Перекачка высоковязких и высокозастывающих нефтей реферат

Обновлено: 07.07.2024

Наиболее распространенным способом трубопроводного транспорта высоковязких и высокозастывающих нефтей в настоящее время является их перекачка с подогревом.

Существует несколько вариантов перекачки высокозастывающих нефтей с подогревом. Для коротких (чаще нефтебазовых) трубопроводов используют методы электроподогрева:

• путем пропуска электрического тока по телу трубы;

• применением электронагревательных элементов в виде специальных кабелей

Прямой электроподогрев трубы заключается в подсоединении источника переменного тока напряжением не выше 50 В к изолированному участку трубопровода. При прохождении по нему электрического тока согласно эффекту Джоуля выделяется тепло и происходит равномерный нагрев стенок трубопровода, а также находящегося в нем продукта. В качестве источника питания,

как правило, применяются однофазные трансформаторы. С учетом требований техники безопасности и незначительного сопротивления труб напряжение источника питания составляет 12.. .36 В. Максимальная длина трубопровода, обогреваемого от одного источника питания, равна 1200 м. При большей длине обогреваемый трубопровод разбивается на несколько самостоятельных

участков и питание подводится к каждому из них в отдельности. В этом случае стоимость электрической системы подогрева значительно возрастает за счет большого числа пунктов питания и длины соединительных проводов. Использование данного метода на магистральных трубопроводах сдерживается и по техническим причинам: нагреваемый участок должен быть электрически изолирован от грунта, чтобы предотвратить большие утечки тока.

Более распространены электронагревательные элементы в виде кабелей и лент. Кабели высокого сопротивления имеют термостойкую электроизоляцию и защиту от механических повреждений. Монтируются в основном с наружной поверхности трубы. Энергопотребление нагревательного кабеля составляет около 100 Вт на 1 м трубы. Прокладка нагреваемого кабеля внутри

трубы более эффективна, чем снаружи, так как все тепло идет на разогрев нефти. Недостатком греющих кабелей является неравномерность нагрева трубы по периметру, что приводит к необходимости поддерживать на кабеле высокую температуру. Мощность, потребляемая греющим кабелем, достигает 4000 кВт, а обогреваемая длина 13,2 км.

Для магистральных трубопроводов наибольшее распространение получил способ ≪горячей≫ перекачки, предусматривающий нагрев нефти перед ее закачкой в трубопровод и периодический подогрев нефти по мере ее остывания в процессе движения. Принципиальная схема такой перекачки приведена на рис.


Нефть с промысла по трубопроводу 1 подается в резервуарный парк 2 головной перекачивающей станции. Резервуары оборудованы подогревательными устройствами, с помощью которых поддерживается температура нефти, позволяющая откачать ее подпорными насосами 3. Они прокачивают нефть через дополнительные подогреватели и подают на прием магистральных насосов 5. Магистральными насосами нефть закачивается в магистральный трубопровод 6. По мере движения в магистральном трубопроводе нефть за счет теплообмена с окружающей средой остывает. Поэтому по трассе трубопровода через каждые 25. 100 км устанавливают пункты подогрева 7. Далее нефть попадает на промежуточную насосно-тепловую станцию НТС, где также установлены подогреватели и все повторяется снова. В конце концов нефть закачивается в резервуары 9 конечного пункта, также оборудованные системой подогрева.

В настоящее время добываются значительные объемы нефтей, обладающих высокой вязкостью при обычных температурах или со­держащие большое количество парафина и вследствие этого застывающие при высоких температурах. Перекачка таких нефтей по трубопроводам обычным способом затруднена. Поэтому для их транс­портировки применяют специальные методы:

перекачку с разбавителями;

гидротранспорт высоковязких нефтей;

перекачку термообработанных нефтей;

перекачку нефтей с присадками;

перекачку предварительно подогретых нефтей.

Перекачка высоковязких и высокозастывающих нефтей с разбавителями

Одним из эффективных и доступных способов улучшения реологических свойств высоковязких и высокозастывающих нефтей является применение углеводородных разбавителей - газового кон­денсата и маловязких нефтей.

Использование раэавителей позволяет довольно существен­но снизить вязкость и температуру застывания нефти. Это связано с тем, что, во-первых, понижается концентрация парафина в смеси, т. к. часть его растворяется легкими фракциями разбавителя. Во-вторых, при наличии в разбавители асфальто - смолистых веществ после­дние, адсорбируясь Hi поверхности кристаллов парафина, препятствуют образований прочной структурной решетки.

В общем случае выбор типа разбавителя производится с уче­том эффективности его действия на свойства высоковязкой и высокозастывающей нефти затрат на получение разбавителя, его до­ставку на головные сооружения нефтепровода и на смешение.

Любопытно, что на геологические свойства нефтяной смеси оказывает влияние температура смешиваемых компонентов. Одно­родная смесь получается, если смешение производится при температуре на 3-5 градусов выше температуры застывания вязкого компонента. При неблагоприятных условиях смешения эффектив­ность разбавителя в значительной степени уменьшается и может произойти даже расслоение смеси.

5.2. Гидротранспорт высокоязких и высокозастывающих нефтей

Гидротранспорт высоковязких и высокозастывающих нефтей может осуществляться несколькими способами:

перекачка нефти внутри водяного кольца;

послойная перекачка нефти и воды.

Еще в 1906 г И. Д.Исаак осуществил в США перекачку вы­соковязкой (п = 25 • 10 2 /c) калифорнийской нефти с водой по трубопроводу диаметром '6 мм на расстояние 800 м. К внутренней стенке трубы была приварен спирально свернутая проволока, обес­печивающая закрутку потоса. В результате более тяжелая вода отбрасывалась непосредственно к стенке, а поток нефти двигался внут­ри водяного кольца, испытывая минимальное трение. Было установлено, что максимальна производительность трубопровода при постоянном перепаде давление достигалась при соотношении расхо­дов нефти и воды, равном9:1. Результаты эксперимента были использованы при строительстве промышленного нефтепровода диа­метром 203 мм и протяженностью 50 км. Винтовая дорожка в нем имела высоту 24 мм и шаг около 3 м.

Однако широкого распространения данный способ транспор­та не получил из-за сложности изготовления винтовых нарезок на внутренней поверхности труб. Кроме того, в результате отложения парафина нарезка засоряется! водяное кольцо у стенки не формиру­ется, что резко ухудшает парметры перекачки.

Уменьшение объема слюды в смеси ухудшает устойчивость эмульсии. В результате экспериментов установлено, что минимально допустимое содержание воды 1авно 30 %.

Наконец, третий способ гидротранспорта - это послойная пе­рекачка нефти и воды. В этом случае вода, как более тяжелая жидкость, занимает положение у нижней образующей трубы, а нефть - у верх­ней. Поверхность раздела фаз в зависимости от скорости перекачки может быть как плоской, так и криволинейной. Уменьшение гидрав­лического сопротивления трубопровода в этом случае происходит в связи с тем, что часть нефти контактирует не с неподвижной стенкой, а с движущейся водой. Данный способ перекачки также не может быть применен на трубопроводах с промежуточными насосными стан­циями, т.к. это привело бы к образованию стойких водонефтяных эмульсий.

5.3. Перекачка термообработанных нефтей

Термообработкой называется тепловая обработка высокопарафинистой нефти, предусматривающая ее нагрев до температуры, превышающей температуру плавления парафинов, и последующее охлаждение с заданной скоростью, для улучшения реологических па­раметров.

Первые в нашей стране опыты по термообработке нефтей были выполнены в 30-х годах. Так, термическая обработка нефти Ромашкинского месторождения позволила снизить ее вязкость более чем в 2 раза и уменьшить температуру застывания на 20 градусов.

Установлено, что улучшение реологических свойств нефтей связано с внутренними изменениями в них, происходящими в резуль­тате термообработки. В обычных условиях при естественном охлаждении парафинистых нефтей образуется кристаллическая па­рафиновая структура, придающая нефти свойства твердого тела. Прочность структуры оказывается тем больше, чем выше концентра­ция парафина в нефти и чем меньше размеры образующихся кристаллов. Осуществляя нагрев нефти до температуры, превышаю­щей температуру плавления парафинов, мы добиваемся их полного растворения. При последующем охлаждении нефти происходит кри­сталлизация парафинов. На величину, число и форму кристаллов парафина в нефти оказывает влияние соотношение скорости возник­новения центров кристаллизации парафина и скорости роста уже выделившихся кристаллов. Асфальто-смолистые вещества, адсорбируясь на кристаллах парафина, снижают его поверхностное натяжение. В результате процесс выделения парафина на поверхности уже суще­ствующих кристаллов становится энергетически более выгодным, чем образование новых центров кристаллизации. Это приводит к тому, что в термообработанной нефти образуются достаточно крупные кристал­лы парафина. Одновременно из-за наличия на поверхности этих кристаллов адсорбированных асфальтенов и смол силы коагуляционного сцепления между ними значительно ослабляются, что препятствует образованию прочной парафиновой структуры.

Эффективность термообработки зависит от температуры по­догрева, скорости охлаждения и состояния нефти (статика или динамика) в процессе охлаждения. Оптимальная температура подо­грева при термообработке находится экспериментально, наилучшие условия охлаждения - в статике.

Следует иметь в виду, что реологические параметры термообработанной нефти с течением времени ухудшаются и в конце концов достигают значений, которые нефть имела до термообработки. Для озексуатской нефти это время составляет 3 суток, а для мангышлакской - 45. Так что не всегда достаточно термически обработать нефть один раз для решения проблемы ее трубопроводного транспорта. Кроме того, капитальные вложения в пункт термообработки довольно высоки.

5.4. Перекачка нефтей с присадками

Депрессорные присадки уже давно применяются для снижения температуры застывания масел. Однако для нефтей такие присадки оказались малоэффективны.

Присадки вводятся в нефть при температуре 60-70 °С, когда основная масса парафинов находится в растворенном состоянии. При последующем охлаждении молекулы присадок адсорбируются на поверхности выпадающих из нефти кристаллов парафина, мешая их росту. В результате образуется текучая суспензия кристаллов парафина в нефти.

Нефти, обработанные присадками, перекачиваются по ряду западноевропейских трубопроводов.

5. 5 . Перекачка предварительно подогретых нефтей

В этом случае резервуары оборудованы системой подогрева нефти до температуры, при которой возможна ее откачка подпорны­ми насосами. Они прокачивают нефть через дополнительные подо­греватели и подают на прием основных насосов. Ими нефть закачивается в магистральный трубопровод.

По мере движения в магистральном трубопроводе нефть за счет теплообмена с окружающей средой остывает. Поэтому по трассе трубопровода через каждые 25-100 км устанавливают пункты подо­грева. Промежуточные насосные станции размещают в соответствии с гидравлическим расчетом, но обязательно совмещают с пунктами подогрева, чтобы облегчить их эксплуатацию. В конце концов нефть закачивается в резервуары конечного пункта, также оборудованные системой подогрева.

Изучив работу я понял, что главным методом транспортировки является трубопроводный транспорт нефти.

С каждым годом в нашей стране и за рубежом увеличивается добыча нефтей, имеющих высокие вязкость и температуру застывания. Кроме того, вследствие углубления отбора легких фракций при переработке нефти повышается вязкость нефтяных остатков. Как и другие массовые грузы, их наиболее экономично транспортировать по трубопроводам

Большой вклад в исследование вопросов, связанных с трубопроводным транспортом высоковязких и высокозастывающих нефтей и нефтепродуктов, внесли Абрамзон Л.С., Агапкин В.М., Алиев Р.А., Губин В.Е., Новоселов В.Ф., Тугунов П.И., Черникин В.И., Юфин В.А., Яблонский В.С. и другие ученые.

2.1. Реологические свойства высоковязких

и высокозастывающих нефтей

Реологическиминазываются свойства жидкостей, от которых зависит характер их течения.


До сих пор мы говорили только о ньютоновских жидкостях. К ним относятся вода, светлые нефтепродукты, нефти с низким содержанием парафина и смол, парафинистые нефти при высокой температуре. Объединяет их в один класс ньютоновских жидкостей одинаковый вид зависимости напряжения сдвига t (напряжение сил трения на поверхности соприкосновения слоев жидкости) от градиента скорости по радиусу (скорости сдвига). Графическое изображение этой зависимости называется кривой течения жидкости (рис. 2.1).


Для ньютоновских жидкостей кривая течения имеет вид прямой, выходящей под углом из начала координат, и описывается уравнением Ньютона

где коэффициент пропорциональности m, характеризующий угол наклона кривой течения, есть ни что иное как динамическая вязкость жидкости.

Модуль скорости сдвига в данном уравнении появляется из-за того, что отсчет текущего радиуса r ведется от оси трубы и поэтому величина


1. Кроме того, видно, что уравнение кривой течения ньютоновских жидкостей представляет собой частный случай уравнения (2.3) когда К = m, а n = 1. Отсюда становится ясным физический смысл коэффициентов: К - коэффициент, характеризующий вязкость жидкости; n - показатель степени, характеризующий меру отклонения поведения жидкости от ньютоновского.

Обобщает все вышеназванные зависимости реологическая модель Балкли-Гершеля


. (2.4)

Кривые течения 2 и 3 характерны для парафинистых нефтей и нефтепродуктов при температурах, близких к температуре их застывания или замерзания. При высоких температурах они ведут себя как ньютоновские жидкости. Так исследования реологического поведения топочного мазута М-100 и ряда вязких масел показало, что они сохраняют ньютоновское поведение при следующих температурах: мазут - выше +35 о С, трансмиссионные масла летнее и зимнее, авиационное масло МС-20 - выше +10 о С, цилиндровое 52, компрессорное масло КС-19 и автомобильное АС-10 - выше 0 о С.

С каждым годом в нашей стране и за рубежом увеличивается добыча нефтей, имеющих высокие вязкость и температуру застывания. Кроме того, вследствие углубления отбора легких фракций при переработке нефти повышается вязкость нефтяных остатков. Как и другие массовые грузы, их наиболее экономично транспортировать по трубопроводам

Большой вклад в исследование вопросов, связанных с трубопроводным транспортом высоковязких и высокозастывающих нефтей и нефтепродуктов, внесли Абрамзон Л.С., Агапкин В.М., Алиев Р.А., Губин В.Е., Новоселов В.Ф., Тугунов П.И., Черникин В.И., Юфин В.А., Яблонский В.С. и другие ученые.

2.1. Реологические свойства высоковязких

и высокозастывающих нефтей

Реологическиминазываются свойства жидкостей, от которых зависит характер их течения.


До сих пор мы говорили только о ньютоновских жидкостях. К ним относятся вода, светлые нефтепродукты, нефти с низким содержанием парафина и смол, парафинистые нефти при высокой температуре. Объединяет их в один класс ньютоновских жидкостей одинаковый вид зависимости напряжения сдвига t (напряжение сил трения на поверхности соприкосновения слоев жидкости) от градиента скорости по радиусу (скорости сдвига). Графическое изображение этой зависимости называется кривой течения жидкости (рис. 2.1).


Для ньютоновских жидкостей кривая течения имеет вид прямой, выходящей под углом из начала координат, и описывается уравнением Ньютона

где коэффициент пропорциональности m, характеризующий угол наклона кривой течения, есть ни что иное как динамическая вязкость жидкости.

Модуль скорости сдвига в данном уравнении появляется из-за того, что отсчет текущего радиуса r ведется от оси трубы и поэтому величина


1. Кроме того, видно, что уравнение кривой течения ньютоновских жидкостей представляет собой частный случай уравнения (2.3) когда К = m, а n = 1. Отсюда становится ясным физический смысл коэффициентов: К - коэффициент, характеризующий вязкость жидкости; n - показатель степени, характеризующий меру отклонения поведения жидкости от ньютоновского.

Обобщает все вышеназванные зависимости реологическая модель Балкли-Гершеля


. (2.4)

Кривые течения 2 и 3 характерны для парафинистых нефтей и нефтепродуктов при температурах, близких к температуре их застывания или замерзания. При высоких температурах они ведут себя как ньютоновские жидкости. Так исследования реологического поведения топочного мазута М-100 и ряда вязких масел показало, что они сохраняют ньютоновское поведение при следующих температурах: мазут - выше +35 о С, трансмиссионные масла летнее и зимнее, авиационное масло МС-20 - выше +10 о С, цилиндровое 52, компрессорное масло КС-19 и автомобильное АС-10 - выше 0 о С.

Читайте также: