Парадоксы теории вероятности реферат

Обновлено: 05.07.2024

Статья о парадоксах в теории вероятностей, парадокс Монти Холла, парадокс девочки и мальчика, парадокс двух конвертов и т.д.

Ключевые слова

Текст научной работы

Парадокс Монти Холла - одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу. Задача формулируется как описание игры, основанной на американском телешоу, и названа в честь ведущего этой передачи. Наиболее распространенная формулировка этой задачи, опубликованная в 1990 году, звучит следующим образом:

представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями - козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

После публикации немедленно выяснилось, что задача сформулирована некорректно: не все условия оговорены. Например, ведущий может придерживаться следующей стратегии: предлагать сменить выбор тогда и только тогда, когда игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора будет вести в такой ситуации к гарантированному проигрышу. Наиболее популярной является задача с дополнительным условием - участнику игры заранее известны следующие правила: автомобиль равновероятно размещен за любой из 3 дверей; ведущий в любом случае обязан открыть дверь с козой и предложить игроку изменить выбор, но только не дверь, которую выбрал игрок; если у ведущего есть выбор, какую из 2 дверей открыть, он выбирает любую из них с одинаковой вероятностью.

У мистера Джонса двое детей. При этом старший ребёнок - девочка. Какова вероятность того, что оба ребёнка девочки?

У мистера Смита двое детей. При этом хотя бы один ребёнок - мальчик. Какова вероятность того, что оба ребёнка мальчики?

У мистера Джонса двое детей. При этом старший ребёнок - девочка. Какова вероятность того, что оба ребёнка девочки? Выберем случайную семью, соответствующую условиям первого вопроса. Тогда существуют 4 равновероятных исхода.

И только 2 из возможных исходов удовлетворяют критерию, указанному в вопросе. (Это варианты ДД, ДМ). Из-за того, что оба исхода из нового множества элементарных исходов равновероятны, и только один из исходов содержит 2-х девочек - ДД. Таким образом, вероятность того, что оба ребёнка девочки равна 1/2.

У мистера Смита двое детей. При этом хотя бы один из детей – мальчик. Какова вероятность того, что оба ребёнка мальчики? Второй вопрос похож на первый, однако вместо утверждения о том, что старший ребёнок мальчик в вопросе говорится о том, что хотя бы один из детей мальчик. В ответ на критику со стороны читателей Гарднер соглашается, что из-за "невозможности детально описать процедуру рандомизации" его изначальная формулировка имеет 2 способа интерпретации метода отбора семьи:

  1. Из всех семей с двумя детьми, где хотя бы один мальчик, выбрана произвольная семья. В этом случае ответ 1/3.
  2. Из всех семей с двумя детьми, один ребёнок выбирается случайным образом, и пол этого ребёнка задан. В этом случае ответ 1/2.

Прекрасным примером служит парадокс с днями рождения. Выберем наугад 24 человека. Какова, по вашему мнению, вероятность того, что двое или большее число из них родились в один и тот же день одного и того же месяца (но, быть может, в разные годы)? Интуитивно чувствуется, что вероятность такого события должна быть очень мала. На самом же деле она оказывается равной 27/50, то есть чуть выше 50%!

Вероятность того, что дни рождения любых двух людей не совпадают, очевидно, равна 364/365. Вероятность несовпадения дня рождения третьего человека с днем рождения любых двух других членов отобранной группы составляет 363/365. Для четвертого человека вероятность того, что его день рождения отличается от дней рождения любых трех людей, равна 362/365 и т. д. Дойдя до двадцать четвертого участника эксперимента, мы увидим, что вероятность несовпадения его дня рождения с днями рождения остальных двадцати трех участников равна 342/365. Таким образом, мы получаем набор из 23 дробей. Перемножив их, мы найдем вероятность того, что все 24 дня рождения различны. Сократив числитель и знаменатель произведения двадцати четырех дробей, мы получим дробь 23/50. Иначе говоря, заключая пари на то, что среди 24 по крайней мере двое родились в один и тот же день, вы будете выигрывать в 27 и проигрывать в 23 случаях из 50.

Санкт-Петербургский парадокс получил известность после публикации Даниилом Бернулли в заметках Академии наук Санкт-Петербурга в 1738 году, однако впервые парадокс упоминается двоюродным братом Даниила, - Николаем Бернулли в 1713 году в письме к математику Монмору. Иногда, ошибочно, парадокс приписывают Эйлеру. Суть парадокса: игроком бросается правильная монета до момента выпадения решки, игрок при выпадении получает 2r рублей, где r - это номер бросания, при котором выпала решка, - при каждом последующем бросании потенциальный выигрыш увеличивается вдвое. Сколько необходимо выплатить игроку за участие в игре с такими условиями, чтобы его средний выигрыш перекрыл выплату за игру. Ответ парадоксален, - математическое ожидание банковских выплат бесконечное. Выигрыш может выпасть при любом из r бросаний, тогда математическое ожидание равняется:

где mx – математическое ожидание выигрыша, r – число бросаний.

Этот бесконечный ряд расходится, то есть имеет бесконечную сумму

Парадокс двух конвертов - известный парадокс, демонстрирующий как особенности субъективного восприятия теории вероятностей, так и границы её применимости. В облике двух конвертов этот парадокс предстал в конце 1980-х годов, хотя в различных формулировках известен математикам с первой половины XX века. Есть два неразличимых конверта с деньгами. В одном находится сумма в два раза большая, чем во втором. Величина этой суммы неизвестна. Конверты дают двум игрокам. Каждый из них может открыть свой конверт и пересчитать в нём деньги. После этого игроки должны решить: стоит ли обменять свой конверт на чужой? Оба игрока рассуждают следующим образом. Я вижу в своём конверте сумму X. В чужом конверте равновероятно может находиться 2X или X/2. Поэтому, если я поменяю конверт, то у меня в среднем будет (2X+X/2)/2=(5/4)X, т.е. больше, чем сейчас. Значит обмен выгоден. Однако обмен не может быть выгоден обоим игрокам. Где в их рассуждениях кроется ошибка?

Как и любая другая область науки, математика отражает множество противоречий окружающего нас мира. В связи с этим в истории математики встречается множество различных парадоксов - истинных высказываний, для которых характерны неожиданность, непривычность, оригинальность, противоречивость себе, исходным посылкам, общепринятому, традиционному взгляду или здравому смыслу по содержанию и/или по форме. Математика – история парадоксов. Особенно богата парадоксами теория вероятностей. По мнению Карла Пирсона, в математике нет другого такого раздела, где было бы столь же легко допустить ошибку, как в теории вероятностей. Разрешение же различных парадоксов, связанных со случайностью, способствовало возникновению и развитию теории вероятностей и её приложений. Величайшие открытия порой были результатом разрешения величайших парадоксов. В свою очередь эти открытия становились источниками новых парадоксов. Из всех методов обучения метод, основанный на познании нового через парадоксы (метод Сократа), является самым фундаментальным, т.к. процесс научного познания сам опирается на парадоксы. Следовательно, анализ и пошаговый разбор парадоксов теории вероятностей ведет к более глубокому пониманию предмета и лучшему осознанию сути дела.

Список литературы

  1. Лубова, Т. Н. Многомерные статистические методы [Электронный ресурс] : учебное пособие / Т. Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. - Уфа : Изд-во БГАУ, 2015. - 64 с.
  2. Лубова, Т. Н. Теория вероятностей и математическая статистика [Электронный ресурс] : учебное пособие / Т. Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. - Уфа : Изд-во БашГАУ, 2015. - 163 с.
  3. Исламгулов, Д.Р. Применение корреляционного анализа в агрономии [Текст] / Д.Р. Исламгулов, Т.Н. Лубова // Уральский научный вестник. – 2016. – Т. 4. - № 3. – С. 142-147.
  4. Лубова, Т.Н. Принципы статистического прогнозирования при разработке инновационной стратегии региона [Текст] / Т.Н. Лубова // Экономика, экология и общество России в 21-м столетии: Сборник научных трудов: 11-й Международной научно-практической конференции, 19-21 мая 2009 г. / Санкт-Петербургский государственный политехнический университет. – С.-Петербург, 2009. – С. 155-156.
  5. Лубова, Т. Н. Многомерная классификация регионов Приволжского федерального округа по уровню финансовой безопасности [Текст] / Т. Н. Лубова // Конкурентоспособность региона в условиях экологических и демографических ограничений: Материалы межрегиональной научно-практической конференции. – Улан-Уде: Изд-во БНЦ СО РАН, 2009. – с. 149-159.
  6. Лубова, Т. Н. Классификация регионов Российской Федерации методом кластерного анализа [Текст] / Т. Н. Лубова // Образование, наука, практика: инновационный аспект: Сб. материалов международной научно-практической конференции, посвященной памяти профессора А.Ф. Блинохватова. – Пенза: РИО ПГСХА, 2008. – С.379-381.
  7. Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования [Текст] / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 62-69.
  8. Исламгулов, Д.Р. Модульно-рейтинговая система обучения и оценки знаний – особенности внедрения [Текст] / Д.Р. Исламгулов, Т.Н. Лубова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 70-78.
  9. Лубова, Т.Н. Новые образовательные стандарты: особенности реализации [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 79-84.
  10. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 85-93.
  11. Лубова, Т.Н. Использование тестирования в организации самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 12. – С. 44-48.
  12. Исламгулов, Д. Р. Особенности новых образовательных стандартов [Текст] / Д. Р. Исламгулов, Т. Н. Лубова // Современное вузовское образование : теория, методология, практика : материалы Междунар. учеб.-метод. конф., 21-22 марта 2013 г. / Башкирский ГАУ. - Уфа, 2013. - С. 14-15.
  13. Лубова, Т. Н. Особенности, задачи и проблемы внедрения модульно-рейтинговой системы [Текст] / Т. Н. Лубова, Д. Р. Исламгулов // Современное вузовское образование: теория, методология, практика: материалы Междунар. учеб.-метод. конф., 21-22 марта 2013 г. / Башкирский ГАУ. - Уфа, 2013. - С. 10-13.
  14. Исламгулов, Д. Р. Компетенция - основа реализации цели ФГОС [Текст] / Д. Р. Исламгулов, Т. Н. Лубова // Актуальные проблемы преподавания социально-гуманитарных, естественно - научных и технических дисциплин в условиях модернизации высшей школы: материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. - Уфа, 2014. - С. 133-137.
  15. Лубова, Т. Н. Оценка качества образования в рамках компетентностного подхода [Текст] / Т. Н. Лубова, Д. Р. Исламгулов // Актуальные проблемы преподавания социально-гуманитарных, естественно - научных и технических дисциплин в условиях модернизации высшей школы: материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. - Уфа, 2014. - С. 189-192.

Цитировать

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Парадоксы в теории вероятностей и математической статистике

Теория вероятностей и математическая статистика — относительно молодые разделы современной математики, имеющие огромное прикладное значение почти во всех сферах деятельности человека.

Теория вероятностей — это строгая математическая дисциплина, занимающаяся поиском закономерностей случайных событий и изучающая их. Математическая статистика — это прикладная отрасль математики. Она занимается сбором исходной информации и обработкой ее в соответствии с законами теории вероятностей.

Объектом исследования теории вероятностей и математической статистики является случайное событие (явление) — такое, которое в результате испытания может произойти или не произойти. К числу случайных событий можно отнести появление дождя, который может идти или не идти, рождение ребенка мужского или женского пола, появление в данной местности какого-либо инфекционного заболевания, извержение вулкана, поражение мишени стрелком, количество повторений какой-либо буквы на печатной странице и т.д. и т.п. Во всех этих случаях под испытаниями мы понимаем те условия или обстоятельства, при которых рассматривается появление случайного события.

В течение долгого времени в науке исследовались детерминированные события. Это такого рода события, которые обязательно появляются в результате соблюдения определенных условий. Вероятностные события, таким образом, более широкий класс событий, которые в результате исходных условий, происходят или нет. Интерес к исследованию таких событий появился сравнительно недавно.

Эмпирическим, т.е. опытным путем было установлено, что появление в определенных испытаниях случайного события или его непоявление невозможно предвосхитить только тогда, когда проводится малое число испытаний. Если увеличить число испытаний, возможность появления случайного события можно предусмотреть.

В математической статистике есть много методов, нашедших широкое применение на практике. Их реализация апробирована многочисленными работами не только научного, но и практического характера.

После проведения контрольных наблюдений исследователь получает фактический материал, представляющий собой, как правило, большой объем числовых данных. Массив этих чисел труднообозрим, и сделать какие-то конкретные выводы непосредственно по ним невозможно. Здесь используются методы статистики, позволяющие провести классификацию первичных данных, представить их в наиболее наглядной форме и получить некоторые обобщающие показатели, которые дают возможность сравнивать между собой различные данные и делать определенные выводы.

В качестве обобщающих числовых показателей используются средние значения и характеристики варьирования (рассеивания) экспериментальных данных. Получив эти показатели для контрольной и экспериментальной групп, исследователь видит, что они различаются. Но возникает вопрос: насколько достоверны эти различия? Можно ли объяснить это различие действием предложенных нововведений или это различие – случайность, обусловленная малым объемом фактических данных и сильной вариативностью испытуемых? Здесь нужны методы проверки статистических гипотез.

Эти вопросы не исчерпывают круг задач, решаемых при конкретных исследованиях с использованием методов математической статистики. Конечно, большинство подобных задач решаются методами корреляционного и регрессионного анализа. Но вопрос о достоверности полученных результатов, все равно остается открытым…

Уточним: под случайным событием (возникновением специфического набора обстоятельств) подразумевается такое событие, которое в конкретном опыте может произойти или не произойти;

под случайной величиной – переменная, способная принимать любое значение из области определения, и с которой связано распределение вероятностей;

под вероятностью – действительное число в интервале от 0 до 1, относящееся к случайному событию и отражающее меру возможности его наступления или степень соответствующей уверенности.

Среди случайных событий выделяют:

а) практически достоверные, вероятность которых весьма близка к единице;

б) практически невозможные, если их вероятность близка к нулю;

в) независимые, когда появление одного из событий не изменяет вероятности возникновения других;

г) противоположные, если одно из них обязательно произойдет в каких-либо конкретных условиях;

д) совместные и несовместные, когда для первых возможно одновременное появление в каких-либо конкретных условиях, а для вторых это невозможно. Что касается случайных величин, то их принято делить на дискретные (способные принимать только отдельные значения) и непрерывные – с любыми значениями из конечного или бесконечного интервала.

Парадоксы – истины, противоречащие здравому смыслу

В теории вероятностей и математической статистике существует несколько задач, решение которых, на первый взгляд, противоречит здравому смыслу. Такие задачи называют парадоксами.

В теории вероятности и математической статистике парадоксы бывают двух типов:

первый – когда существует строгое решение в рамках аксиоматики, просто оно неочевидно, и условия задачи таковы, что ведут интуитивное понимание условий в ошибочном ключе, примерами таких парадоксов являются – Санкт-Петербургский парадокс, Парадокс закона больших чисел Бернулли, Парадокс дней рождения;

второй тип – парадоксы, которые основываются на неоднозначной интерпретации аксиоматики теории вероятности, её недоопределённости, которую отмечал еще Пуанкаре, их и можно назвать истинными парадоксами.

Примеры истинных парадоксов: Проблема Монти-Холла, Парадокс двух конвертов, Парадокс Хемпеля, Парадокс Бертрана. Ценность обоих типов парадоксов в том, что они помогают лучше понять суть теории, область её ограничения, глубже понять основания теории, и иногда исследование парадоксов вело к созданию отдельных разделов математики.

Теперь рассмотрим наиболее известные и интересные парадоксы.

Парадокс Монти Холла – одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу. Задача формулируется как описание игры, основанной на американском телешоу, и названа в честь ведущего этой передачи. Наиболее распространенная формулировка этой задачи, опубликованная в 1990 году, звучит следующим образом: представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями – козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где – козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

После публикации немедленно выяснилось, что задача сформулирована некорректно: не все условия оговорены. Например, ведущий может придерживаться следующей стратегии: предлагать сменить выбор тогда и только тогда, когда игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора будет вести в такой ситуации к гарантированному проигрышу. Наиболее популярной является задача с дополнительным условием – участнику игры заранее известны следующие правила: автомобиль равновероятно размещен за любой из 3 дверей; ведущий в любом случае обязан открыть дверь с козой и предложить игроку изменить выбор, но только не дверь, которую выбрал игрок; если у ведущего есть выбор, какую из 2 дверей открыть, он выбирает любую из них с одинаковой вероятностью.

У мистера Джонса двое детей. При этом старший ребёнок – девочка. Какова вероятность того, что оба ребёнка девочки?

У мистера Смита двое детей. При этом хотя бы один ребёнок – мальчик. Какова вероятность того, что оба ребёнка мальчики?

У мистера Джонса двое детей. При этом старший ребёнок – девочка. Какова вероятность того, что оба ребёнка девочки? Выберем случайную семью, соответствующую условиям первого вопроса. Тогда существуют 4 равновероятных исхода.

И только 2 из возможных исходов удовлетворяют критерию, указанному в вопросе. (Это варианты ДД, ДМ). Из-за того, что оба исхода из нового множества элементарных исходов равновероятны, и только один из исходов содержит 2-х девочек – ДД. Таким образом, вероятность того, что оба ребёнка девочки равна 1/2.

У мистера Смита двое детей. При этом хотя бы один из детей – мальчик. Какова вероятность того, что оба ребёнка мальчики? Второй вопрос похож на первый, однако вместо утверждения о том, что старший ребёнок мальчик, в вопросе говорится о том, что хотя бы один из детей мальчик. В ответ на критику со стороны читателей Гарднер соглашается, что из-за "невозможности детально описать процедуру рандомизации" его изначальная формулировка имеет 2 способа интерпретации метода отбора семьи:

1. Из всех семей с двумя детьми, где хотя бы один мальчик, выбрана произвольная семья. В этом случае ответ 1/3.

2. Из всех семей с двумя детьми, один ребёнок выбирается случайным образом, и пол этого ребёнка задан. В этом случае ответ 1/2.

Прекрасным примером служит парадокс с днями рождения. Выберем наугад 24 человека. Какова, по вашему мнению, вероятность того, что двое или большее число из них родились в один и тот же день одного и того же месяца (но, быть может, в разные годы)? Интуитивно чувствуется, что вероятность такого события должна быть очень мала. На самом же деле она оказывается равной 27/50, то есть чуть выше 50%!

Вероятность того, что дни рождения любых двух людей не совпадают, очевидно, равна 364/365. Вероятность несовпадения дня рождения третьего человека с днем рождения любых двух других членов отобранной группы составляет 363/365. Для четвертого человека вероятность того, что его день рождения отличается от дней рождения любых трех людей, равна 362/365 и т.д. Дойдя до двадцать четвертого участника эксперимента, мы увидим, что вероятность несовпадения его дня рождения с днями рождения остальных двадцати трех участников равна 342/365. Таким образом, мы получаем набор из 23 дробей. Перемножив их, мы найдем вероятность того, что все 24 дня рождения различны. Сократив числитель и знаменатель произведения двадцати четырех дробей, мы получим дробь 23/50. Иначе говоря, заключая пари на то, что среди 24, по крайней мере, двое родились в один и тот же день, вы будете выигрывать в 27 и проигрывать в 23 случаях из 50.

Санкт-Петербургский парадокс получил известность после публикации Даниилом Бернулли в заметках Академии наук Санкт-Петербурга в 1738 году, однако впервые парадокс упоминается двоюродным братом Даниила – Николаем Бернулли в 1713 году в письме к математику Монмору. Иногда, ошибочно, парадокс приписывают Эйлеру. Суть парадокса: игроком бросается правильная монета до момента выпадения решки, игрок при выпадении получает 2r рублей, где r – это номер бросания, при котором выпала решка, – при каждом последующем бросании потенциальный выигрыш увеличивается вдвое. Сколько необходимо выплатить игроку за участие в игре с такими условиями, чтобы его средний выигрыш перекрыл выплату за игру. Ответ парадоксален, – математическое ожидание банковских выплат бесконечное. Выигрыш может выпасть при любом из r бросаний, тогда математическое ожидание равняется:

где mx – математическое ожидание выигрыша, r – число бросаний.

Этот бесконечный ряд расходится, то есть имеет бесконечную сумму.

Парадокс двух конвертов – известный парадокс, демонстрирующий как особенности субъективного восприятия теории вероятностей, так и границы её применимости. В облике двух конвертов этот парадокс предстал в конце 1980-х годов, хотя в различных формулировках известен математикам с первой половины XX века. Есть два неразличимых конверта с деньгами. В одном находится сумма в два раза большая, чем во втором. Величина этой суммы неизвестна. Конверты дают двум игрокам. Каждый из них может открыть свой конверт и пересчитать в нём деньги. После этого игроки должны решить: стоит ли обменять свой конверт на чужой? Оба игрока рассуждают следующим образом. Я вижу в своём конверте сумму X. В чужом конверте равновероятно может находиться 2X или X/2. Поэтому, если я поменяю конверт, то у меня в среднем будет (2X+X/2)/2=(5/4)X, т.е. больше, чем сейчас. Значит – обмен выгоден. Однако обмен не может быть выгоден обоим игрокам. Где в их рассуждениях кроется ошибка?

Парадокс дней рождения. В группе, состоящей из 23 или более человек, вероятность совпадения дней рождения (число и месяц) хотя бы у двух людей превышает 50 % . Например, если к лассе 23 ученика или более, то более вероятно то, что у кого-то из одноклассников дни рождения придутся на один день, чем то, что у каждого будет свой неповторимый день рождения .

Для 60 и более человек вероятность такого совпадения превышает 99 %, хотя 100 % она достигает, согласно принципу Дирихле , только тогда, когда в группе не менее 367 человек (ровно на 1 больше, чем число дней в високосном году; с учётом високосных лет).

Такое утверждение может показаться неочевидным, так как вероятность совпадения дней рождения двух человек с любым днём в году (1/365 = 0.27 %), умноженная на число человек в группе (23), даёт лишь (1/365)×23 = 6.3 %. Это рассуждение неверно, так как число возможных пар (( 23 × 22 )/2 = 253) значительно превышает число человек в группе (253 > 23). Таким образом, утверждение не является парадоксом в строгом научном смысле: логического противоречия в нём нет, а парадокс заключается лишь в различиях между интуитивным восприятием ситуации человеком и результатами математического расчёта.

Как и любая другая область науки, теория вероятностей и математическая статистика отражает множество противоречий окружающего нас мира. В связи с этим в истории встречается множество различных парадоксов – истинных высказываний, для которых характерны неожиданность, непривычность, оригинальность, противоречивость себе, исходным посылкам, общепринятому, традиционному взгляду или здравому смыслу по содержанию и/или по форме.

По мнению Карла Пирсона, в математике нет другого такого раздела, где было бы столь же легко допустить ошибку, как в теории вероятностей. Разрешение же различных парадоксов, связанных со случайностью, способствовало возникновению и развитию теории вероятностей и её приложений. Величайшие открытия порой были результатом разрешения величайших парадоксов. Эти открытия, в свою очередь, становились источниками новых парадоксов. Из всех методов обучения метод, основанный на познании нового через парадоксы (метод Сократа), является фундаментальным, т.к. процесс научного познания сам опирается на парадоксы. Следовательно, анализ и пошаговый разбор парадоксов теории вероятностей и математической статистики ведет к более глубокому пониманию предмета и лучшему осознанию сути дела.

Список использованной литературы

1. Зайцев В. Ф. Математические модели в точных и гуманитарных нау- ках. – СПб.: ООО “Книжный Дом”, 2006. – 112 с.

2. Лубова, Т.Н. Многомерные статистические методы [Электронный ресурс]: учебное пособие / Т.Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. – Уфа : Изд-во БГАУ, 2015. – 64 с.

3. Лубова, Т.Н. Теория вероятностей и математическая статистика [Электронный ресурс] : учебное пособие / Т. Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. – Уфа : Изд-во БашГАУ, 2015. – 163 с.

4. Секей Г. Парадоксы в теории вероятностей и математической статистике: Пер. с англ. – М.: Мир, 1990. – 240 с.

В теории вероятностей существует несколько задач, решение которых, на первый взгляд, противоречит здравому смыслу. Такие задачи называют парадоксами.

Содержание

Есть два неразличимых конверта с деньгами. В обоих конвертах находится некая степень двойки денег, причем в одном находится сумма в два раза большая, чем во втором. Величина этой суммы неизвестна. Конверты дают двум игрокам. Каждый из них может открыть свой конверт и пересчитать в нём деньги. После этого игроки должны решить: стоит ли обменять свой конверт на чужой? Оба игрока рассуждают следующим образом. Я вижу в своём конверте сумму [math]X[/math] . Если [math]X = 1[/math] , то менять точно выгодно. Если [math]X[/math] другой, то в чужом конверте равновероятно может находиться [math] 2 \cdot X [/math] или [math] \dfrac[/math] . Поэтому, если я поменяю конверт, то у меня в среднем будет [math] \dfrac<(2 \cdot X + \dfrac)> = \dfrac \cdot X [/math] . То есть больше, чем сейчас. Значит обмен выгоден. Однако обмен не может быть выгоден обоим игрокам. Где в их рассуждениях кроется ошибка?

В данном рассуждении ошибка кроется в предположении о том, что в другом конверте может равновероятно находится [math] 2 \cdot X [/math] или [math] \dfrac[/math] . В действительности этого не может быть.

Предположим от противного, что существует вероятностное распределение [math]p(x)[/math] , определенное на степенях двойки так, что [math]p(2^)[/math] — вероятность того, что в конвертах будут записаны [math]2^[/math] и [math]2^[/math] , причем значения этой функции на соседних степенях равны. Тогда значения этой функции вообще говоря должны быть равны на всех степенях, то есть [math]p(x)[/math] постоянна. Но [math] \sum\limits_^\infty p(2^i) = 1[/math] (так как это вероятностное распределение) — противоречие.

Также есть формулировка парадокса, обходящая данное доказательство.

Действительно, пусть нам дано вероятностное распределение геометрической прогрессией:

  • вероятность выпадения [math]1[/math] и [math]2[/math] в конвертах — [math](1-q)[/math]
  • вероятность выпадения [math]2[/math] и [math]4[/math] в конвертах — [math](1-q) \cdot q[/math]
  • вероятность выпадения [math]4[/math] и [math]8[/math] в конвертах — [math](1-q) \cdot q^2[/math]
  • вероятность выпадения [math]2^i[/math] и [math]2^[/math] в конвертах — [math](1-q) \cdot q^i[/math]
  • и так далее.

тогда сумма всех вероятностей действительно [math](1-q) \cdot \dfrac = 1[/math]

Итак, пусть нам дали конверт с суммой [math]2^i[/math] . тогда вероятность того, что в другом конверте [math]2^[/math] — [math] \dfrac [/math] , а того, что в другом конверте [math]2^[/math] — [math]\dfrac [/math]

Тогда "в среднем" при обмене мы будем получать [math]\left ( 2^ \cdot \dfrac + 2^ \cdot \dfrac \right ) = 2^i \cdot \left ( \dfrac \right ) [/math] .

При [math]q \gt \dfrac[/math] последняя скобка больше единицы. Таким образом "в среднем" мы получим больше, чем [math]2^i[/math] . Такое же рассуждение справедливо для обоих игроков. В чем же тут ошибка рассуждения?

А между тем ошибка тут психологическая. Ведь что человек понимает под понятием "в среднем"? Это некоторое "среднее значение", при условии, что число экспериментов очень велико. Рассчитаем математическое ожидание выигрыша, если мы не будем менять конверты.

[math]E = \dfrac \cdot 1 + \sum\limits_^ <\infty>\left ( 2^i \cdot \dfrac <(1 - q) \cdot q^+ (1-q) \cdot q^i > \right ) = \dfrac + (1 - q^2)\cdot \sum\limits_^ <\infty>\left ( 2 \cdot q \right )^i[/math] , а так как [math]q \gt \dfrac[/math] , то под знаком суммирования стоит возрастающая геометрическая прогрессия, тогда [math]E = \infty[/math] .

А в равенстве [math] \infty = \infty \cdot \left ( \dfrac \right ) [/math] ошибки нет.

Допустим, вы участвуете в игре. Перед вами три двери, за одной из них — автомобиль, за двумя другими — козы. Вы выбираете одну из трёх дверей и указываете на неё. Ведущий, который знает, за какой дверью машина, открывает одну из двух оставшихся дверей, за которой коза. После этого он предлагает вам выбрать одно из двух: выбрать другую дверь, или не менять свой выбор. Увеличатся ли шансы выиграть авто, если вы выберете другую дверь?

После того, как ведущий открыл одну из дверей с козой, автомобиль может быть либо за выбранной первоначально дверью, либо за оставшейся. С житейской точки зрения, вероятность выигрыша не зависит от первоначального выбора, при любом поведении одинакова и равна [math]0,5[/math] . Однако, такой ход рассуждений неверен. Предположим, что мы выбрали дверь номер [math]1[/math] . Пусть событие [math]A[/math] — автомобиль за дверью номер [math]2[/math] . [math]B[/math] — автомобиль за дверью номер [math] 3[/math] . [math]P(A) =\dfrac \cdot \dfrac = \dfrac; P(B) = \dfrac \cdot \dfrac= \dfrac[/math] , где [math]\dfrac[/math] — условная вероятность нахождения автомобиля именно за данной дверью при условии, что автомобиль не за дверью, выбранной игроком. Ведущий, открывая одну из оставшихся дверей, всегда проигрышную, сообщает тем самым игроку ровно [math]1[/math] бит информации и меняет условные вероятности для [math]B[/math] и [math]C[/math] соответственно на [math]"1"[/math] и [math]"0"[/math] . В результате выражения принимают вид: [math]P(A) = \dfrac \cdot 1 = \dfrac[/math] ; [math]P(B) = \dfrac \cdot 0 =0; [/math]

Таким образом, мы видим, что при любом первоначальном выборе, вероятность выиграть, если не менять решения — [math]\dfrac [/math] , а если поменять — [math]\dfrac [/math] , что противоречит интуитивному пониманию данного вопроса. Другими словами, если игрок меняет решение, то он проиграет в том и только в том случае, если первоначально выбрал дверь за которой автомобиль, а вероятность выбрать автомобиль первоначально составляет [math]\dfrac [/math] .

Иллюстрирует расхождение математического ожидания выигрыша и его житейской оценки.

Игроку в казино предлагают сыграть в игру, состоящую в следующем: после уплаты определённого вступительного взноса за участие в игре, игрок подбрасывает честную монету пока у него не выпадет орёл. Если у него выпал орёл с первой попытки, ему выплачивают рубль. Если со второй — два рубля. С третьей — [math]4[/math] , и так далее. После получения денег — игра закончена. Нужно определить, какого размера вступительный взнос должно просить казино, чтобы не остаться в убытке.

Согласно некоторым статистическим данным, игрок готов заплатить за участие в такой игре [math]10-20[/math] , редко [math]50[/math] рублей, что нелогично с математической точки зрения, ведь математическое ожидание выигрыша в такой ситуации равно бесконечности. Докажем это: Рассмотрим величину [math] E_ [/math] — математическое ожидание выигрыша с [math]n[/math] -й попытки:

[math] E_ = 1 \cdot \dfrac = 0,5[/math] ;

[math] E_ = 2 \cdot \dfrac = 0,5[/math] ;

Согласно линейности математического ожидания, ожидание выигрыша в этом случае равно [math]E_+E_+ \ldots = 0,5+0,5+0,5 = \infty [/math]
Данный парадокс до сих пор не имеет математически полного решения. Нетрудно заметить, что задача легко решается если наложить ограничения на количество игр и предельно малую вероятность, которую можно считать ненулевой.

Вероятность того, что в определённой игре количество бросков превысит [math]n[/math] , равна [math]\dfrac>[/math] . Пусть игрок может сыграть не более [math]k[/math] игр. Тогда вероятность того, что количество бросков хотя бы в одной игре превысит [math]n[/math] , равна [math]1-(1-\dfrac>)^[/math] .

[math]1 \cdot \dfrac + 2 \cdot \dfrac+ \ldots +2^ \cdot \dfrac>=\dfrac,[/math] где [math]n=\log_2 \dfrac

.[/math]

Таким образом, средний выигрыш равен [math]\dfrac \cdot \log_2 \dfrac

.[/math]

Представьте себя на месте Спящей красавицы. Вас разбудили. Какова вероятность того, что монета упала решкой?

Решение 1. У вас нет никакой информации о результате выпадения монеты и предыдущих побудках. Поскольку известно, что монета честная, можно предположить, что вероятность решки [math]\dfrac[/math] .

Решение 2. Проведём эксперимент [math]1000[/math] раз. Спящую красавицу будят в среднем [math]500[/math] раз с орлом и [math]1000[/math] раз с решкой (так как в случае решки спящую красавицу спрашивают [math]2[/math] раза). Поэтому вероятность решки [math]\dfrac[/math] .

[math]\dfrac[/math] — это вероятность решки при всей известной Красавице информации. Вероятностное пространство здесь таково: первый день, орёл — [math]\dfrac[/math] ; первый день, решка — [math]\dfrac[/math] ; второй день, решка — [math]\dfrac[/math] .

А [math]\dfrac[/math] в таком случае — это действительная доля пробуждений с решкой с учётом того, что каждая решка даёт два пробуждения, а каждый орёл — одно.


Вот типичный ход рассуждений: после того, как ведущий открыл одну из дверей и показал козу, игроку остается выбрать между двумя дверями. Машина находится за одной из них, значит, вероятность ее угадать составляет ½. Так что нет разницы — менять свой выбор или нет. И тем не менее, теория вероятностей гласит, что можно увеличить свои шансы на выигрыш, изменив решение. Разберемся, почему это так.


Казалось бы, да. Ведь до получения этой информации вероятность смерти узника А составляла ⅔, а теперь он знает, что один из двух других узников будет казнен — значит, вероятность его казни снизилась до ½. Но на самом деле узник А не узнал ничего нового: если помилован не он, ему назовут имя другого узника, а он и так знал, что кого-то из двоих оставшихся казнят. Если же ему повезло, и казнь отменили, он услышит случайное имя Б или В. Поэтому его шансы на спасение никак не изменились.

А теперь представим, что кто-то из оставшихся узников узнает о вопросе узника А и полученном ответе. Это изменит его представления о вероятности помилования.

Если разговор подслушал узник Б, он узнает, что его точно казнят. А если узник В, то вероятность его помилования будет составлять ⅔. Почему так произошло? Узник А не получил никакой информации, и его шансы на помилование по-прежнему ⅓. Узник Б точно не будет помилован, и его шансы равны нулю. Значит, вероятность того, что на свободу выйдет третий узник, равна ⅔.


Парадокс заключается в том, что пока вы не вскрыли свой конверт, вероятности ведут себя добропорядочно: у вас действительно 50-процентный шанс обнаружить в своем конверте сумму X и 50-процентный — сумму 2X. И здравый смысл подсказывает, что информация об имеющейся у вас сумме не может повлиять на содержимое второго конверта.

Тем не менее, как только вы вскрываете конверт, ситуация кардинально меняется (этот парадокс чем-то похож на историю с котом Шредингера, где само наличие наблюдателя влияет на положение дел). Дело в том, что для соблюдения условий парадокса вероятность нахождения во втором конверте большей или меньшей суммы, чем у вас, должна быть одинаковой. Но тогда равновероятно любое значение этой суммы от нуля до бесконечности. А если равновероятно бесконечное число возможностей, в сумме они дают бесконечность. А это невозможно.

Для наглядности можно представить, что вы обнаруживаете в своем конверте один цент. Очевидно, что во втором конверте не может быть суммы вдвое меньше.

Любопытно, что дискуссии относительно разрешения парадокса продолжаются и в настоящее время. При этом предпринимаются попытки как объяснить парадокс изнутри, так и выработать наилучшую стратегию поведения в подобной ситуации. В частности, профессор Томас Кавер предложил оригинальный подход к формированию стратегии — менять или не менять конверт, руководствуясь неким интуитивным ожиданием. Скажем, если вы открыли конверт и обнаружили в нем $10 — небольшую сумму по вашим прикидкам — стоит его обменять. А если в конверте, скажем, $1 000, что превосходит ваши самые смелые ожидания, то меняться не надо. Эта интуитивная стратегия в случае, если вам регулярно предлагают выбирать два конверта, дает возможность увеличить суммарный выигрыш больше, чем стратегия постоянной смены конвертов.


Казалось бы, задача проста. Однако если начать разбираться, обнаруживается любопытное обстоятельство: правильный ответ будет отличаться в зависимости от того, каким образом мы будем подсчитывать вероятность пола другого ребенка.

Рассмотрим все возможные комбинации в семьях с двумя детьми:

Вариант девочка/девочка нам не подходит по условиям задачи. Поэтому для семьи мистера Смита возможны три равновероятных варианта — а значит, вероятность того, что другой ребенок тоже окажется мальчиком, составляет ⅓. Именно такой ответ и давал сам Гарднер первоначально.

Представим, что мы встречаем мистера Смита на улице, когда он гуляет с сыном. Какова вероятность того, что второй ребенок — тоже мальчик? Поскольку пол второго ребенка никак не зависит от пола первого, очевидным (и правильным) ответом является ½.

Почему так происходит, ведь, казалось бы, ничего не изменилось?

Читайте также: