Перспективы использования нетрадиционных источников энергии реферат

Обновлено: 05.07.2024

Использование любого вида энергии и производство электроэнергии сопровождается образованием многих загрязнителей воды и воздуха. Перечень таких загрязнителей удивительно длинен, а их количества чрезвычайно огромны. Вполне естественно возникает вопрос, всегда ли использование энергии и производство электроэнергии должно сопровождаться разрушением окружающей среды. И если правда, что любой вид человеческой деятельности неизбежно оказывает вредное воздействие на природу, то степень этого вреда различна. Мы не можем не влиять на среду, в которой живем, поскольку для поддержания жизненных процессов как таковых необходимо поглощать и использовать энергию.

Содержание

Введение
3
1. Источники энергии сегодня их значение.
5
2. Альтернативные источники энергии.

2.1. Понятие и классификация альтернативных источников энергии
8
2.2. Виды альтернативных источников энергии и их применение

2.2.1. Энергия солнечного света
9
2.2.2. Энергия ветра
12
2.2.3. Геотермальная энергия (энергия земли)
14
2.2.4. Энергия приливов и отливов морей
16
2.2.5. Биоэнергия
20
3. Экологические перспективы и проблемы использования нетрадиционных и возобновляемых источников энергии
22
Заключение
25
Список использованной литературы

Работа состоит из 1 файл

Реферат на тему Альтернативные источники энергии Экология.docx

Министерство Образования Российской Федерации

Институт экономики и управления предприятиями сервиса

Кафедра Экономика организации и предпринимательства

по дисциплине " Экология "

"Альтернативные источники энергии"

Выполнил(а): студент(ка) заочнного отделения 080100.62 Гаврилюк Ю.Ю.

Преподаватель: Зердев Р.А.

1. Источники энергии сегодня их значение.

2. Альтернативные источники энергии.

2.1. Понятие и классификация альтернативных источников энергии

2.2. Виды альтернативных источников энергии и их применение

2.2.1. Энергия солнечного света

2.2.2. Энергия ветра

2.2.3. Геотермальная энергия (энергия земли)

2.2.4. Энергия приливов и отливов морей

3. Экологические перспективы и проблемы использования нетрадиционных и возобновляемых источников энергии

Список использованной литературы

Использование любого вида энергии и производство электроэнергии сопровождается образованием многих загрязнителей воды и воздуха. Перечень таких загрязнителей удивительно длинен, а их количества чрезвычайно огромны. Вполне естественно возникает вопрос, всегда ли использование энергии и производство электроэнергии должно сопровождаться разрушением окружающей среды. И если правда, что любой вид человеческой деятельности неизбежно оказывает вредное воздействие на природу, то степень этого вреда различна. Мы не можем не влиять на среду, в которой живем, поскольку для поддержания жизненных процессов как таковых необходимо поглощать и использовать энергию.

Традиционное производство энергии, дающее огромные количества загрязнителей воды и воздуха, - один из видов такой деятельности человека.

В работе я хочу рассмотреть получение электроэнергии за счет природных источников, таких, как падающая вода, ветер и энергия Солнца.

Эти способы получения электроэнергии представляются более мягкими в смысле воздействия на окружающую среду, чем сжигание ископаемого топлива или расщепления ядерного урана. Кроме того, все перечисленные выше источники энергии возобновляемы, то есть практически они доступны всегда и везде.

Удивительно, что всего двести лет назад человечество помимо энергии самого человека и животных располагало только тремя видами энергии. И источником этих всех трех видов энергии было Солнце. Энергия ветра вращала крылья ветряных мельниц, на которых мололи зерно или ткали. Для того чтобы можно было воспользоваться энергией воды, необходимо, чтобы вода бежала вниз к морю от вышерасположенного истока, где река наполняется за счет выпадающих дождей.

За последнее десятилетие интерес к этим источникам энергии постоянно возрастает, поскольку во многих отношениях они неограниченны. По мере того как поставки топлива становятся менее надежными и более дорогостоящими, эти источники становятся все более привлекательными и более экономичными.

Обязательным элементом данного пункта работы является формулировка объекта и предмета исследования.
-объект исследования – альтернативные ресурсы энергии.
-предмет исследования – виды альтернативных ресурсов энергетики: солнечная, ветроэнергетика и так далее.
Актуальность данного исследования определила цель и задачи работы:
-цель работы – рассмотреть альтернативные ресурсы энергии, виды, классификация, перспективы.
Для достижения цели необходимо решить следующие задачи:
1.Исследовать альтернативные источники энергии: виды и классификацию;
2.На основании теоретического анализа изучения проблемы, систематизировать знания о видах альтернативных ресурсов энергетики в современных условиях;
3.Рассмотреть сущность и специфику понятий экологических проблем использования нетрадиционных и возобновляемых источников энергии.
4.Систематизировать и обобщить существующие в специальной литературе, научные подходы к данной проблеме.
5.Предложить собственное виденье на данную проблему и найти пути её разрешения.
Теоретическая значимость проведенного исследования состоит в обобщении научного знания по данной теме.

1. Источники энергии сегодня их значение.

Становление и развитие человеческой цивилизации всегда было связано с развитием и совершенствованием энергетики и зависело от нее. Практически электро теплоэнергетика является системообразующей отраслью любой экономики, а значит и государства. От ее состояния зависят уровень и темпы социально–экономического развития любой страны.
Энергию, которую мы используем сегодня, получают, в основном, из ископаемых видов топлива. Уголь, нефть и природный газ - ископаемые виды топлива, созданные в течение миллионов лет в процессе распада растений и животных. Месторасположение этих ресурсов - недра Земли. Под воздействием высокой температуры и давления, процесс образования ископаемых видов топлива продолжается и сегодня, однако их использование происходит намного быстрее, чем образование.

Сегодня ископаемые виды топлива, такие как каменный уголь, нефть и природный газ составляют 90% общих первичных энергоресурсов. Разведанные запасы традиционных углеводородных ресурсов в России пока позволяют обеспечивать текущие потребности национальной экономики и получать существенные доходы от экспорта энергоносителей. В то же время с каждым годом наблюдается ухудшение горно-геологических условий добычи горючих полезных ископаемых. С начала 90-х годов прошлого века восполнение запасов углеводородных ресурсов отстает от темпов роста их добычи. Например, в 1994-2000 гг. отношение суммарного объема добычи к суммарному приросту запасов составило по нефти - 1,31 и по газу - 2,1.

По официальным оценкам мировые объемы энергопотребления будут расти и в будущем, также как и в предыдущие годы. Все это ведет к увеличению количества различных проблем, связанных с энергопоставками и защитой окружающей среды.

Одной из основных причин роста энергопотребления является рост населения. В 2000 году население планеты составляло около 6 млрд. человек. По оценкам экспертов ООН к 2025 году мировое население достигнет почти 8 млрд. человек, однако ближе к 2100 году стабилизируется на уровне 10-12 млрд. человек. Основной прирост населения придется на менее развитые страны.

Согласно официальному прогнозу, подготовленному Международным энергетическим агентством (IEA) "Мировой энергетический обзор - 2004", рост объемов энергопотребления в мире будет наблюдаться в течение ближайших двух десятилетия, и, в первую очередь, за счет увеличения энергопотребления в Азии. Ожидается, что объем мирового энергопотребления в 2020 году составит почти 600 000 ПДж (14 400 млн.. т н.э.).

Ожидаемый прирост в общем объеме энергопотребления за период с 1995 по 2020 года составит около 230 000 ПДж (5500 млн. т н.э.), что соответствует суммарному мировому энергопотреблению, отмеченному за 1971 год - как раз на кануне энергетического кризиса, разразившегося в 1973 году. Две трети роста энергопотребления придется на развитые промышленные страны, а также на страны с переходной экономикой, большая часть которых сконцентрирована в Азии.

Согласно Международному энергетическому обзору, подготовленному IEA, потребление нефти превысит 5000 млн. т н.э. в 2020 году, а норма потребления увеличиться практически на 50% по сравнению с 1995 годом. По подсчетам специалистов мировое потребление угля к 2020 году составит 3200 млн. т н.э., что на 50% превышает показатель за 1995 год. Природный газ, по оценкам экспертов, будет демонстрировать наивысшие темпы роста среди всех ископаемых энергоносителей - на уровне 2,3% в год. В результате, доля природного газа в общем объеме потребления энергоносителей максимально приблизится к показателям по нефти и углю. К 2015 году потребление природного газа превысит суммарное потребление нефти, зафиксированное в 1995 году, то есть составит две трети от объема потребления нефти, ожидаемое в 2015 году. Для сравнения, в 1995 году объемы потребления природного газа составлял лишь 55% от объемов потребления нефти. Ожидается, что выработка энергии на атомных станциях останется стабильной, что приведет к уменьшению доли атомной энергетики в общем балансе энергообеспечения.

Вывод: Мы посчитали, что современные источники энергии заканчиваются, отсюда возникает вопрос, чем можно заменить, какие альтернативные источники понадобятся?

2. Альтернативные источники энергии.
2.1. Понятие и классификация альтернативных источников энергии

Альтернативный источник энергии — способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений.

К альтернативным или как их иногда называют возобновляемым источникам энергии (ВИЭ) относят солнечную, ветровую, геотермальную, энергию приливов, волновую, биоэнергетику и энергию разности температур глубин морей и океанов и другие "новые" виды возобновляемой энергии.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Министерство образования и науки

ФГБОУ ВО «Башкирский государственный

НЕТРАДИЦИОННЫЕ (АЛЬТЕРНАТИВНЫЕ) ИСТОЧНИКИ ЭНЕРГИИ И ПЕРСПЕКТИВЫ ИХ ИСПОЛЬЗОВАНИЯ

Выполнил: Федоров Сергей Алексеевич

ФМФ, заочное отделение, 2 курс, ЗОПОМОИТС-21-16

Солнечная энергия 5

Энергия океана 8

Энергия ветра 10

Энергия морских течений 12

Энергия приливов и отливов 13

Геотермальная энергия 16

Список литературы 25

В глубокой древности человечество начало с бережного использования возобновляемых источников энергии, но постепенно перешло к безрассудному использованию невозобновимых источников.

Вся история доказывает, что с ростом уровня жизни увеличивается количество необходимой человеку энергии.

Любая деятельность, независимо от её природы, предполагает использование энергии. Нынешняя человеческая деятельность на земле является доказательством того, что люди использовали и используют много энергии. Человек слишком слаб физически, чтобы собственными силами достичь тех результатов, которых достигло человечество в результате своей деятельности. Однако кроме физической силы у людей есть и другие способности. Главная из них – способность мыслить и осуществлять свои замыслы. На протяжении всей истории результатом этого были различные способы использования других энергоисточников, помимо мускульной энергии, для достижения с их помощью желаемых результатов. В настоящее время ежегодно расходуемая всеми странами энергия составляет 0,1% в отношении возможных для использования запасов угля, природного газа и нефти, вместе взятых.

Но ведь потребление всех видов энергетических ресурсов быстро растёт. Что же будет дальше? На наш взгляд, проблемы, связанные с энергообеспечением, очень актуальны в наше время. Они не могут не интересовать любого здравомыслящего человека и требуют изучения и решения.

Существуют разные прогнозы, касающиеся будущего наших ресурсов. Разрабатывая такие прогнозы, надо исходить, с одной стороны, из оценки перспектив роста населения и производства соответственно потребности общества, а с другой – из наличия запасов каждого ресурса. Однако прогнозировать современную тенденцию роста населения и производства далеко в будущее было бы рискованно. Кроме того, научно - технический прогресс, несомненно, будет продолжаться в направлении поисков более экономных, ресурсосберегающих технологий, что позволит постепенно сокращать потребность во многих природных источниках производства.

Исходя из сказанного, следует ожидать, по крайне мере, в ближайшие десятилетия, дальнейший рост потребностей в самых разнообразных энергетических ресурсах. При оценке их запасов важно различать две большие группы ресурсов – невозобновимые и возобновимые. Первые практически не восполняют, и их количество неуклонно уменьшается по мере использования. Сюда относятся минеральные и земляные ресурсы. Возобновимые ресурсы либо способны к самовоспроизведению (биологические), либо непрерывно поступают к Земле извне (солнечная энергия), либо, находятся в непрерывном круговороте, могут использоваться повторно(вода). Возобновляемые ресурсы — природные ресурсы, запасы которых или восстанавливаются быстрее, чем используются, или не зависят от того, используются они или нет.

Разумеется возобновимые ресурсы, как и невозобновимые, не бесконечны, но их возобновляемая часть может постоянно использоваться.

Если обратиться к главным типам мировых природных ресурсов, то в самом общем мы получаем следующую картину. Основным видом энергоресурсов является пока ещё минеральное топливо – нефть, газ, уголь. Эти источники энергии невозобновимы и при нынешнее темпах роста их добычи они могут быть, по мнению учёных, исчерпаны через 80-140 лет.

В данном проекте в качестве источников энергии рассмотрены нетрадиционные: энергия солнца, энергия ветра, геотермальная энергия, энергия приливов и отливов, энергия морских течений, энергия океана и использование биологического топлива.

СОЛНЕЧНАЯ ЭНЕРГИЯ

Дальше все происходит так же, как на обычных ТЭС: вода нагревается, закипает, превращается в пар, пар крутит турбину, турбина передает вращение на ротор генератора, а тот вырабатывает электричество.

В мире сейчас действуют несколько гибридных солнечно-тепловых электростанций общей мощностью более 600 МВт. Днем они работают от Солнца, а ночью, чтобы вода не остывала и электричество не кончалось, - от газа. Температура пара в установках достигает 370 градусов Цельсия, а давление - 100 атмосфер.
Устройства, использующие энергию солнца, разработаны для отопления, освещения и вентиляции зданий, небоскрёбов, опреснения воды, производства электроэнергии. Такие устройства используются в различных технологических процессах. Появились транспортные средства с "солнечным приводом" : моторные лодки и яхты, солнцелеты и дирижабли с солнечными панелями.

Телевизор, работающий от солнечной энергии

Компания Sharp представила на недавно проходившей выставке телевизор, работающий от солнечной батареи. Энергии солнечной панели оказалось вполне достаточно для просмотра телепередач на 52-дюймовом экране со светодиодной подсветкой.

ЭНЕРГИЯ ОКЕАНА

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн.кв.м) занимают моря и океаны. Кинетическая энергия океанских течений примерно равна 10 18 Дж. Энергоресурсы океана представляют большую ценность как возобновляемые и практически неисчерпаемые источники энергии. Океаны, помимо механической энергии волн и приливов, содержат также потенциальную энергию в виде тепла. Преобразование солнечного излучения в электроэнергию происходит за счет разности температур верхнего и нижнего слоев. Как известно, Солнце нагревает лишь верхние слои воды морей и океанов, причем, нагретая вода не опускается вниз, так как ее плотность меньше, чем у холодной. В тропических морях верхний слой воды, толщина которого не превышает нескольких метров, нагревается до 25-300° С, в то время как температура воды на глубине в 1 км не превышает 50° С. Получаемый в результате разности температур естественный тепловой градиент и создает запасы энергии. Причем, существенное количество ее можно получить при условии, когда температура между теплым поверхностным и холодным глубоководным слоями воды отличается, примерно, на 200°С значит тепловая энергоустановка, плывущая под водой могла бы производить энергию.
Установка мини-ОТЕС (преобразование тепловой энергии океан в элекрическую) смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба–судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.
Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это – одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования анергии. Верхний конец трубопровода холодной воды расположится в океане на глубине 25–50 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты. Труба-монстр, уходящая почти на километр в холодную глубину океана, а в ее верхней части что-то вроде маленького островка. Представляется, что некоторые из предлагавшихся океанских энергетических установок могут быть реализованы, и стать рентабельными уже в настоящее время.

ЭНЕРГИЯ ВЕТРА

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергетики всех рек планеты. Климатические условия позволяют развивать ветроэнергетику на огромной территории – от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана. Считается, что общий ветровой энергопотенциал Земли равен 1200ГВт.

Энергия ветра представляет собой самый быстрорастущий во всем мире источник электричества. Энергия ветра производится массивными трехлопастными ветротурбинами, устанавливаемыми на самом верху высоких башен и работающими подобно вентиляторам, но в обратном порядке. Вместо того чтобы использовать электричество для получения ветра, турбины используют ветер для получения электричества.

Ветровые установки являются одним из самых перспективных и одновременно экологически чистых способов выработки электроэнергии, с КПД около 59%. Вместе с тем, энергия ветра относится к числу возобновляемых источников энергии. В общих чертах, устройство ветровой электростанции выглядит следующим образом. Ветер вращает лопасти, а лопасти крутят вал, который соединен с набором зубчатых колес, приводящих в действие электрогенератор. Самая трудная проблема состоит в том, чтобы обеспечить одинаковое число оборотов пропеллера при разной силе ветра. Для этого угол наклона лопастей по отношению к ветру регулируется за счет поворота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра. Избыток энергии в ветреную погоду и недостаток её в периоды безветрия реализуется за счет запасов воды в верхнем резервуаре, которая набирается в ветреную погоду и стекает в безветренную погоду. Крупные турбины для электроснабжения могут вырабатывать от 750 киловатт (киловатт = 1 000 ватт) до 1,5 мегаватт (мегаватт = 1 миллиону ватт) электроэнергии. В жилых домах, на телекоммуникационных станциях и в водяных насосах в качестве источника энергии применяются небольшие одиночные ветротурбины мощностью менее 100 киловатт. Это, прежде всего, характерно для отдаленных районов, в которых отсутствует энергосистемы общего пользования. В ветровых установках группы турбин связаны вместе с целью выработки электроэнергии для энергосистем общего пользования. Электричество подается потребителям посредством линий передач и распределительных линий. Такие станции работают труднодоступных районах, на дальних островах, в Арктике, на тысячах населенных пунктах, где нет поблизости электростанций.

За последние 10 лет глобальное производство энергии ветра увеличился в 10 раз - с 3,5 гигаватт (гигаватт = 1 миллиарду ватт). Этого достаточно для того, чтобы обслуживать более 1,6 миллиона домохозяйств.

ЭНЕРГИЯ МОРСКИХ ТЕЧЕНИЙ

Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью генераторов, погруженных в воду. .

ЭНЕРГИЯ ПРИЛИВОВ И ОТЛИВОВ

ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ

Биото́пливо — это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса , кукурузы , сои . Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол , метанол , биодизель ), твёрдое биотопливо ( дрова , солома ) и газообразное ( биогаз , водород ).

Энергия биомассы - Для производства электрической и тепловой энергии в лесоперерабатывающей промышленности широко используется биомасса — энергоносители растительного происхождения, образуемые в процессе фотосинтеза. Если производство биомассы соизмеримо с ее сжиганием, содержание углекислого газа в атмосфере остается неизменным. Наиболее оптимальный способ использования биомассы — ее газификация с последующим срабатыванием в газовых турбинах. Предварительные расчеты показывают, что турбогенераторы, работающие на продуктах газификации биомассы, могут успешно конкурировать с традиционными тепловыми, ядерными и гидравлическими энергоустановками. Наиболее перспективными областями применения таких турбогенераторов уже в ближайшем будущем могут стать отрасли экономики, в которых скапливаются большие объемы биомассы (в частности, сахарные и винокуренные заводы, перерабатывающие сахарный тростник). Ежегодный объем органических отходов (биомассы) в СНГ составляет 500 млн. т. Их переработка потенциально позволяет получить до 150 млн.т условного топлива в год: за счет производства биогаза (120 млрд. м 3 ) — 100-110 млн. т, этанола — 30-40 млн. т. Окупаемость современных технологий производства биогаза из отходов по оценкам специалистов составляет от 3 до 5 лет. За счет использования биогаза к 2000 г. можно получить годовую экономию органического топлива 6 млн. т, а к 2010 г. в 3 раза больше. Для этого необходимо создать высокоэффективные штампы анаэробных микроорганизмов, специальные виды энергетической биомассы, технологии, эффективное оборудование. Специалисты научно-исследовательского центра “АКМАС” во Владивостоке (Россия) разработали метод получения биотоплива из морской воды. Сейчас все говорят о биотопливе, как об экологически чистом продукте. В Европа его делают из рапса, из пшеницы, в Америке - из кукурузы, в Юго-Восточной Азии - из риса. Но все это продукты питания, цены на которые будут расти, так же, как и на углеводороды. Например, в Приморье собираются к форуму АТЭС построить завод по производству биотоплива из сои, который будет перерабатывать 40 тыс. т сои в год.

- Биотоплива второго поколения. Биотоплива второго поколения — различные топлива, полученные различными методами разложение химических соединений при нагревании биомассы , или другие топлива, отличные от метанола , этанола , биодизеля . Этот способ позволяет превратить биомассу в жидкость, которую легче и дешевле транспортировать, хранить и использовать. Из жидкости можно произвести автомобильное топливо, или топливо для электростанций .

-Биотоплива третьего поколения

С 1978 года по 1996 года исследовал водоросли с высоким содержанием масла. Проблема заключается в агроклиматичекских условиях не всегда пригодных для выращивания водорослей. Например, водоросли любят высокую температуру, для их производства хорошо подходит пустынный климат, но требуется некая температурная регуляция при ночных перепадах

температур. Кроме выращивания водорослей в открытых прудах из можно культивировать в биореакторах, которые могут работать на основе ТЭЦ, а значит не требуется жаркий климат. На основе переработки водорослей получают газообразное топливо.

Преимущества применения нетрадиционных источников энергии:

-отсутствие топливной составляющей

-возможность создания рабочих мест

-устойчиво работают в энергосистемах как в базе так и в пике графика нагрузок при гарантированной постоянной месячной выработке электроэнергии

-не загрязняют атмосферу вредными выбросами в отличие от тепловых станций

-не затапливают земель в отличие от гидроэлектростанций - не представляют потенциальной опасности в отличие от атомных станций - не оказывают вредного воздействия на человека

-нет вредных выбросов (в отличие от ТЭС) - нет радиационной опасности (в отличие от АЭС) экологическая безопасность.

-исключен выброс вредных газов, золы, радиоактивных и тепловых отходов, добыча, транспортировка, переработка, сжигание и захоронение топлива, предотвращение сжигания кислорода воздуха, затопление территорий, угроза волны прорыва

Недостатки применения нетрадиционных источников энергии:

-агроклиматическая зависимость и изменчивость по времени

-дополнительные затраты на одновременное использование других источников энергии

Недостатки использования биотоплива топлива:

- развитие биотопливной индустрии вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных .

- производство и использование биотоплива приводит к выбросу в атмосферу гораздо большего количества парниковых газов, чем сжигание нефти, газа или угля.

Основными доводами в пользу использования биотоплива являются следующие:

-в производстве не используются ни плодородные почвы, ни пресная вода;

-процесс не конкурирует с сельскохозяйственным производством;

-создание новых рабочих мест;

-улучшить оборот земельных ресурсов в развивающихся странах;

ЗАКЛЮЧЕНИЕ

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.

Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину.

Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного "корма".

Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти.

И вот новый виток: в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.

Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники.

Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.

А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю. Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики.

В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.

Но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика "щадящая". Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы. Стали интенсивней использовать источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Яркий пример тому - быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия ветра и воды лишь наиболее яркие штрихи, того будущего, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

Лабиринты энергетики. Таинственные переходы, узкие, извилистые тропки. Полные загадок, препятствий, неожиданных озарений, воплей печали и поражений, и радости побед.

Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы. Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому, следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: "Нет простых решений, есть только разумный выбор".

Дударова Светлана Ивановна

В данной работе ученица исследует возможности альтернативных источников энергии как средства решения сырьевой проблемы, анализирует перспективы использования АИЭ в Приморском крае с учетом опыта кампуса ДВФУ

ВложениеРазмер
alternativnye_istochniki_energii_.docx 288.73 КБ
alternativnye_istochniki_energii.ppt 449.5 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное

Альтернативные источники энергии: возможности

и перспективы использования

Выполнила: ученица 7А класса

Дударова Светлана Ивановна

В современном мире существуют несколько глобальных проблем. Одна из них - истощение природных ресурсов. С каждой минутой в мире используется огромное количество нефти и газа для нужд человека. Поэтому возникает вопрос: на долго ли нам хватит этих ресурсов, если продолжать их использовать в таком же огромном объеме?

Альтернативные источники энергии: возможности и перспективы их использования - одна из важных и актуальных тем на сегодняшний день. Сегодня энергетика мира базируется на невозобновляемых источниках энергии. В качестве главных энергоносителей выступают нефть, газ и уголь. Ближайшие перспективы развития энергетики связаны с поисками лучшего соотношения энергоносителей и, прежде всего с тем, чтобы попытаться уменьшить долю жидкого топлива. Но можно сказать, что человечество уже сегодня вступило в переходный период - от энергетики, базирующейся на органических природных ресурсах, которые ограничены к энергетике на практически неисчерпаемой основе.

Большие надежды в мире возлагаются на так называемые альтернативные источники энергии, преимущество которых заключается в их возобновимости, и в том, что это экологически чистые источники энергии.

Истощение ресурсов заставляет вырабатывать ресурсосберегающую политику, широко использовать вторичное сырье. Во многих странах прилагаются огромные усилия для экономии энергии и сырья. В ряде стран приняты государственные программы экономии энергии.

Цель работы – изучить альтернативные источники энергии, возможности и перспективы их использования.

Для достижения поставленной цели необходимо решить следующие задачи:

  1. Изучить понятие альтернативных источников энергии.
  2. Изучить опыт использования возобновляемых источников энергии в разных странах.
  3. Проанализировать перспективы массового использования альтернативных источников энергии в РФ и Приморском крае.

Альтернативные источники энергии - это способы, устройства или сооружения, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии - потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность.

Также их еще называют возобновляемыми источниками энергии в связи с некоторыми особенностями этого вида энергии - возможностью неограниченно восполняться, в отличие от газа, угля, торфа и нефти, которые являются исчерпаемыми источниками энергии [3].

Классификация альтернативных источников энергии:

  • ветряные - преобразуют в энергию движение воздушных масс;
  • геотермальные - преобразуют в энергию тепло планеты;
  • солнечные - электромагнитное излучение солнца;
  • гидроэнергетические - движение воды в реках или морях;
  • биотопливные - теплоту сгорания возобновляемого топлива (например, спирта, торфа).
  • приливные - энергия морских и океанских приливов, на которой работают приливные электростанции

Ученые предупреждают о возможном исчерпании известных и доступных для использования запасов нефти и газа. Конечно, о полном исчерпании ресурсов говорить еще рано.

Сегодня энергетика мира базируется на невозобновляемых источниках энергии. В качестве главных энергоносителей выступают нефть, газ и уголь. Ближайшие перспективы развития энергетики связаны с поисками лучшего соотношения энергоносителей и, прежде всего с тем, чтобы попытаться уменьшить долю жидкого топлива. Но можно сказать, что человечество уже сегодня вступило в переходный период - от энергетики, базирующейся на органических природных ресурсах, которые ограничены к энергетике на практически неисчерпаемой основе [1].

Истощение ресурсов заставляет вырабатывать ресурсосберегающую политику, широко использовать вторичное сырье. Во многих странах прилагаются огромные усилия для экономии энергии и сырья. Сегодня уже около 1/3 всей массы используемых в мире металлов - добывается из отходов и вторичного сырья. В ряде стран приняты государственные программы экономии энергии.

Наиболее распространенные возобновляемые источники энергии и в России, и в мире - это гидроэнергетика. Около 20% мировой выработки электроэнергии приходится на ГЭС.

Активно развивается мировая ветроэнергетика: суммарные мощности ветрогенераторов удваиваются каждые четыре года, составляя более 150 000 МВт. Во многих странах ветроэнергетика занимает прочные позиции. Так, в Дании более 20% электроэнергии вырабатывается энергией ветра. Россия может получать 10 % энергии из ветра.

Доля солнечной энергетики относительно небольшая (около 0,1% мирового производства электроэнергии), но имеет положительную динамику роста. Солнечные электростанции работают более чем в 30 странах.

Геотермальная энергетика имеет важное местное значение. В частности, в Исландии такие электростанции вырабатывают около 25% электроэнергии.

Геотермальные электростанции, которые вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.

Приливная энергетика пока не получила значительного развития и представлена несколькими пилотными проектами.

Приливные электростанции пока имеются лишь в нескольких странах — Франции, Великобритании, Канаде, России, Индии, Китае.

По сравнению с США и странами ЕС использование альтернативных источников энергии в России находится на низком уровне. Сложившуюся ситуацию можно объяснить доступностью традиционных ископаемых энергоносителей. Один из основных барьеров для строительства крупных электростанций на альтернативных источниках энергии - отсутствие положения о стимулирующем тарифе, по которому государство покупало бы электроэнергию, производимую на основе альтернативных источников энергии.

Основным потребителем энергетических ресурсов на территории Приморского края является система жилищно-коммунального хозяйства (ЖКХ). Стоимость оплаты жилищно-коммунальных услуг населения г. Владивостока и Приморского края неуклонно растет. По данным органов статистики количество индивидуальных жилых зданий на территории края составляло около 143 тыс., из них 65 тыс. – в городских поселениях, 77 тыс. – в сельских поселениях. Практически во всех малоэтажных жилых зданиях для отопления используется уголь, дрова, мазут. Это приводит к значительным выбросам вредных и загрязняющих веществ в атмосферу. Таким образом, наносится значительный урон окружающей среде [1].

Приморский край относится к региону, где в целях энергообеспечения целесообразно использовать альтернативную энергетику на основе альтернативных источников энергии. Число солнечных дней в среднем по Приморскому краю составляет 310 при продолжительности солнечного излучения более 2000 часов. Активность солнечной энергии на территории Приморского края являются одними из самых высоких на территории РФ [5].

Максимальное поступление солнечной радиации наблюдается в мае, а минимальное в декабре, причём в марте наблюдается максимальная сумма прямой радиации на нормальную к лучу поверхность и продолжительность солнечного сияния. Минимальная продолжительность солнечного сияния наблюдается в июне и июле это связано с сезоном дождей, которые наступают в этот период [4].

Однако, несмотря на огромный потенциал солнечной энергетики, широкое внедрение альтернативной энергетики в России сдерживается по ряду причин: это дороговизна, большая материалоемкость оборудования, недостаточный опыт использования данных технологий, плохая информированность. Привлечь внимание к альтернативной энергетике можно с помощью демонстраций успешного опыта внедрения установок альтернативной энергетики в реальном хозяйственном применении. Существующая тенденция понижения стоимости оборудования для солнечной энергетики и постоянное повышение стоимости органического топлива и тарифов на электрическую и тепловую энергию, также являются тем фактором, который повышает привлекательность и конкурентоспособность альтернативной энергетики [2].

Основными потребителями альтернативной энергии являются домохозяйства (отдельные частные дома или даже квартиры, коттеджные посёлки, фермы). Также активно используют небольшие энергетические установки туристы, рыбаки, охотники, армия.

В декабре 2014 года на кампусе ДВФУ была установлена всесезонная Лабораторная солнечная водонагревательная установка (СВНУ), предназначенная для получения горячего водоснабжения гостиничного корпуса рассчитанного на проживание 536 человек. Совместно с солнечной водонагревательной установкой смонтирована фотоэлектрическая солнечная установка.

Генерирующее оборудование установок включает в себя: 90 солнечных коллекторов производительностью 0,15 Гкал/час тепловой энергии и 176 фотоэлектрических солнечных панелей производительностью 22 кВт*час электрической энергии.

Рис. 1 Гостиничный корпус ДВФУ №8.1

Солнечные коллектора и фотоэлектрические солнечные панели установлены на кровле здания. Общая площадь кровли составляет 2566 м².

Рис.2 Расположение солнечных коллекторов и фотоэлектрических панелей на кровле гостиничного корпуса ДВФУ № 8.1

Рис. 3 Тепловой пункт СВНУ гостиничного корпуса ДВФУ № 8.1

С начала ввода установки в эксплуатацию проводится непрерывный мониторинг выработки электрической и тепловой энергии установкой, а также технических параметров работы установки. Данные мониторинга архивируются в онлайн режиме и доступны для удалённого анализа через сеть Интернет.

Ниже представлены суточные данные о выработке тепловой энергии установкой с января по май 2015 года.

Рис. 4 Суточные данные о выработке тепловой энергии в январе 2015г.

Рис. 5 Суточные данные о выработке тепловой энергии в феврале 2015г.

Рис. 6 Суточные данные о выработке тепловой энергии в марте 2015г.

Рис. 7 Суточные данные о выработке тепловой энергии в апреле 2015г.

Рис. 8 Суточные данные о выработке тепловой энергии в мае 2015г.

По суточному графику выработки тепловой энергии установкой можно наблюдать о количестве солнечных и пасмурных дней в течение исследуемого периода. Наблюдения за работой установки показали, что и в пасмурные дни установка способна вырабатывать тепловую энергию. Отсутствие выработки тепловой энергии наблюдалось только в дни выпадения осадков.

Рис. 9 Данные о выработке тепловой энергии с января по май 2015г.

За исследуемый период с января по май солнечной установкой было выработано 64788 кВт×ч (233236,8МДж) тепловой энергии, что показало среднюю суточную выработку тепловой энергии с 1 м² эффективной площади абсорбции коллекторов 1,977 кВт×ч/м2.

Следует отметить, что за исследуемый период установка не всё время находилась в работе. В январе и феврале месяцах продолжались пусконаладочные работы, на проектную мощность установка вышла только в марте 2015 года.

Максимальная производительность установки была зафиксирована 23 мая. В этот день установка выработала 1040 кВт×ч, что на 1 м² эффективной площади абсорбции составило 4,79 кВт×ч/м2 в день [6].

Все больше людей начинают использовать независимые источники энергии, учитывая особенности географического положения своей местности. У кого-то солнечных дней в году очень много - тот ставит солнечные батареи с солнечными коллекторами на крышах. У кого ветры дуют - прекрасно, используются ветряки.

В городе Дальнереченске население только начинает использовать альтернативные источники. Так как в нашем городе большое количество солнечных дней, это дает возможность использовать солнечные батареи . К сожалению, перейти полностью на альтернативное энергоснабжение очень дорого, но как дополнительный источник энергии, возможно.

Альтернативные источники энергии экологичны, возобновляемы, к тому же они распределены относительно равномерно, поэтому лидерство в их использовании завоюют регионы с квалифицированной рабочей силой, восприимчивостью к нововведениям и стратегическим предвидением.

Человечеству нужна электроэнергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива — урана и тория, из которого можно получать в реакторах-размножителях плутон.

Содержание

Введение
Глава 1. Нетрадиционные источники энергии
Глава 2. Источники возобновляемой энергии
2.1. Энергия ветра
2.2. Гидроэнергия
2.3. Энергия приливов и отливов
2.4. Энергия волн
2.5. Энергия солнечного света
2.6. Геотермальная энергия
Глава 3. Политика России в области нетрадиционных и возобновляемых источниках энергии
Глава 4. Меры поддержки возобновляемых источников энергии
4.1. Зеленые сертификаты
4.2. Возмещение стоимости технологического присоединения
4.3. Фиксированные тарифы на энергию ВИЭ
4.4. Система чистого измерения
4.5. Инвестиции
Глава 5. ВНИЭ в современном мире
Заключение
Список использованных источников

Введение

Человечеству нужна электроэнергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива — урана и тория, из которого можно получать в реакторах-размножителях плутоний. Поэтому важно на сегодняшний день найти выгодные источники электроэнергии, причем выгодные не только с точки зрения дешевизны топлива, но и с точки зрения простоты конструкций, эксплуатации, дешевизны материалов, необходимых для постройки станции, долговечности станций.

Данный реферат является кратким обзором возобновляемых и неисчерпаемых источников энергии. В работе рассмотрены нетрадиционные источники электрической энергии.

Цель работы – прежде всего, ознакомиться с современным положением дел в этой необычайно широкой проблематике в России и в мире.

Российская энергетика сегодня — это 600 тепловых, 100 гидравлических, 9 атомных электростанций. Есть, конечно, несколько электростанций использующих в качестве первичного источника солнечную, ветровую, гидротермальную, приливную энергию, но доля производимой ими энергии очень мала по сравнению с тепловыми, атомными и гидравлическими станциями.

Глава 1. Нетрадиционные источники энергии

В соответствии с резолюцией № 33/148 Генеральной Ассамблеи ООН (1978 г) к нетрадиционным и возобновляемым источникам энергии относятся: солнечная, ветровая, геотермальная, энергия морских волн, приливов и океана, энергия биомассы, древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников и гидроэнергия больших и малых водотоков.

Начиная с 90-х годов, по инициативе ЮНЕСКО при поддержке государств-членов ООН и заинтересованных организаций проводятся мероприятия по продвижению идеи широкого использования возобновляемых источников.

Всё это многообразие сводится, как показано на рисунке 1, к трём глобальным видам источников: энергии Солнца, тепла Земли и энергии орбитального движения планет, причём солнечное излучение по мощности превосходит остальные более чем в 1000 раз. Невозобновляемыми источниками энергии являются нефть, газ, уголь, сланцы. Извлекаемые запасы органического топлива в мире оцениваются следующим образом (млрд.т.у.т.):

  • уголь — 4850
  • нефть — 1140
  • газ — 310
  • всего – 6310.

При уровне мировой добычи девяностых годов (млрд.т.у.т) соответственно 3,1 — 4,5 — 2,6, всего — 10,3 млрд.т.у.т, запасов угля хватит на 1500 лет, нефти — на 250 лет и газа — 120 лет. Не такая уж блестящая перспектива оставить потомков без энергетического обеспечения. Особенно учитывая устойчивую тенденцию удорожания нефти и газа. И чем дальше, тем более быстрыми темпами. Между тем теоретический потенциал солнечной энергии, приходящий на Землю в течение года, превышает все извлекаемые запасы органического топлива в 10-20 раз. А экономический потенциал возобновляемых источников энергии в настоящее время оценивается в 20 млрд.т.у. т в год, что в два раза превышает объём годовой добычи всех видов органического топлива. И это обстоятельство указывает путь развития энергетики будущего, не такого уж и далёкого. Повсеместный переход на возобновляемые источники энергии не происходит лишь потому, что промышленность, машины, оборудование и быт людей на Земле сориентированы на органическое топливо. А ещё потому, что некоторые виды возобновляемых источников энергии непостоянны и имеют низкую плотность энергии.

Основное преимущество возобновляемых источников энергии — их неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты. Эти качества и послужили причиной бурного развития возобновляемой энергетики за рубежом и весьма оптимистических прогнозов их развития в ближайшем десятилетии. Возобновляемые источники энергии играют значительную роль в решении трёх глобальных проблем, стоящих перед человечеством: энергетика, экология, продовольствие.

Таблица 1: Роль НВИЭ в решении трёх глобальных проблем человечества (энергетика, экология, продовольствие) + положительное влияние, — отрицательное влияние, 0 — отсутствие влияния.

Вид ресурсов или установок Энергетика Экология Продовольствие
Ветроустановки + + + 1)
Малые и микроГЭС + + + 2)
Солнечные тепловые установки + + + 3)
Солнечные фотоэлектрические установки + + + 4)
Геотермальные электрические станции + +/- 0
Геотермальные тепловые установки + +/- + 5)
Биомасса. Сжигание твёрдых бытовых отходов + +/- 0
Биомасса. Сжигание сельскохозяйственных отходов, отходов лесозаготовок и лесопереработок + +/- + 6)
Биомасса. Биоэнергетическая переработка отходов + + + 7)
Биомасса. Газификация + + 0
Биомасса. Получение жидкого топлива + + + 8)
Установки по утилизации низкопотенциального тепла + + 0

Примечания:

1) Водоподъёмные установки на пастбищах и в удалённых населённых пунктах.

Читайте также: