Передача данных по кабелю реферат

Обновлено: 05.07.2024

При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют защиты от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как… Читать ещё >

Вычислительные сети. Основные способы передачи данных ( реферат , курсовая , диплом , контрольная )

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

" НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ"

Выполнил Группа: РК6−01

Студент: Артеменко Ю.В.

Проверил преподаватель: Бизяев А.А.

г. Новосибирск — 2010 г.

  • Принципы построения компьютерных сетей. Характеристика компьютерных сетей
    • Классификация компьютерных сетей
    • Способы передачи данных
    • Коллизии и способы их разрешения
    • Сетевая модель OSI
    • Протокол TCP - IP
    • Система доменных имён DNS
    • NetBIOS
    • Аппаратура передачи данных
    • Литература

    Принципы построения компьютерных сетей. Характеристика компьютерных сетей

    Компьютерная сеть — сеть обмена и распределенной обработки информации, которая образуется множеством взаимосвязанных абонентских систем и средствами связи. Средства передачи ориентированы на коллективное использование общесетевых ресурсов — аппаратных, информационных и программных.

    Абонентская система (АС) — совокупность ЭВМ, ПО, периферийного оборудования, средств связи, ВС, которые выполняют прикладные процессы, коммуникационная подсеть (телекоммуникационная система представляет собой совокупность физической среды передачи информации, аппаратных и программных средств, обеспечивающих взаимодействие АС).

    Прикладной процесс — различные процедуры обработки, хранения, вывода информации, которые выполняются в интересах пользователя. С появлением сетей удалось решить две проблемы:

    1) обеспечение, в принципе, неограниченного доступа к ЭВМ

    пользователей, независимо от их территориального расположения;

    2) возможность оперативного перемещения больших массивов информации на любые расстояния.

    Для сетей принципиальное значение имеют следующие обстоятельства:

    ЭВМ, находящиеся в разных АС одной сети связываются между собой автоматически;

    каждая ЭВМ сети должна быть приспособлена как для работы в автономном режиме под управлением своей ОС, так и для работы в качестве составного звена сети;

    компьютеры сети могут работать в различных режимах: обмена данными между АС, запроса и выдачи информации, сбора информации, пакетной обработки данных и т. д.

    Аппаратное обеспечение сети составляют: ЭВМ различных типов; средства связи; оборудование АС; оборудование узлов связи; аппаратура связи и согласование работы сетей одного и того же уровня или различных уровней. Основные требования к ЭВМ сетей — это универсальность и модульность. Информационное обеспечение сети представляет собой единый информационный ориентированный на решаемые в сети задачи и содержащий массивы данных доступных для всех пользователей сетей и массивы для индивидуальных пользователей.

    ПО ВС автоматизирует процессы программирования задач, обработки информации, осуществляет планирование и организацию коллективного доступа к коммуникационным, вычислительным ресурсам сети. Также ПО осуществляет динамическое распределение и перераспределение этих ресурсов.

    общесетевое ПО, которое образуется распределенной ОС сети и программными средствами входящих в состав комплекса программ технического обслуживания;

    специальное ПО представленные прикладными программными средствами: функциональными и интегрированными пакетами программ, библиотеками стандартных программ, а также программами, отражающими специфику предметной области;

    базовое ПО ЭВМ, включающее ОС, системы автоматизации программирования, контролирующие и диагностические тест программы.

    Классификация компьютерных сетей

    В основу классификации КС положены наиболее характерные, функциональные и информационные признаки.

    По степени территориального распределения элементов сети. Таким образом, сети бывают глобальные, региональные и локальные. Глобальная КС объединяет АС рассосредоточенные на большой территории, охватывающие различные страны и континенты. Взаимодействие АС осуществляется на базе различных территориальных сетей связи, в которых используются телефонные линии, радио, спутниковая связь. Региональные КС объединяют АС расположенные друг от друга на значительном расстоянии в пределах одной страны, региона, большого города. Локальная КС связывает АС расположенные в пределах небольшой территории. Её протяженность ограничивается несколькими километрами.

    Отдельный класс составляют корпоративные КС. Корпоративная сеть относится к технической базе корпорации. Ей принадлежит ведущая роль задач планирования, организации

    По способу управления КС делят на сети с централизованным, децентрализованным и смешанным управлением. По топологии сети могут делиться на два класса: широковещательные и последовательные. К широковещательным конфигурациям в любой момент времени на передачу единицу единицы информации может работать только одна рабочая станция, а остальные могут принимать этот кадр. Основные типы широковещательной конфигурации:

    звезда с пассивным центром;

    В последовательных конфигурациях характерных для сетей с маршрутизацией информации передача данных осуществляется от одной рабочей станции к соседней. Причем на различных участках сети могут использоваться различные виды передающей среды. Передатчикам и приемникам здесь предъявляются более низкие требования, чем в широковещательных конфигурациях.

    звезда с интеллектуальным центром.

    Способы передачи данных

    Телефонная сеть PSTN

    Модем и коммутируемый доступ Выделенные линии Коммутация пакетов

    Передача по оптоволоконному кабелю

    Synchronous optical networking

    Fiber distributed data interface

    Ближнего радиуса действия

    Human Area Network

    Среднего радиуса действия

    IEEE 802.16e WiMAX

    Дальнего радиуса действия

    Передача данных при помощи мобильных телефонов

    IEE 802.16e WiMAX

    Коллизии и способы их разрешения

    Коллизия (англ. collision — ошибка наложения, столкновения) — в терминологии компьютерных и сетевых технологий, наложение двух и более кадров от станций, пытающихся передать кадр в один и тот же момент времени.

    Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения. Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигнала, которая также называется несущей частотой (carrier-sense). Признаком незанятости среды является отсутствие на ней несущей частоты, которая при манчестерском способе кодирования равна 5−10 МГц, в зависимости от последовательности единиц и нулей, передаваемых в данный момент.

    Если среда свободна, то узел имеет право начать передачу кадра. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ. После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9,6 мкс. Эта пауза, называемая также межкадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна.

    При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют защиты от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации — методы кодирования, используемые в Ethernet, не позволяют выделять сигналы каждой станции из общего сигнала.

    Коллизия — это нормальная ситуация в работе сетей Ethernet. Для возникновения коллизии не обязательно, чтобы несколько станций начали передачу абсолютно одновременно, такая ситуация маловероятна. Гораздо вероятней, что коллизия возникает из-за того, что один узел начинает передачу раньше другого, но до второго узла сигналы первого просто не успевают дойти к тому времени, когда второй узел решает начать передачу своего кадра. То есть коллизии — это следствие распределенного характера сети.

    Для уменьшения количества коллизий необходимо уменьшить количество устройств на сетевом сегменте, чтобы повлиять на уровень коллизий. Это обычно достигается путем деления сегмента на два сегмента и помещении моста (bridge) или маршрутизатора (router) между ними.

    Сетевая модель OSI

    СКАЧАТЬ: struktura.zip [789,83 Kb] (cкачиваний: 361)

    Стандарты технологии Ethernet. Форматы кадров технологии Ethernet

    Стандарты технологии Ethernet

    Метод доступа CSMA/CD

    Форматы кадров технологии Ethernet

    Спецификации физической среды Ethernet

    Список используемой литературы

    Введение

    Компьютеры появились в жизни человека не так уж давно, но почти любой человек может с твердой уверенностью сказать, что будущее - за компьютерными технологиями.

    Процесс развития персонального компьютера движется с постоянно увеличивающимся ускорением, в связи с чем в ближайшем будущем компьютеры станут обязательным и незаменимым атрибутом любого предприятия, офиса и большинства квартир.

    Причиной столь интенсивного развития информационных технологий является все возрастающая потребность в быстрой и качественной обработки информации, потоки которой с развитием общества растут как снежный ком.

    Одной из наиболее перспективных на данный момент областей исследования является разработка так называемых нейрокомпьютеров, основанных на молекулах ДНК определенного вида водорослей, и способных хранить громадные объёмы информации относительно современного ПК при минимальных размерах самих носителей информации.

    Большой успех в последнее время получили так называемые виртуальные технологии, которые позволяют с большой точностью моделировать физические явления, процессы, предметы, а так же их взаимодействие в совокупности. Такие технологии используются в различных областях деятельности человека.

    Компьютеры уже прочно вошли в современный мир, во все сферы человеческой деятельности и науки, тем самым создавая необходимость в обеспечении их различным программным обеспечением.

    Объединение компьютеров в сети позволило значительно повысить производительность труда. Компьютеры используются как для производственных (или офисных) нужд, так и для обучения.

    В настоящее время локальные вычислительные сети получили очень широкое распространение.

    Стандарты технологии Ethernet. Форматы кадров технологии Ethernet

    Стандарты технологии Ethernet

    Ethernet - это самый распространенный на сегодняшний день стандарт локальных сетей. Общее количество сетей, использующих в настоящее время Ethernet, оценивается в 5 миллионов, а количество компьютеров, работающих с установленными сетевыми адаптерами Ethernet - в 50 миллионов.

    Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии. В более узком смысле, Ethernet - это сетевой стандарт, основанный на технологиях экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году (еще до появления персонального компьютера). Метод доступа был опробован еще раньше: во второй половине 60-х годов в радиосети Гавайского университета использовались различные варианты случайного доступа к общей радиосреде, получившие общее название Aloha. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля. Поэтому стандарт Ethernet иногда называют стандартом DIX по заглавным буквам названий фирм.

    Рис. 1. Примитивы уровня LLC
    а, в, с - без установления соединения, d - с установлением соединения

    На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, который во многом совпадает со своим предшественником, но некоторые различия все же имеются. В то время, как в стандарте IEEE 802.3 различаются уровни MAC и LLC, в оригинальном Ethernet оба эти уровня объединены в единый канальный уровень. В Ethernet определяется протокол тестирования конфигурации (Ethernet Configuration Test Protocol), который отсутствует в IEEE 802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.

    В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации - 10Base-5, 10Base-2, 10Base-T, 10Base-F.

    Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet используется манчестерский код.

    Все виды стандартов Ethernet используют один и тот же метод разделения среды передачи данных - метод CSMA/CD.

    Метод доступа CSMA/CD

    В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-multiply-access with collision detection, CSMA/CD).

    Этот метод используется исключительно в сетях с общей шиной (к которым относятся и радиосети, породившие этот метод). Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Простота схемы подключения - это один из факторов, определивших успех стандарта Ethernet. Говорят, что кабель, к которому подключены все станции, работает в режиме коллективного доступа (multiply-access,MA).

    Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения. Затем кадр передается по кабелю. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные и посылает по кабелю кадр-ответ. Адрес станции-источника также включен в исходный кадр, поэтому станция-получатель знает, кому нужно послать ответ.

    При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общему кабелю (рис. 3). Для уменьшения вероятности этой ситуации непосредственно перед отправкой кадра передающая станция слушает кабель (то есть принимает и анализирует возникающие на нем электрические сигналы), чтобы обнаружить, не передается ли уже по кабелю кадр данных от другой станции. Если опознается несущая (carrier-sense, CS), то станция откладывает передачу своего кадра до окончания чужой передачи, и только потом пытается вновь его передать. Но даже при таком алгоритме две станции одновременно могут решить, что по шине в данный момент времени нет передачи, и начать одновременно передавать свои кадры. Говорят, что при этом происходит коллизия, так как содержимое обоих кадров сталкивается на общем кабеле, что приводит к искажению информации.

    Чтобы корректно обработать коллизию, все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется обнаружение коллизии (collision detection, CD). Для увеличения вероятности немедленного обнаружения коллизии всеми станциями сети, ситуация коллизии усиливается посылкой в сеть станциями, начавшими передачу своих кадров, специальной последовательности битов, называемой jam-последовательностью.

    После обнаружения коллизии передающая станция обязана прекратить передачу и ожидать в течение короткого случайного интервала времени, а затем может снова сделать попытку передачи кадра.

    Из описания метода доступа видно, что он носит вероятностный характер, и вероятность успешного получения в свое распоряжение общей среды зависит от загруженности сети, то есть от интенсивности возникновения в станциях потребности передачи кадров. При разработке этого метода предполагалось, что скорость передачи данных в 10 Мб/с очень высока по сравнению с потребностями компьютеров во взаимном обмене данными, поэтому загрузка сети будет всегда небольшой. Это предположение остается часто справедливым и по сей день, однако уже появились приложения, работающие в реальном масштабе времени с мультимедийной информацией, для которых требуются гораздо более высокие скорости передачи данных. Поэтому наряду с классическим Ethernet'ом растет потребность и в новых высокоскоростных технологиях.

    Метод CSMA/CD определяет основные временные и логические соотношения, гарантирующие корректную работу всех станций в сети:

    • Между двумя последовательно передаваемыми по общей шине кадрами информации должна выдерживаться пауза в 9.6 мкс; эта пауза нужна для приведения в исходное состояние сетевых адаптеров узлов, а также для предотвращения монопольного захвата среды передачи данных одной станцией.
    • При обнаружении коллизии (условия ее обнаружения зависят от применяемой физической среды) станция выдает в среду специальную 32-х битную последовательность (jam-последовательность), усиливающую явление коллизии для более надежного распознавания ее всеми узлами сети.
    • После обнаружения коллизии каждый узел, который передавал кадр и столкнулся с коллизией, после некоторой задержки пытается повторно передать свой кадр. Узел делает максимально 16 попыток передачи этого кадра информации, после чего отказывается от его передачи. Величина задержки выбирается как равномерно распределенное случайное число из интервала, длина которого экспоненциально увеличивается с каждой попыткой. Такой алгоритм выбора величины задержки снижает вероятность коллизий и уменьшает интенсивность выдачи кадров в сеть при ее высокой загрузке.

    Рис. 3. Схема возникновения коллизии в методе случайного доступа CSMA/CD
    (tp - задержка распространения сигнала между станциями A и B)

    Все параметры протокола Ethernet подобраны таким образом, чтобы при нормальной работе узлов сети коллизии всегда четко распознавались. Именно для этого минимальная длина поля данных кадра должна быть не менее 46 байт (что вместе со служебными полями дает минимальную длину кадра в 72 байта или 576 бит). Длина кабельной системы выбирается таким образом, чтобы за время передачи кадра минимальной длины сигнал коллизии успел бы распространиться до самого дальнего узла сети. Поэтому для скорости передачи данных 10 Мб/с, используемой в стандартах Ethernet, максимальное расстояние между двумя любыми узлами сети не должно превышать 2500 метров.

    С увеличением скорости передачи кадров, что имеет место в новых стандартах, базирующихся на том же методе доступа CSMA/CD, например, Fast Ethernet, максимальная длина сети уменьшается пропорционально увеличению скорости передачи. В стандарте Fast Ethernet она составляет 210 м, а в гигабитном Ethernet ограничена 25 метрами.

    Независимо от реализации физической среды, все сети Ethernet должны удовлетворять двум ограничениям, связанным с методом доступа:

    • максимальное расстояние между двумя любыми узлами не должно превышать 2500 м,
    • в сети не должно быть более 1024 узлов.

    Кроме того, каждый вариант физической среды добавляет к этим ограничениям свои ограничения, которые также должны выполняться.

    Уточним основные параметры операций передачи и приема кадров Ethernet, кратко описанные выше.

    Станция, которая хочет передать кадр, должна сначала с помощью MAC-узла упаковать данные в кадр соответствующего формата. Затем для предотвращения смешения сигналов с сигналами другой передающей станции, MAC-узел должен прослушивать электрические сигналы на кабеле и в случае обнаружения несущей частоты 10 МГц отложить передачу своего кадра. После окончания передачи по кабелю станция должна выждать небольшую дополнительную паузу, называемую межкадровым интервалом (interframe gap), что позволяет узлу назначения принять и обработать передаваемый кадр, и после этого начать передачу своего кадра.

    Одновременно с передачей битов кадра приемно-передающее устройство узла следит за принимаемыми по общему кабелю битами, чтобы вовремя обнаружить коллизию. Если коллизия не обнаружена, то передается весь кадр, поле чего MAC-уровень узла готов принять кадр из сети либо от LLC-уровня.

    Если же фиксируется коллизия, то MAC-узел прекращает передачу кадра и посылает jam-последовательность, усиливающую состояние коллизии. После посылки в сеть jam-последовательности MAC-узел делает случайную паузу и повторно пытается передать свой кадр.

    Для того, чтобы уменьшить интенсивность коллизий, каждый MAC-узел с каждой новой попыткой случайным образом увеличивает длительность паузы между попытками. Временное расписание длительности паузы определяется на основе усеченного двоичного экспоненциального алгоритма отсрочки (truncated binary exponential backoff). Пауза всегда составляет целое число так называемых интервалов отсрочки.

    Интервал отсрочки (slot time) - это время, в течение которого станция гарантированно может узнать, что в сети нет коллизии. Это время тесно связано с другим важным временным параметром сети - окном коллизий (collision window). Окно коллизий равно времени двукратного прохождения сигнала между самыми удаленными узлами сети - наихудшему случаю задержки, при которой станция еще может обнаружить, что произошла коллизия. Интервал отсрочки выбирается равным величине окна коллизий плюс некоторая дополнительная величина задержки для гарантии:

    интервал отсрочки = окно коллизий + дополнительная задержка

    В стандартах 802.3 большинство временных интервалов измеряется в количестве межбитовых интервалов, величина которых для битовой скорости 10 Мб/с составляет 0.1 мкс и равна времени передачи одного бита.

    Величина интервала отсрочки в стандарте 802.3 определена равной 512 битовым интервалам, и эта величина рассчитана для максимальной длины коаксиального кабеля в 2.5 км. Величина 512 определяет и минимальную длину кадра в 64 байта, так как при кадрах меньшей длины станция может передать кадр и не успеть заметить факт возникновения коллизии из-за того, что искаженные коллизией сигналы дойдут до станции в наихудшем случае после завершения передачи. Такой кадр будет просто потерян.

    Время паузы после N-ой коллизии полагается равным L интервалам отсрочки, где L - случайное целое число, равномерно распределенное в диапазоне [0, 2N]. Величина диапазона растет только до 10 попытки (напомним, что их не может быть больше 16), а далее диапазон остается равным [0, 210], то есть [0, 1024]. Значения основных параметров процедуры передачи кадра стандарта 802.3 приведено в таблице 1.

    Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи дан­ных и промежуточной аппаратуры. Синонимом термина линия связи(line) являет­ся термин канал связи(channel).

    Физическая среда передачи данных может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через кото­рые распространяются электромагнитные волны.

    В зависимости от среды передачи данных линии связи разделяются на следую­щие:

    § кабельные (медные и волоконно-оптические);

    § радиоканалы наземной и спутниковой связи.

    Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и вися­щие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии исполь­зуются и для передачи компьютерных данных. Скоростные качества и помехоза­щищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.

    Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коак­сиальные кабели с медной жилой, а также волоконно-оптические кабели.

    Скрученная пара проводов называется витой парой.Витая пара существует в экранированном варианте, когда пара мед­ных проводов обертывается в изоляционный экран, и неэкранированном, когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю.

    Коаксиальный кабель имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Суще­ствует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения — для локальных сетей, для глобальных сетей, для кабельно­го телевидения и т. п.

    Волоконно-оптический кабельсостоит из тонких волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля — он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и лучше других типов передающей среды обеспечивает защиту данных от внешних помех.

    Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радио­каналов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция, а также диапазонах сверхвысо­ких частот (СВЧ или microwaves).

    В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты использу­ют либо спутниковые каналы, либо радиорелейные каналы, где это условие выпол­няется.

    В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются воло­конно-оптические. На них сегодня строятся как магистрали крупных территори­альных сетей, так и высокоскоростные линии связи локальных сетей.

    Популярной средой является также витая пара, которая характеризуется отличным соотноше­нием качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя — например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользова­телем сети.

    Даже при рассмотрении простейшей сети, состоящей всего из двух машин, можно увидеть многие проблемы, присущие любой вычислительной сети, в том числе проблемы, связанные с физической передачей сигналов по линиям связи, без решения которой невозможен любой вид связи.

    В вычислительной технике для представления данных используется двоичный код. Внутри компьютера единицам и нулям данных соответствуют дискретные электрические сигналы. Представление данных в виде электрических или оптических сигналов называется кодированием. Существуют различные способы кодирования двоичных цифр 1 и 0, например, потенциальный способ, при котором единице соответствует один уровень напряжения, а нулю - другой, или импульсный способ, когда для представления цифр используются импульсы различной или одной полярности.

    В вычислительных сетях применяют как потенциальное, так и импульсное кодирование дискретных данных, а также специфический способ представления данных, который никогда не используется внутри компьютера, - модуляцию (рис. 3). При модуляции дискретная информация представляется синусоидальным сигналом той частоты, которую хорошо передает имеющаяся линия связи.


    Потенциальное или импульсное кодирование применяется на каналах высокого качества, а модуляция на основе синусоидальных сигналов предпочтительнее в том случае, когда канал вносит сильные искажения в передаваемые сигналы. Обычно модуляция используется в глобальных сетях при передаче данных через аналоговые телефонные каналы связи, которые были разработаны для передачи голоса в аналоговой форме и поэтому плохо подходят для непосредственной передачи импульсов.


    На способ передачи сигналом влияет и количество проводов в линиях связи между компьютерами.

    Передача данных может происходить происходит параллельно (рис. 5) или последовательно (рис. 6).

    Для сокращения стоимости линий связи в сетях обычно стремятся к сокращению количества проводов и из-за этого используют не параллельную передачу всех бит одного байта или даже нескольких байт, как это делается внутри компьютера, а последовательную, побитную передачу, требующую всего одной пары проводов.



    При соединении компьютеров и устройств используются также три различных метода, обозначаемые тремя различными терминами. Соединение бывает: симплексное, полудуп­лексное и дуплексное(рис. 7).

    О симплексном соединении говорят, когда данные перемещаются лишь в одном направлении. Полудуплексное соединение позво­ляет данным перемещаться в обоих направлениях, но в разное время, и, наконец, дуплексное соединение, это когда данные следуют в обоих направлениях одновременно.


    Рис. 7. Примеры потоков данных.

    Другим важным понятием является переключение (коммутация) соединения.

    Переключение соединения позволяет аппаратным средствам сети разделять один и тот же физический канал связи между многими устройствами. Два основных способа переключения соединения - пере­ключение цепей и переключение пакетов.

    Переключение цепей создает единое непрерывное соединение между двумя сетевыми устройствами. Пока эти устройства взаимодействуют, ни одно другое не сможет воспользоваться этим соединением для передачи собственной инфор­мации - оно вынуждено ждать, пока соединение не освободится.


    Рис. 6Переключение цепей

    Большинство современных сетей, включая Интернет, используют переключение пакетов. Программы передачи данных в таких сетях делят данные на кусочки, называе­мые пакетами. В сети пакетной коммутации данные могут следовать одновременно одним пакетом, а могут - в нескольких. Данные прибудут в одно и тоже место назначения, несмотря на то, что пути, которыми они следовали, могут быть совершенно различны.

    Для сравнения двух видов соединения в сети, предположим, что мы прервали канал в каждом их них. Например, отключив принтер от менеджера на рис. 6 (переставив тумблер в положение В), вы лишили его возможности печатать. Соединение с переключением цепей требует наличия непрерывного канала связи.


    Рис. 7. Переключение пакетов

    Наоборот, данные в сети с переключением пакетов могут двигаться различными путями. Это видно на рис. 7. Данные необязательно следуют одной дорогой на пути между офисным и домашним компьютерами, разрыв одного из каналов не приведет к потере соединения — данные просто пойдут другим маршрутом. Сети с переключением пакетов имеют множество альтернативных маршрутов для пакетов.

    Коммутация пакетов — это техника коммутации абонентов, которая была специ­ально разработана для эффективной передачи компьютерного трафика.

    Суть проблемы заключается в пульсирующем ха­рактере трафика, который генерируют типичные сетевые приложения. Например, при обращении к удаленному файловому серверу пользователь сначала просмат­ривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вооб­ще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер — и это снова порождает интенсивную передачу данных по сети.

    Коэффициент пульсации трафика отдельного пользователя сети, равный отно­шению средней интенсивности обмена данными к максимально возможной, может составлять 1:50 или 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут использоваться и будут недоступны другим пользователям сети.

    Пакеты транспортируются в сети как независи­мые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге — узлу назначения.

    Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета. В этом случае пакет находится некоторое время в очереди пакетов буферной памяти выходного порта, а когда до него дойдет очередь, то он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсации трафика на магистральных связях между коммутаторами и тем самым использовать их наиболее эффективным образом для повышения пропускной способности сети в целом.

    Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это дается в сетях с коммутацией каналов. При этом способе время взаимодействия пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому.

    Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов. Тем не менее, общий объем передаваемых сетью компьютерных данных в едини­цу времени при технике коммутации пакетов будет выше, чем при технике ком­мутации каналов.

    Обычно при равенстве предоставляемой скоро­сти доступа сеть с коммутацией пакетов оказывается в 2-3 раза дешевле, чем сеть с коммутацией каналов, то есть публичная телефонная сеть.

    Каждая из этих схем (коммутация каналов (circuit switching) или коммутация пакетов (packet switching)) имеет свои преимущества и недостатки, но по долгосроч­ным прогнозам многих специалистов будущее принадлежит технологии коммута­ции пакетов, как более гибкой и универсальной.

    Сети с коммутацией каналов хорошо приспособлены для коммутации данных с постоянной скоростью, когда единицей коммутации является не отдельный байт или пакет данных, а долговременный синхронный поток данных между двумя абонентами.

    Как сети с коммутацией пакетов, так и сети с коммутацией каналов можно разделить на два класса по другому признаку — на сети с динамической коммутациейи сети с постоянной коммутацией.

    В первом случае сеть разрешает устанавливать соединение по инициативе пользователя сети. Коммутация выполняется на время сеанса связи, а затем (опять же по инициативе одного из взаимодействующих пользователей) связь разрывается. В общем случае любой пользователь сети может соединиться с любым другим пользователем сети. Обычно период соединения между парой пользователей при динамической коммутации составляет от нескольких секунд до нескольких часов и завершается при выполнении определенной работы — передачи файла, просмотра страницы текста или изображения и т. п.

    Во втором случае сеть не предоставляет пользователю возможность выполнить динамическую коммутацию с другим произвольным пользователем сети. Вместо этого сеть разрешает паре пользователей заказать соединение на длительный период[ времени. Соединение устанавливается не пользователями, а персоналом, обслуживающим сеть. Время, на которое устанавливается постоянная коммутация, меряется обычно несколькими месяцами. Режим постоянной коммутации в сетях с коммутацией каналов часто называется сервисом выделенных (dedicated) или арендуемых (leased) каналов.

    Примерами сетей, поддерживающих режим динамической коммутации, являются телефонные сети общего пользования, локальные сети, сеть Internet.

    Некоторые типы сетей поддерживают оба режима работы.

    Еще одной проблемой, которую нужно решать при передаче сигналов, является проблема взаимной синхронизации передатчика одного компьютера с приемником другого. При организации взаимодействия модулей внутри компьютера эта проблема решается очень просто, так как в этом случае все модули синхронизируются от общего тактового генератора. Проблема синхронизации при связи компьютеров может решаться разными способами, как с помощью обмена специальными тактовыми синхроимпульсами по отдельной линии, так и с помощью периодической синхронизации заранее обусловленными кодами или импульсами характерной формы, отличающейся от формы импульсов данных.

    Асинхронная и синхронная передачи. При обмене данными на физическом уровне единицей информации является бит, поэтому средства физического уровня всегда поддерживают побитовую синхрони­зацию между приемником и передатчиком.

    Однако при плохом качестве линии связи (обычно это относится к телефонным коммутируемым каналам) для удешевления аппаратуры и повышения надежности передачи данных вводят дополнительные средства синх­ронизации на уровне байт.

    Такой режим работы называется асинхроннымили старт-стопным.Другой причиной использования такого режима работы является наличие устройств, ко­торые генерируют байты данных в случайные моменты времени. Так работает кла­виатура дисплея или другого терминального устройства, с которого человек вводит данные для обработки их компьютером.

    Асинхронным описанный режим называется потому, что каждый байт может быть несколько смещен во времени относительно побитовых тактов предыдущего байта

    Задачи надежного обмена двоичными сигналами, представленными соответствующими электромагнитными сигналами, в вычислительных сетях решает определенный класс оборудования. В локальных сетях это сетевые адаптеры, а в глобальных сетях - аппаратура передачи данных, к которой относятся, например, рассмотренные модемы. Это оборудование кодирует и декодирует каждый информационный бит, синхронизирует передачу электромагнитных сигналов по линиям связи, проверяет правильность передачи по контрольной сумме и может выполнять некоторые другие операции.


    Лекции


    Лабораторные


    Справочники


    Эссе


    Вопросы


    Стандарты


    Программы


    Дипломные


    Курсовые


    Помогалки


    Графические

    Доступные файлы (1):

    Реферат по КС.doc

    Выполнил: студент 4 курса


    Проверил: Никифоров О.Ю.
    1. ВИТАЯ ПАРА

    Вита́я па́ра (англ. twisted pair) — вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой. Свивание проводников производится с целью повышения связи проводников одной пары (электромагнитная помеха одинаково влияет на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов. Для снижения связи отдельных пар кабеля (периодического сближения проводников различных пар) в кабелях UTP категории 5 и выше провода пары свиваются с различным шагом. Витая пара — один из компонентов современных структурированных кабельных систем. Используется в телекоммуникациях и в компьютерных сетях в качестве сетевого носителя во многих технологиях, таких как Ethernet, Arcnet и Token ring. В настоящее время, благодаря своей дешевизне и лёгкости в монтаже, является самым распространённым решением для построения локальных сетей.

    В зависимости от структуры проводников — кабель применяется одно- и многожильный. В первом случае каждый провод состоит из одной медной жилы, а во втором — из нескольких.

    К
    онструкция кабеля

    Кабель обычно состоит из четырёх пар. Проводники в парах изготовлены из монолитной медной проволоки толщиной 0,40—0,51 мм. Кроме метрической, применяется система AWG, в которой эти величины составляют 26 или 24 соответственно. Толщина изоляции — около 0,2 мм, материал обычно поливинилхлорид (английское сокращение PVC), для более качественных образцов 5 категории — полипропилен (PP), полиэтилен (PE). Особенно высококачественные кабели имеют изоляцию из вспененного (ячеистого) полиэтилена, который обеспечивает низкие диэлектрические потери, или тефлона, обеспечивающего высокий рабочий диапазон температур.

    Самый распространенный цвет оболочки — серый. Оранжевая окраска, как правило, указывает на негорючий материал оболочки, который позволяет прокладывать линии в закрытых областях. В общем случае, цвета не обозначают особых свойств, но их применение позволяет легко отличать коммуникации c разным функциональным назначением, как при монтаже, так и обслуживании.

    Отдельно нужно отметить маркировку. Кроме данных о производителе и типе кабеля, она обязательно включает в себя метровые или футовые метки.

    Форма внешней оболочки также может быть различна. Чаще других применяется самая простая — круглая. Только для прокладки под половым покрытием, по очевидной причине, используется плоский кабель.

    Кабели для наружной прокладки обязательно имеют влагостойкую оболочку из полиэтилена, которая наносится (как правило) вторым слоем поверх обычной, поливинилхлоридной. Кроме этого, возможно заполнение пустот в кабеле водоотталкивающим гелем и бронирование с помощью гофрированной ленты или стальной проволоки.
    ^

    Категории кабеля

    Данные схемы обжимки витой пары приведены для кабеля категории 5 (4 пары проводников). Обжимается коннектором 8P8C.

    Существует 2 схемы обжимки кабеля: прямой кабель и перекрёстный (кросс-овер) кабель. Первая схема используется для соединения компьютера со свитчем/хабом, вторая для соединения 2 компьютеров напрямую и для соединения некоторых старых моделей хабов/свитчей (uplink порт).




    Нумерация в разъеме 8P8C



    Обжимной инструмент (кримпер)

    Бело-оранжевая жила меняется с бело-зелёной, оранжевая с зелёной (для 100-мегабитного соединения); синяя жила меняется с бело-коричневой, бело-синяя с коричневой (для гигабитного соединения, для 100 мегабит их можно обжать в любом порядке или вообще не обжимать).

    Использование кабеля, обжатого не по стандарту, может привести к тому, что кабель работать не будет, или будет очень большой процент потерь (в зависимости от длины кабеля), а также — ситуациям полной проверки кабеля для определения назначения тех или иных пар.

    Для проверки правильности обжатия кабеля, помимо визуального контроля, существуют специальные устройства — кабельные тестеры. Такое устройство состоит из передатчика и приёмника. Передатчик поочерёдно подаёт сигнал на каждую из восьми жил кабеля, дублируя эту передачу зажиганием одного из восьми светодиодов, а на приёмнике, подсоединённому к другому концу линии, соответственно загорается один из восьми светодиодов. Если на передаче и на приёме светодиоды загораются подряд, значит, кабель обжат без ошибки. Более дорогие модели кабельных тестеров могут иметь встроенное переговорное устройство, индикатор обрыва с указанием расстояния до обрыва и пр.

    Данные схемы обжимки подходят как для 100-мегабитного соединения, так и для гигабитного. При использовании 100 мегабитного соединения используются только 2 из 4 пар, а именно оранжевая и зелёная. Синяя и коричневая пары в таком случае могут быть использованы для подключения второго компьютера по тому же кабелю. Каждый конец кабеля раздваивают на два по две пары, и получают как бы два кабеля, но под одной изоляцией. Однако данная схема подключения может снизить скорость и качество передачи информации. При использовании гигабитного соединения используются 4 пары проводников.

    Монтаж

    При монтаже кабеля витой пары должен выдерживаться минимально допустимый радиус изгиба — сильный изгиб может привести к увеличению внешних наводок на сигнал или привести к разрушению оболочки кабеля.

    При монтаже экранированной витой пары необходимо следить за целостностью экрана по всей длине кабеля. Растяжение или изгиб приводит к разрушению экрана, что влечёт уменьшение сопротивляемости наводкам. Дренажный провод должен быть соединен с экраном разъема.


    Коаксиальный кабель

    коаксиальный кабель делится на несколько категорий. Компьютерные сети на основе этого кабеля обычно требуют наличия терминаторов (согласованных нагрузок) на оконечных точках.

    1929 — Ллойд Эспеншид (Lloyd Espenschied) и Герман Эффель из AT&T Bell Telephone Laboratories запатентовали первый современный коаксиальный кабель.

    1935 — Щелкунов высказал предположение, что по коаксиальному кабелю можно передавать телевидение или 200 телефонных разговоров одновременно.

    1936 — AT&T построила экспериментальную телевизионную линию передачи на коаксиальном кабеле, между Филадельфией и Нью-Йорком.

    1936 — Первая телепередача по коаксиальному кабелю, с Берлинских Олимпийских Игр в Лейпциге.

    1941 — Первое коммерческое использование системы L1 в США, компанией AT&T. Между Миннеаполисом, (Миннесота) и Стивенс Пойнт (Висконсин) запущен ТВ-канал и 480 телефонных номеров.

    1956 — Проложена первая трансатлантическая коаксиальная линия, TAT-1.

    Основное назначение коаксиального кабеля — передача сигнала в различных областях техники: системы связи, вещательные сети, компьютерные сети, антенно-фидерные системы, АСУ и другие производственные и научно-исследовательские технические системы, системы дистанционного управления, измерения и контроля, системы сигнализации и автоматики, системы объективного контроля и видеонаблюдения, каналы связи различных радиоэлектронных устройств мобильных объектов (судов, летательных аппаратов и др.), Внутриблочные и межблочные связи в составе радиоэлектронной аппаратуры, Каналы связи в бытовой и любительской технике, Военная техника и другие области специального применения

    Кроме канализации сигнала отрезки кабеля могут использоваться и для других целей, Кабельные линии задержки, Четвертьволновые трансформаторы, Симметрирующие и согласующие устройства, Фильтры и формирователи импульса


    • По назначению — для систем кабельного телевидения, для систем связи, авиационной, космической техники, компьютерных сетей, бытовой техники и т. д.

    • По волновому сопротивлению — в принципе, волновое сопротивление кабеля может быть любое, однако стандартными являюстя 5 значений по российским стандартам и 3 по международным

    75 Ом — распространённый тип, применяется преимущественно в телевизионной и видеотехнике

    100 Ом — применяется редко, в импульсной технике и для специальных целей

    150 Ом — применяется редко, в импульсной технике и для специальных целей, международными стандартами не предусмотрен

    Миниатюрные — 1,5 – 2,95 мм

    Среднегабаритные — 3,7 – 11,5 мм


    • По гибкости (стойкость к многократным перегибам и механический момент изгиба кабеля)

    ^ Волновое сопротивление

    ^ Отличия сетей на коаксиальном кабеле и витой паре
    Получив представление о различных сетях Ethernet и их компонентах, можно сделать приблизительную оценку стоимости каждого варианта. Чтобы облегчить задачу окончательного выбора между витой парой и тонким коаксиальным кабелем (именно они наиболее распространены), попробуем провести их сравнение по некоторым параметрам. Начнем с производительности. Скорость передачи в сетях на коаксиальном кабеле не превышает 10 Мбит/с, а для витой пары предел 100 Мбит/с. Правда, производительность сети сильно зависит от количества работающих в ней компьютеров. В одном сегменте Thinnet может находиться до 30 рабочих точек. При этом протяженность сегмента не должна превышать 185 м, их количество 5, а расстояние между соседними точками не менее 50 см. Используется тип кабеля RG-58/U или RG-58A/U. Для сравнения сеть на витой паре имеет следующие параметры: максимальное число узлов в сегменте не более 1024; тип кабеля от третьей категории до пятой (для 100-Мбит только пятая категория); число сегментов зависит от сети (для 10Base-T - 5 сегментов, для 100Base-TX и 100Base-T4 - 3 сегмента); максимальная длина сегмента 100 м; максимальная длина зависит от сети (для 10Base-T - 500 м, для 100Base-TX и 100Base-T4 - 205 м); для различных сетей используется витая пара с разным числом пар (для 10Base-T и 100Base-TX - 2, для 100Base-T4 - 4).
    Важным отличием этих двух разновидностей Ethernet является то, что при повреждении коаксиального кабеля выйдет из строя вся сеть, а при повреждении витой пары сеть будет продолжать функционировать (естественно, за исключением компьютера, соединенного с концентратором неисправным кабелем). В жизни часто используется гибридный вариант. Группа близкорасположенных пользователей соединяется с помощью концентраторов витой парой, а между домами и группами, живущими на приличном расстоянии друг от друга, прокладывается коаксиальный кабель, которым также соединяются концентраторы.
    ^ Среды передачи сигналов

    Читайте также: