генераторы – преобразуют кинетическую энергию воздушных частиц;
  • термоэлектрические преобразователи – преобразуют тепловую энергию в электрическую.

Химические источники обычно используются в маломощных устройствах и как резервные источники. Работа топливных элементов основана на электрическом окислении топлива. В термоэлектрических устройствах электрический потенциал создает разница температур.

ИСТОЧНИКИ ВТОРИЧНОГО ПИТАНИЯ

Вторичные источники подключаются к первичным и преобразуют получаемую электроэнергию в выходное напряжение с требуемыми параметрами частоты, пульсации и т. д.

  • обеспечение передачи требуемой мощности с наименьшими потерями;
  • преобразование формы напряжения (переменного напряжения в постоянное, изменение частоты, формирование импульсов;
  • преобразование значение напряжения (повышение или понижение его величины, формирование нескольких величин для разных цепей);
  • стабилизация напряжения (его показатели на выходе должны находиться в заданном диапазоне);
  • защита (чтобы напряжение, превысившее допустимые значения вследствие неисправности, не вывело из строя аппаратуру или сам ИП);
  • гальваническое разделение цепей.

Существует два основных типа источников вторичного питания (ИВП) – трансформаторный и импульсный.

Трансформаторный блок питания.

Трансформаторный, или линейный ИВП – классический блок питания. Регулировка выходного напряжения происходит в нем непрерывно, то есть линейно.

  • трансформатор (корректирует напряжение в ту или иную сторону до нужной величины);
  • выпрямитель (преобразует переменное напряжение в постоянное);
  • фильтр (сглаживает пульсацию (колебания) в выпрямленном напряжении).

Также схема может включать защиту от короткого замыкания, фильтр высокочастотных помех, стабилизатор и др.

  • простота конструкции;
  • гальваническая развязка от сети;
  • надежность в эксплуатации.
  • большие габариты и вес, которые прямо пропорциональны его мощности;
  • относительно низкий КПД.

В бытовой технике линейные ИП малой мощности используются для питания плат управления стиральных машин, микроволновок, отопительных котлов.

Импульсный ИВП.

Импульсный блок питания устроен принципиально иначе и имеет более сложную конструкцию.

  • выпрямитель (входное напряжение сначала выпрямляется – преобразуется из переменного в постоянное);
  • блок широтно-импульсной модуляции – ШИМ (преобразует постоянное напряжение в импульсы определенной частоты и скважности);
  • частотный фильтр (в блоках без гальванической развязки);
  • трансформатор (в блоках с гальванической развязкой от сети).

В импульсных источниках вторичного напряжения стабилизация реализуется посредством обратной связи, что позволяет поддерживать выходное напряжение на заданном уровне независимо от скачков входных параметров.

Например, в блоках с гальванической развязкой в зависимости от величины выходного сигнала изменяется скважность (отношение частоты следования импульсов к их длительности) на выходе ШИМ-контроллера.

  • малый вес и небольшие размеры;
  • высокий КПД (до 98%);
  • широкий диапазон допустимого входного напряжения;
  • встроенная защита от короткого замыкания и других форс-мажоров;
  • невысокая цена;
  • по надежности сравнимы с трансформаторными ИП.
  • являются источниками высокочастотных помех, которые нельзя полностью устранить;
  • имеют ограничение по минимальной мощности нагрузки: не включаются, если она ниже требуемой.

Импульсные источники – это зарядки мобильных телефонов, блоки питания компьютеров, оргтехники, бытовой электроники.

БЕСПЕРЕБОЙНЫЕ И РЕЗЕРВНЫЕ ИСТОЧНИКИ

Источники бесперебойного и резервного энергоснабжения необходимы при краткосрочных и длительных отключениях электроэнергии. При отсутствии таких устройств частный дом может остаться без света, отопления и всей электротехники на неопределенный срок.

Бесперебойные.

Эти устройства обеспечивают работоспособность подключенных электроприборов и техники при кратковременных перебоях в поставках электроэнергии. Также они выполняют функцию защиты от скачков напряжения и помех.

Бесперебойники делятся на три категории:

Имеют самую простую конструкцию, высокий КПД и низкую стоимость. При отключении электроэнергии или выходе параметров напряжения за допустимые пределы источник автоматически включает встроенный аккумулятор.

Line-interactive.

У таких источников самое высокое качество и стоимость. Они работают по принципу двойного преобразования: входное напряжение сначала преобразуется в постоянное, а затем с помощью инвертора обратно в переменное. Здесь не требуется время на переключение на питание от внешнего аккумулятора, он подключен в цепь и при стабильном энергоснабжении находится в буферном режиме.

  • для безопасного отключения устройств при перебоях в сети;
  • в охранно пожарной сигнализации, видеонаблюдении, контроле доступа;
  • для оборудования системы умный дом.

Резервные источники питания.

Эти устройства необходимы для питания электроприборов при длительных отключениях электроэнергии или когда объект находится далеко от линии электропередач.

Автономные электростанции бывают следующих видов:

Эффективны, но потребляют много топлива. Работают бесшумно, хорошо запускаются в зимний период.

Работают практически в любых условиях, но также требуют значительных финансовых вложений. Целесообразно их использование при суммарной потребляемой мощности свыше 6 кВт.

Используют природный источник энергии – солнечный свет. Их применение выгодно в условиях климата с большим количеством солнечных дней. Станции не имеют подвижных частей и отличаются высокой надежностью.

Они должны размещаться на возвышенности и в местности с регулярным движением воздуха, желательно в одном направлении. Конструкция имеет большой вес, осложняет ситуацию наличие подвижных частей.

Использование солнечных и ветряных генераторов целесообразно при их постоянной эксплуатации как альтернативных систем электроснабжения, так как они требуют значительных затрат на приобретение и установку и окупаются не сразу.

© 2014-2022 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Все источники питания можно подразделить на первичные и вторичные.

К первичным относятся источники, преобразующие неэлектрическую энергию в электрическую. Это электрические сети, гальванические (химические), фотоэлектрические (солнечные), термоэлектрические, топливные, электромашинные и другие источники питания.

Однако непосредственное использование первичных источников питания (ПИП) ограничено тем, что напряжение на их выходах не поддается регулировке и стабильность выходного напряжения невысокая. Вместе с тем первичные источники питания обеспечивают энергией современный мир, т.е. они используются в большинстве сегодняшних электронных устройств: цифровых видео- и фотокамерах, карманных персональных компьютерах (КПК), ноутбуках, мобильных телефонах, переносных радиостанциях и др.

Современные электронные устройства, диктующие направления развития ПИП, ориентированы на минимизацию их размеров (для обеспечения дальнейшей миниатюризации современной техники), увеличение емкости и долговечности.

Химические источники тока.

Это сухие гальванические элементы, кислотные и щелочные аккумуляторы. Наибольшее распространение получили кислотные аккумуляторные батареи (АБ). Типовые зарядно-разрядные характеристики одного кислотного элемента приведены на рисунке 2.


Рисунок 2. Зарядно–разрядные характеристики кислотного элемента

В процессе разряда напряжение быстро уменьшается до 2 В, а затем медленно спадает до 1,8 В. Разряд ниже 1,8 В на один элемент нежелателен, так как в нём начинаются необратимые процессы. Номинальным считается напряжение U = 2 В.

Солнечные батареи

Работа солнечных батарей основана на вентильном фотоэффекте в полупроводниках (фото–ЭДС на p–n переходе). Под действием света электроны переходят на более высокий энергетический уровень, поддерживая ток во внешней цепи. Спектральные характеристики некоторых источников приведены на рисунке 3.

Рисунок 3. Спектральные характеристики солнечного света и солнечных батарей

Максимальная чувствительность кремниевого (Si) фотоэлемента находится на границе инфракрасного (ИК) излучения ( ). Селеновые (Se) фотоэлементы лучше согласуются по длине волны с солнечным светом и охватывают видимую часть спектра (0,4 мкм — фиолетовый цвет, 0,55 мкм — зелёный, 0,65 мкм — красный), что не всегда удобно. Поэтому используют кремний, который значительно шире распространён на земле.

Известно, что энергетическая освещённость Земли в солнечной системе составляет примерно 1 кВт/м 2 , но это на экваторе. В средних широтах около 300 Вт/м 2 , но это летом, а зимой примерно 80 Вт/м 2 . Извлечь эту энергию можно при помощи кремниевых фотоэлементов с коэффициентом полезного действия 12 . 15% (теоретический КПД равен 22,5%, у арсенид–галиевых фотоэлементов теоретический КПД — 33,3%). Для получения 5В, 40мА требуется около 12 . 15 фотоэлементов, поэтому о больших мощностях для промышленности речи пока не идёт. Их используют на космических летательных аппаратах с поверхностью солнечных батарей в сотни квадратных метров, а также для зарядки АБ в местах, удалённых от населённых пунктов.

Существует мнение, что солнечная энергия является экзотической и её практическое использование — дело отдалённого будущего. Стоимость солнечных элементов составляет 2,5 . 3 долл/Вт, а стоимость электроэнергии 0,25 . 0,5 долл/кВт•ч. При использовании солнечных батарей возникает проблема суточного и сезонного накопления энергии, которая решается с помощью аккумуляторной батареи.

Топливные элементы

Топливные элементы преобразуют энергию химического топлива в электрическую энергию, без реакции горения. Действие этих элементов основано на электрохимическом окислении углеводородного топлива (водород, пропан, метан, керосин) в среде окислителя. Другими словами Топливные элементы представляют собой "неистощимые батарейки", к которым непрерывно подводится топливо и окислитель (воздух).


  • фосфорнокислые. Их КПД составляет около 40 %, а при совместном использовании и электричества и попутного тепла — около 80 %. Рабочая температура находится в пределах 180 . 230° С. Эти топливные элементы требуют некоторого времени для выхода на рабочий режим при холодном старте, но отличаются простой конструкцией и высокой стабильностью. На базе этих элементов созданы энергоустановки мощностью сотни киловатт.

  • твердополимерные. Они отличаются компактностью, высокой надёжностью и экологической чистотой. КПД составляет примерно 45 %, рабочая температура — около 80° С. В качестве топлива используется водород. Но здесь применяются катализаторы из платины и её сплавов. Поэтому стоимость энергии относительно высокая. Тем не менее, обладая уникальными качествами, они имеют хорошую перспективу для широкого применения.

  • Топливные элементы на расплавленном карбонате. Данный тип топливных элементов относится к высокотемпературным устройствам. Рабочая температура порядка 600 . 700° С. В качестве топлива используется природный газ. КПД достигает 55 %. В связи с большим количеством выделяемого тепла, успешно применяются для создания стационарных источников электрической и тепловой энергии.

  • твердооксидные. Здесь, вместо жидкого электролита применяется твердый керамический материал, что позволяет достигать высоких рабочих температур 900 . 1000° С. КПД твердооксидных топливных элементов достигает 50 % и они могут работать на различных видах углеводородного топлива, что создаёт перспективу для использования в промышленных установках большой мощности.

Поскольку напряжение и ток единичного топливного элемента невелики 0,6 . 0,75 В при плотности тока до 500 мА/см 2 , то для получения заданных характеристик топливные элементы соединяют в батареи. Для постоянного получения электроэнергии следует в батарею непрерывно подводить окислитель и топливо.

Топливные элементы отличает высокая надёжность (нет подвижных частей как в двигателе внутреннего сгорания) и термостабильность, а удельная энергия вдвое выше, чем у аккумуляторных батарей. По этой причине современные электромобили используют именно топливные элементы .

Термогенераторы

Работа термогенераторов основана на термоэлектрическом эффекте — нагреве контакта двух проводников или полупроводников, что приводит к появлению на их свободных (холодных) концах ЭДС, называемой термо–ЭДС. Величина этой термо–ЭДС , где — разность температур холодного и горячего концов термопары, — коэффициент термо-ЭДС, зависящий от материала термопары. Термоэлементы соединяют последовательно в батареи. На рисунке 4 приведена обобщенная схема термобатареи, а на рисунке 5 — зависимость термо–ЭДС некоторых термопар от температуры.

Рисунок 4. Обобщенная схема термобатареи

Рисунок 5. Зависимость термо–ЭДС некоторых термопар от температуры

На этом рисунке приведена величина термо–ЭДС термопар: 1 — Платина и медь; 2 — Платина и железо; 3 — Медь и железо. Из зависимостей термо-ЭДС, приведенных на рисунке 5 видно, что величины термо–ЭДС довольно малы, а создать большую разность температур для металлов проблематично из-за их высокой теплопроводности, поэтому чаще используют полупроводники с ЭДС около 1мв/°C. Современные термогенераторы выпускают на напряжение до 150 В и ток до 500 А при общем КПД порядка 10 . 12%.

Принцип построения атомных батарей известен из курса общей физики. Одним из электродов является радиоактивный изотоп, вторым электродом служит металлическая оболочка. Под действием излучения на электродах создаётся разность потенциалов в несколько киловольт при токе единицы миллиампер. Срок службы атомных элементов — несколько лет. В настоящее время созданы низковольтные атомные батареи, работающие по принципу фотоэлементов, причём их излучение не превышает уровня общего фона.

Рассмотрим принцип работы низковольтной атомной батареи. На поверхности полупроводника наносится слой радиоактивного вещества, излучаемый этим слоем, поток бета частиц бомбардирует атомы полупроводника, выбивая из него очень большое количество медленных электронов.Так как выбитые электроны могут двигаться только в одном направлении, они накапливаются на металлическом коллекторе, приваренном к другой стороне полупроводника и образующим с полупроводником контакт Шотки, обладающий односторонней проводимостью. Между коллектором и полупроводником возникает разность потенциалов. Для повышения кпд батареи часто вместо чистого полупроводника используют p-n переход в качестве контакта с односторонней проводимостью. Также существуют батареи использующие для генерации электронов эффект термоэлектронной эмиссии, так называемые термоэмиссионные генераторы. Принцип действия таких батарей аналогичен работе высоковольтных атомных батарей, описанных выше. В данных батареях используются изотопы, ядерные реакции в которых приводят к разогреву катода. Горячий катод испускает медленные электроны, которые, достигая анод, заряжают его отрицательно, в то время как катод заряжается положительно.Одним из веских оснований к применению данных источников энергии служит ряд преимуществ перед другими источниками энергии (практическая необслуживаемость, компактность и др), и решающим основанием явилась громадная энергоемкость изотопов. Практически по массовой и объемной энергоемкости распад используемых изотопов уступает лишь делению ядер урана, плутония и др в 4-50 раз, и превосходит химические источники энергии (аккумуляторы, топливные элементы и др.) в десятки и сотни тысяч раз.

Преобразуют механическую энергию движения (поступательного или вращательного) в электрическую и наоборот. Выпускаются на большой диапазон токов и напряжений. Электрические машины делятся на электрические машины постоянного и переменного тока. При одинаковой мощности электрические машины переменного тока имеют в 1,5 . 2 раза лучшие массо-объёмные показатели, чем машины постоянного тока. Поэтому 98% электроэнергии в мире вырабатывается электрическими машинами переменного тока. Их недостатками считается присутствие акустических шумов, а наличие подвижных частей определяет надёжность системы электроснабжения. Но инерционность электрических машин делает невозможными кратковременные провалы напряжения сети, что положительно сказывается на качестве электроснабжения.


  1. гидро–генераторы (привод от водяной турбины гидроэлектростанции). Это тихоходные генераторы большой мощности при скорости вращения до 1500 об/мин;

  2. турбо–генераторы (привод от паровой турбины тепловой электростанции). Это скоростные генераторы с числом оборотов в минуту до 3000 и более;

  3. дизель–генераторы (привод от двигателя внутреннего сгорания бензинового или дизельного). Правильнее называть двигатель–генераторная установка (ДГУ), хотя исторически называют “дизелем”. Дизельные двигатели более неприхотливы, надёжны и широко используются в резервных источниках электропитания на предприятиях связи, радиопередающих и телевизионных центрах и для электроснабжения небольших населённых пунктов;

  4. газо–генераторы. Это двигатель внутреннего сгорания, работающий на газообразном топливе, которое по сравнению с другими сгорает при малом количестве воздуха без дыма и копоти. Его легко транспортировать на любые расстояния. Природный газ получают на газовых месторождениях, а попутный газ — на нефтепромыслах;

  5. ветро–генераторы. Ветер — неиссякаемый источник энергии. Однако надёжность такого электроснабжения зависит от силы ветра и поэтому пригодно не во всех географических зонах. Ветро–генераторы выпускаются промышленностью на мощности от 200 Вт до 1000 кВт при необходимой скорости ветра от 6 до 14 м/сек, но они создают акустические шумы, влияние которых на флору и фауну далеко не однозначно. В нашей стране широкого применения пока не нашли, хотя считаются перспективными;

  6. био–генераторы. Генераторы, приводимые в действие мускульной силой человека. На первых полярных станциях "Северный Полюс" зарядка аккумуляторных батарей для радиостанции проводилась “велотренажёром”, нагрузкой которого был автомобильный генератор постоянного тока. Если одна лошадиная сила равна примерно 730 Вт электрической мощности, то тренированный человек может вырабатывать порядка 50 Вт в течение 10 . 15 минут (езда в гору на велосипеде!). Затем нужен отдых. Отсюда можно сделать вывод, что производство электрической энергии является далеко не лёгкой задачей.

Бензогенераторы могут применяться для гарантированного электроснабжения базовых станций сотовых систем связи, ретрансляторов, ремонтных служб или автомастерских.

Аккумулятор – источник тока многократного действия. Зависимость напряжения заряда от температуры. Химическая реакция, происходящая в аккумуляторе. Солнечные батареи, принцип их работы. Преобразование углеводородного топлива в электрическую энергию.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 15.02.2016
Размер файла 86,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Первичные источники питания

Первичный источник электропитания - преобразует неэлектрические виды энергии в электрическую. Известны следующие типы первичных источников

Химические источники - аккумулятор - химический источник тока многократного действия. Он способен накапливать, длительно сохранять и отдавать по мере надобности электрическую энергию, полученную от внешнего источника постоянного тока.

Во время заряда, когда внешний источник постоянного тока подключен к аккумулятору, электрическая энергия этого источника превращается в химическую энергию активных веществ, входящих в состав аккумулятора. При разряде, когда внешний источник отключен, а аккумулятор замкнут на сопротивление нагрузки, химическая энергия, накопленная в аккумуляторе, вновь преобразуется в электрическую энергию, которая расходуется нагрузкой. Аккумулятор состоит из положительной и отрицательной пластин, активная часть которых погружена в раствор электролита (водного раствора серной кислоты). Первоначальным материалом положительных и отрицательных электродов аккумулятора является свинец. После заряда аккумулятора на положительном электроде образуется активная масса - двуокись свинца (PbO2), а на отрицательном - губчатый свинец (Pb). Когда аккумулятор заряжен, концентрация серной кислоты в растворе высокая, т.е. электролит имеет повышенную плотность. Разряд аккумулятора представляет собой электрохимический процесс, при котором двуокись свинца и губчатый свинец превращаются в сульфат свинца (PbSO4).

Химическая реакция, происходящая в аккумуляторе, описывается уравнением:

В процессе заряда сульфат свинца на отрицательных пластинах восстанавливается до губчатого свинца, а на положительных пластинах превращается в двуоксиь свинца. При этом образуется серная кислота и расходуется вода. Концентрация кислоты, т.е. плотность электролита, повышается. Если заряд продолжать дальше, то весь зарядный ток будет расходоваться на разложение воды с бурным выделением образующихся газов - водорода и кислорода.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Реферат по теме : “Первичные источники питания”.

ТЕРМОЯДЕРНАЯ ЭНЕРГИЯ

Мы привычно говорим о термоядерном синтезе, как о перспективном источнике энергии. Но вот вопрос: не слишком ли долго он останется всего лишь “перспективным”? Ведь сложилась парадоксальная ситуация: на энергии деления ядер урана уже давно работают атомные электростанции, тогда как управляемый синтез лёгких ядер не даёт положительного баланса энергии. Между тем последний процесс открыли на четыре года раньше, чем первый: в 1934 году в лаборатории Э. Резерфорда был проведён синтез ядер дейтерия с получением трития. А уже через несколько лет теоретики нашли подходящие ядерные процессы, объясняющие механизм “горения” звёзд, который так долго был неразрешимой загадкой. Значит, роль термоядерной реакции, как возможного источника огромных количеств энергии, была осознана давно. Какие же трудности стояли и стоят на пути к овладению этим источником?

Появление новой энергии.

Главная причина устойчивости звёздных термоядерных реакций — громадные размеры реакторов, да и времена циклов реакций исчисляются миллионами лет. Как же в наших ограниченных масштабах сотворить подобное?

В 1945 году на далёком Сахалине у учащегося вечерней средней школы Олега Лаврентьева блеснула дерзновенная идея, которая сулила создание искусственного земного солнца. Как писал сам Олег Александрович, он “сформулировал принцип тепловой изоляции электрическим полем полностью ионизированного газа с целью промышленной утилизации термоядерных реакций” и не долго думая направил предложение прямо в адрес И.В.Сталина. Письмо осталось без ответа, но повторное предложение в ЦК ВКП(б) сработало мгновенно. В 1954 году эта идея, оказавшаяся весьма плодотворной, была воплощена в Институте атомной энергии (ИЭА). Появилась первая исследовательская термоядерная установка токомак. Впоследствии А.Д.Сахаров, уже академик, засвидетельствовал: “Подтверждаю, что в июне или июле 1950 г. я рецензировал работу О.А.Лаврентьева. Ознакомление с работой Лаврентьева послужило толчком, способствующим ускорению моей совместной с И.Е.Таммом работы по магнитной термоизоляции высокотемпературной плазмы”.

Но действительность оказалась сложнее. Выяснилось, что в тороидальном поле частицы за каждый оборот будут смещаться из области более сильной напряжённости (внутренний периметр тороида) в область слабой напряжённости (внешний периметр) и вся плазма “вывалится” на внешнюю стенку, не успев разогреться до термоядерных температур.

Правда, выход быстро нашли: для удержания плазмы в равновесии силовые линии её магнитного поля надо завить по спирали. Двадцать лет спустя эта работа сыграла историческую роль и стала оной из основ теории токамаков.

В 1969 году на международной конференции в Дубне было объявлено, что в плазме токамака Т-3 достигнута фантастическая для того времени температура- 7-10 млн. градусов. Началось всемирное “обращение в токамаки”.

Сейчас на токамаках, кроме России, работают в США, Великобритании, Франции, ФРГ, Италии, Японии, Китае, Австралии, Ливии, Венгрии и других странах.

Оказалось, что в замкнутых магнитных системах положения классической теории парных столкновений

Читайте также: