Отопление зданий и сооружений реферат

Обновлено: 05.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Тепловые потери в зданиях и сооружениях

Тепловая изоляция зданий и сооружений

Энергетическая паспортизация зданий, мониторинг застроенных территорий и экспертиза проектов теплозащиты

Список использованных источников

В Республике Беларусь за истекшее десятилетие создана эффективная и динамично развивающаяся экономика, ориентированная на неуклонный рост благосостояния и повышение качества жизни граждан, защиту их материальных, социальных и культурных интересов.

Последовательно осуществляется курс на инновационное развитие страны. За годы независимости сформирована современная социальная инфраструктура.

В республике, оставшейся после распада Советского Союза без источников энергетических и сырьевых ресурсов, проведена большая работа по внедрению энерго- и ресурсосберегающих технологий.

В результате в 1997 - 2006 годах прирост валового внутреннего продукта обеспечен практически без увеличения потребления топливно-энергетических ресурсов. Это в комплексе с другими мерами позволило минимизировать отрицательные последствия для экономики повышения цен на нефть и газ, а главное - не допустить падения жизненного уровня нашего народа.

Энергоемкость валового внутреннего продукта у нас в полтора - два раза выше, чем в развитых государствах со сходными климатическими условиями и структурой экономики. Высока и материалоемкость отечественной продукции. Недостаточно полно используются вторичные ресурсы и отходы производства.

Экономное расходование тепла, электроэнергии, природного газа, воды и других ресурсов является первостепенной задачей каждой белорусской семьи, каждого человека.

Объектом исследования выступают правоотношения, касающиеся института энергосбережения в промышленных и общественных зданиях и сооружениях в полном их объеме.

Цель данной работы – рассмотреть теоретические и практические вопросы, связанные с энергосбережением в промышленных и общественных зданиях и сооружениях. В данной работе определена правовая природа энергосбережения. Это позволило решить ряд исследовательских задач:

- рассмотреть тепловые потери в зданиях и сооружениях;

- рассмотреть тепловую изоляцию зданий и сооружений.

Выполнение данных задач позволит более полно рассмотреть выбранную тему, что поможет не только овладеть теоретическим материалом, но и использовать приобретенные знания на практике.

Структура данной работы состоит из введения, двух частей и заключения.

В данной работе были использованы следующие методы исследования: анализ, изучение, оценка, синтез и так далее.

1. Тепловые потери в зданиях и сооружениях

Тепловая сеть - это система прочно и плотно соединенных между собой участников теплопроводов, по которым теплота с помощью теплоносителей (пара или горячей воды) транспортируется от источников к тепловым потребителям.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки, изоляционная конструкция, предназначенная для защиты трубопровода от наружной коррозии и тепловых потерь, и несущая конструкция, воспринимающая вес трубопровода и усилия, возникающие при его эксплуатации.

Наиболее ответственными элементами являются трубы, которые должны быть достаточно прочными и герметичными при максимальных давлениях и температурах теплоносителя, обладать низким коэффициентом температурных деформаций, малой шероховатостью внутренней поверхности, высоким термическим сопротивлением стенок, способствующим сохранению теплоты, неизменностью свойств материала при длительном воздействии высоких температур и давлений.

Причиной относительно высокого энергопотребления в зданиях и сооружениях нашей страны по сравнению с зарубежными странами является то, что все существующие здания были построены в соответствии с имевшимися на момент строительства строительными нормами и стандартами.

Теплоснабжение производственных помещений (цехов) всегда считалось задачей неординарной, поскольку они, как правило, занимают огромные площади (от нескольких сотен до нескольких тысяч квадратных метров) и высоту до 14—18 м. Рабочая (обитаемая) зона производственных зданий составляет всего 20—30 % их общего объема, которые и требуют поддержания комфортных условий. Нагрев 70-80 % .воздуха, находящегося над рабочей зоной, относятся к прямым потерям. Всем известно, что удержать теплый воздух внизу невозможно и температура его от пола к потолку возрастает на 1,5°С в расчете на метр высоты. Это значит, что в зданиях высотой 12 м при средней температуре в рабочей зоне 15°С воздух под крышей оказывается нагретым до 30°С. Такой перегрев внутреннего воздуха зданий приводит к резкому возрастанию тепловых потерь через наружные ограждения, верхние перекрытия, стены, световые проемы и фонари [9, с.151].

К этому следует добавить и большие затраты энергии на перемещение значительных масс воздуха с помощью вентиляторов, поскольку основным способом отопления производственных помещений является воздушное. Отопить даже среднее производственное помещение с помощью водяной или паровой системы весьма проблематично и в большинстве случаев невозможно. Для этого требуются десятки километров трубопроводов, которые перекрывают проходы и создают другие неудобства.

Вместе с удаляемым нагретым воздухом из верхней зоны промышленных зданий с помощью вытяжных крышных вентиляторов выбрасывается большое количество теплоты. Для ее утилизации целесообразно применять крышные приточно-вытяжные установки с тепло-утилизаторами.

Значительны потери тепла в производственных зданиях и сооружениях в зависимости от принятого режима работы предприятий в течение суток и дней месяца. Как правило, большинство из них работают в две смены, а это означает, что количество рабочего времени за отопительный сезон составляет около 5000 часов, из которых собственно рабочими являются не более 2300 часов, или 44 % календарного времени. Остальные 2700 часов предприятия вынуждены отапливать здания, в которых никто не работает.

Перевод системы отопления в дежурный режим сложен, малоэффективен и небезопасен из-за возможных резких перепадов температур, создающих угрозу размораживания системы из-за возможных высоких суточных колебаний температуры.

Одним из возможных путей решения проблемы уменьшения тепла на отопление больших производственных зданий может быть децентрализация системы теплоснабжения их по теплоносителю, воде и пару за счет внедрения систем газового лучистого отопления (СГЛО) и газовых воздухонагревателей. Лучистое отопление — это передача тепла от более нагретых поверхностей к менее нагретым посредством инфракрасного излучения. Главной отличительной особенностью этой системы является обогрев помещения с помощью потока лучистой энергии инфракрасного спектра. Поток лучистой энергии, направляемый в расположенный непосредственно над обогреваемой зоной лучистыми обогревателями, не нагревая окружающий воздух, нагревает поверхность пола, установленное оборудование в обслуживаемой зоне и людей.. Это принципиальное отличие системы ГЛО от радиационных систем отопления позволяет достигать наиболее полного комфорта для работников.

Для снижения затрат теплоты на нагрев воздуха, поступающего через проемы в стенах общественных зданий, а также для многоэтажных жилых домов применяют воздушно-тепловые завесы. Во многих случаях целесообразно устройство тамбура [9, с.153].

2. Тепловая изоляция зданий и сооружений

В строительстве и теплоэнергетике теплоизоляция необходима для уменьшения тепловых потерь в окружающую среду, в холодильной и криогенной технике - для защиты аппаратуры от притока тепла извне. Теплоизоляция обеспечивается устройством специальных ограждений, выполняемых из теплоизоляционных материалов (в виде оболочек, покрытий и т. п.) и затрудняющих теплопередачу; сами эти теплозащитные средства также называются теплоизоляцией. При преимущественном конвективном теплообмене для теплоизоляции используют ограждения, содержащие слои материала, непроницаемого для воздуха; при лучистом теплообмене - конструкции из материалов, отражающих тепловое излучение (например, из фольги, металлизированной лавсановой плёнки); при теплопроводности (основной механизм переноса тепла) - материалы с развитой пористой структурой.

Задача теплоизоляции зданий - снизить потери тепла в холодный период года и обеспечить относительное постоянство температуры в помещениях в течение суток при колебаниях температуры наружного воздуха. Применяя для тепловой изоляции эффективные теплоизоляционные материалы, можно существенно уменьшить толщину и снизить массу ограждающих конструкций и таким образом сократить расход основных стройматериалов (кирпича, цемента, стали и др.) и увеличить допустимые размеры сборных элементов.

В тепловых промышленных установках (промышленных печах, котлах, автоклавах и т. п.) теплоизоляция обеспечивает значительную экономию топлива, способствует увеличению мощности тепловых агрегатов и повышению их КПД, интенсификации технологических процессов, снижению расхода основных материалов. Экономическую эффективность теплоизоляции в промышленности часто оценивают коэффициентом сбережения тепла h= (Q1 - Q2)/Q1 (где Q1 - потери тепла установкой без теплоизоляции, а Q2 - c теплоизоляцией). Теплоизоляция промышленных установок, работающих при высоких температурах, способствует также созданию нормальных санитарно-гигиенических условий труда обслуживающего персонала в горячих цехах и предотвращению производственного травматизма.

Проблеме получения теплых и, соответственно, энергосберегающих конструкций в последние годы в нашей стране уделяется все больше внимания. Они должны быть, во-первых, прочными, жесткими и воспринимать нагрузки, то есть быть несущими конструкциями, а во-вторых, должны защищать внутреннее пространство от дождя, жары, холода и других атмосферных воздействий, т.е. обладать низкой теплопроводностью, быть водостойкими и морозоустойчивыми.

В природе не существует материала, который удовлетворял бы двум этим требованиям. Для жестких конструкций идеальным материалом является металл, бетон или кирпич. Для утепления годится только эффективный утеплитель, например, каменная вата. Поэтому для того, чтобы ограждающая конструкция была прочной и теплой, используют композицию или комбинацию как минимум двух материалов — конструкционного и теплоизоляционного.

Композиционная ограждающая конструкция в свою очередь может быть представлена в виде нескольких отличных друг от друга систем и конструкций:

1. Жесткий каркас с заполнением межкаркасного пространства эффективным утеплителем.

2. Жесткая ограждающая конструкция (например, кирпичная или бетонная стена), утепленная со стороны внутреннего помещения, или так называемое внутреннее утепление.

4. Тонкая ограждающая конструкция (стена) с утеплителем с внешней стороны, так называемое внешнее утепление.

Теплоизоляционные системы, применяемые для наружной теплоизоляции, подразделяются на системы:

— с тонкими штукатурными и накрывочными слоями;

— с толстыми штукатурками (до 30 мм);

— из ячеистого бетона с объемной массой ниже 400 кг/м 3 .

Применение той или иной системы определяется конструктивными особенностями модернизируемого здания и технико-экономическими расчетами, основанными на приведенных затратах, т.к. стоимость утепления 1 м 2 наружной стены колеблется от 15 до 50 долларов США без учета стоимости заполняемых оконных блоков, модернизации систем вентиляции и отопления. Тем не менее, потенциал энергосбережения при эксплуатации существующего жилого фонда достаточно велик и составляет около 50 % [9, с.154].

Каждая из этих конструкций имеет свои достоинства и недостатки, и выбор ее зависит от многих факторов местных условий. Но из всех названных конструкций четвертый тип утепления здания с внешней стороны хотя и имеет недостатки, но и обладает следующими достоинствами:

1. Надежная защита от неблагоприятных внешних воздействий суточных и сезонных температурных колебаний, которые ведут к неравномерным деформациям стен, что приводит к образованию трещин, раскрытию швов, отслоению штукатурки.

2. Невозможность образования какой-либо поверхностной флоры на поверхности стены из-за избытка влажности, образования льда в толще стены, который имеет место из-за конденсационной влаги, поступающей из внутренних помещений, и влаги, проникшей внутрь массива ограждающих конструкций из-за повреждения поверхностного защитного слоя.

3. Препятствование охлаждению массива ограждающей конструкции до температуры точки росы и, соответственно, выпадению конденсата на внутренних поверхностях.

4. Снижение уровня шума в изолируемых помещениях.

5. Отсутствие зависимости температуры воздуха во внутренних помещениях от ориентации здания, т.е. от нагрева поверхностей солнцем и охлаждения этих же поверхностей ветром, и др.

в) отделочного покрытия из:

3. Энергетическая паспортизация зданий, мониторинг застроенных территорий и экспертиза проектов теплозащиты

Потребление энергии в коммунально-бытовой сфере составляет 38 % общего годового расхода ТЭР Беларуси. Это обусловливает поиск и разработку мер законодательного характера по более экономному расходу энергии в этой сфере. Для осуществления эффективного управления процессом энергосбережения необходимо разработать и внедрить автоматизированную систему управления теплопотреблением застроенных территорий Республики Беларусь, обеспечивающую государственную программу энергосбережения на основе энергетических паспортов зданий и сетевых компьютерных технологий.

Энергетическая паспортизация жилых и общественных зданий представляет собой мероприятие по установлению фактических показателей энергопотребления жилых и общественных зданий, а также по созданию соответствующего банка данных. Цель энергетической паспортизации зданий - проверка фактического состояния энерго- и теплопотребления в жилищном секторе, выделение зданий, требующих первоочередных мероприятий по повышению теплозащитных свойств, а также поиск оптимальных путей снижения расхода теплопотребления.

Постоянно действующий энергетический мониторинг ставит своей целью:

-контроль в режиме реального времени за количеством поставляемой энергии и ее расходом;

-выявление наиболее значительных источников потерь энергии;

-информационное обеспечение планирования и проведения первоочередных мероприятий по снижению энергопотерь и ликвидации источников наиболее высоких энергопотерь;

-контроль за соответствием количества поставленного тепла требуемому для обеспечения нормального микроклимата в помещениях и комфортных условий проживания людей.

Организуемая энергетическая экспертиза проектов теплозащиты и капитального ремонта зданий позволит:

-вскрыть энергетические резервы при эксплуатации зданий и застроенных территорий в целом;

-эффективно планировать и своевременно организовать выполнение энергосберегающих мероприятий на застроенных территориях республики;

-осуществлять постоянный контроль за плановым снижением уровня энергопотребления на отдельных территориях;

- совместить теплозащиту зданий с их плановыми ремонтами и реконструкцией, что значительно повысит рентабельность работ по тепловой защите зданий;

- обеспечить информационную поддержку в разработке технико-экономических обоснований при создании энергоэкономических зон.

К энергосберегающим мероприятиям, финансируемым из источников, предусмотренных в соответствии с законодательством, относятся:

1) мероприятия, обеспечивающие внедрение на действующих объектах новых технологий, оборудования, устройств, систем автоматизации, регулирования, контроля расхода и потребления энергоресурсов, новых схемных решений, проектные и научно-исследовательские работы по этим направлениям, тепловая модернизация зданий и теплофизический контроль эффективности ограждающих конструкций зданий и сооружений, предварительной изоляции трубопроводов, в результате реализации которых достигается экономия топливно-энергетических ресурсов на единицу продукции (работ, услуг) или снижение предельных уровней потребления энергоресурсов;

2) реконструкция, модернизация, новое строительство энергетических мощностей, объектов и коммуникаций с использованием местных видов топлива (дрова, торф), возобновляемых и вторичных энергоресурсов, избыточного энергопотенциала (избыточное давление пара, природного газа), предварительной изоляции трубопроводов, в результате эксплуатации которых достигается экономия топливно-энергетических ресурсов на единицу продукции (работ, услуг), замещение импортируемых видов топлива или снижение предельных уровней потребления энергоресурсов;

3) мероприятия, стимулирующие энергосбережение (информационное обеспечение, разработка нормативно-технической документации, обучение и переподготовка специалистов для сферы энергосбережения, энергетическое обследование предприятий, учреждений, организаций).

Экономическая эффективность отражает результаты внедрения энергосберегающих мероприятий и определяется разностью между денежными доходами и расходами от реализации мероприятий, а также отражает изменение величины спроса на топливно-энергетические ресурсы в результате замещения более дорогих видов топлива менее дорогими.

Расчет капитальных вложений и годовой экономии производится в соответствии с методическими рекомендациями по составлению технико-экономических обоснований для энергосберегающих мероприятий, разрабатываемыми Комитетом по энергоэффективности при Совете Министров Республики Беларусь.

При написании данной работы автором также были изучены нормативно-правовые акты, касающиеся энергосбережения в нашей республике, перечень которых указан в списке использованных источников.

В ходе написания контрольной работы были решены следующие задачи: рассмотрены тепловые потери в зданиях и сооружениях; рассмотрена тепловую изоляцию зданий и сооружений.

Список использованных источников

Список нормативных источников

Список литературных источников

Андриевский А.А. Энергосбережение и энергетический менеджмент: учебное пособие. – Минск: Высшая школа, 2005.

Кравченя Э.М. Охрана труда и основы энергосбережения. - Минск, 2005.

Самойлов М.В. Основы энергосбережения. Учебное пособие. – Минск: БГЭУ, 2002.

Одной из основных задач в этой области являются системы отопления, отвечающие современным требованиям. Под современными требованиями подразумевается:
Высокая эффективность системы.
Экономичность.
Возможность автоматического регулирования и создания максимально комфортных условий проживания.
Возможность получения необходимого количества горячей воды и совмещения с бассейным и климатическим оборудованием.

Содержание

1 Понятие системы отопления …………………………….…………………….3
Требования к системам отопления…………………………………………..3
Виды систем отопления………………………………………………………4
Отопительные приборы………………………………………………………5

Классификация систем отопления ………………………………………….6
Основные характеристики теплоносителей…………………………………6
3 Правила монтажа и испытания систем отопления…………………………. 8

Прикрепленные файлы: 1 файл

Реферат Системы отопления.docx

1 Понятие системы отопления …………………………….…………………….3

    1. Требования к системам отопления…………………………………………..3
    2. Виды систем отопления……………………………………………………… 4
    3. Отопительные приборы………………………………………………………5
    1. Классификация систем отопления ………………………………………….6
      1. Основные характеристики теплоносителей…………………………………6

      3 Правила монтажа и испытания систем отопления………… ………………. 8

      С развитием строительства в последние годы, наряду с поиском архитектурно - планировочных решений строений, на первый план выходят требования по обеспечению комфорта находящихся в них людей.

      Одной из основных задач в этой области являются системы отопления, отвечающие современным требованиям. Под современными требованиями подразумевается:

        • Высокая эффективность системы.
        • Экономичность.
        • Возможность автоматического регулирования и создания максимально комфортных условий проживания.
        • Возможность получения необходимого количества горячей воды и совмещения с бассейным и климатическим оборудованием.

        Отопительные системы разрешают одну из задач по созданию искусственного климата в помещениях. Они служат для поддержания заданной температуры воздуха во внутренних помещениях зданий в холодное время года.

        Цель данной работы: Изучить системы отопления, классификацию и виды.

        Задачи данной работы: Определить правила монтажа систем отопления.

        1 Понятие системы отопления

        Система отопления представляет собой комплекс элементов, необходимых для обогрева помещений. Основными элементами являются генераторы теплоты, теплопроводы, отопительные приборы. Передача теплоты осуществляется с помощью теплоносителей — нагретой воды, пара или воздуха.

        При определении тепловой нагрузки систем отопления учитывают особенности теплового режима помещений. В помещениях с постоянным тепловым режимом, к которым относятся промышленные, жилые и общественные здания, сельскохозяйственные постройки, тепловую нагрузку определяют из теплового баланса. В помещениях с переменным режимом при определении тепловой нагрузки различают два периода — рабочий и нерабочий. В нерабочее время необходимость в отоплении может отсутствовать. Во всех случаях при расчете мощности систем отопления необходимо учитывать минимальные почасовые тепловыделения. Кроме того, системы отопления должны обеспечивать нормируемые параметры воздуха к началу рабочего периода. Отопление, рассчитанное только на период нерабочего времени, называют дежурным отоплением.

        1.1 Требования к системам отопления

        Системы отопления должны обеспечивать внутри помещения заданную температуру воздуха равномерно по объему рабочей зоны помещения. Температуры внутренних поверхностей наружных ограждений и нагревательных приборов должны находиться в пределах нормы. Система должна быть безопасной и бесшумной в работе, должна обеспечивать наименьшее загрязнение вредными выделениями помещений и атмосферного воздуха.

        Системы отопления должны обеспечивать минимум затрат по сооружению и эксплуатации. Показателями экономичности являются также расход материала, затраты труда на изготовление и монтаж. Экономичность системы определяется технико-экономическим анализом вариантов различных систем и применяемого оборудования.

        Системы отопления должны соответствовать архитектурно-планировочному решению помещений. Размещение отопительных элементов должно быть увязано со строительными конструкциями.

        Элементы систем отопления должны изготавливаться преимущественно в заводских условиях, детали унифицированы, затраты труда на сборку минимальны.

        Система отопления должна быть надежной в поддержании заданных температур воздуха. Надежность системы обусловливается ее долговечностью, безотказностью, простотой регулирования управления и ремонта.

        1.2 Виды систем отопления

        Принципиально система отопления делится на гравитационную и насосную. Наиболее типичной системой является гравитационная система, в которой теплоноситель движется по трубам за счет того, что нагретая вода легче холодной. В результате горячая вода устремляется вверх, создавая при этом напор, и возникает циркуляция, вызывающая процесс теплообмена. Особенностью этих систем является то, что необходимо применение труб достаточно большого диаметра, так как значения напора в данных системах невелики. Отличительной чертой гравитационных систем является то, что трубопроводы располагаются, преимущественно, вертикально и распределение теплоносителя осуществляется сверху вниз.

        В настоящее время для увеличения напора применяются циркуляционные насосы, которые значительно повышают значения напора, производительности и, как следствие эффективности системы в целом. Основными схемами при монтаже систем отопления являются однотрубная и двухтрубная.

        Однотрубная схема в основном применяется в сфере производственно-гражданского строительства.

        Двухтрубная схема применяется в коттеджном и малоэтажном строительстве. С появлением циркуляционных насосов расположение трубопроводов перестало влиять на качество отопительных систем, а применение полимерных труб и фитингов позволило в корне изменить конструкции и потребительские свойства систем отопления. Теперь трубопроводы можно размещать в конструкциях пола и стен, что позволяет повысить эстетику жилых помещений.

        В двухтрубной схеме широко используются полипропиленовые трубы с металлизированной прослойкой (так называемые стабильные трубы). Долговечность этих труб может достигать 70 лет.

        По сравнению с металлическими трубами пластиковые имеют значительно более низкое гидравлическое сопротивление и их пропускная способность на 30% больше при одинаковом давлении насоса. Кроме того они гораздо практичнее в эксплуатации, имеют меньшую массу, более эстетичный внешний вид, а также легко ремонтируются и восстанавливаются.

        В современном коттеджном строительстве наиболее широко применяется коллекторная система отопления.

        1.3 Отопительные приборы

        Традиционно в строительстве использовались разнообразные чугунные радиаторы и регистры, сваренные из стальных труб. Однако, существует множество отопительных приборов выполненных из листовой стали, алюминия, стальных труб, меди, а также, биметаллических конструкций. Все эти приборы имеют свои достоинства и недостатки.

        Достоинства это: высокая теплоотдача, привлекательный дизайн. Недостатки это: низкая механическая прочность, слабая теплоотдача.

        Все отопительные приборы обладают излучающими свойствами, поэтому тепло от батареи распределяется позонно, т. е., чем дальше от батареи, тем холоднее. В современных отопительных приборах этот недостаток сведен к минимуму, поскольку этим приборам придали свойства конвектора. Благодаря специфической конструкции воздух, проходя через отопительный прибор, нагревается, поднимается вверх и перемешивается с более холодными слоями воздуха, благодаря чему температура внутри помещения гораздо ровнее, нежели в ранее рассмотренном случае.

        2 Классификация систем отопления

        Различают местные и центральные системы отопления.

        К местным относят системы, в которых все элементы объединены в одном устройстве и которые предназначены для обогрева одного помещения. К местным системам относят печное отопление, газовое (при сжигании топлива в местном устройстве) и электрическое.

        Центральные системы обогревают ряд помещений из центра (котельная, ТЭЦ), в котором вырабатывается теплота, передаваемая теплоносителем к нагревательным приборам отапливаемых помещений.

        По виду теплоносителя системы отопления подразделяют на системы водяного, газового, парового и воздушного отопления.

        В водяных и паровых системах теплоноситель — вода или пар — нагревается в генераторе теплоты и передается по трубопроводам к нагревательным приборам.

        В воздушных системах нагретый воздух поступает непосредственно в помещение из распределительных каналов или отопительных агрегатов, распложенных в самом помещении.

        По способу перемещения теплоносителя центральные системы отопления подразделяют на системы с естественной циркуляцией и системы с механическим побуждением (принудительная циркуляция).

        2.1 Основные характеристики теплоносителей

        При выборе теплоносителя необходимо учитывать санитарно-гигиенические, технико-экономические и эксплуатационные показатели.

        Газы образуются при сгорании топлива, они имеют высокие температуры и энтальпию. Однако транспортировка газов усложняет систему отопления и приводит к значительным тепловым потерям. С санитарно-гигиенической точки зрения газы как теплоноситель малоприемлемы, так как трудно обеспечить допустимые температуры нагревательных приборов. Впуск газов непосредственно в помещение ухудшает состояние воздушной среды.

        Вода обладает большой теплоемкостью и плотностью, что позволяет передавать большое количество теплоты при малом объеме теплоносителя. Это обеспечивает малые размеры трубопроводов и относительно невысокие потери теплоты. Допускаемая по санитарно-гигиеническим нормам температура нагревательных приборов легко достигается, однако на перемещение воды требуется затрата энергии.

        Пар при конденсации в нагревательных приборах отдает значительное количество теплоты за счет скрытой теплоты парообразования. Вследствие этого масса пара при данной тепловой нагрузке уменьшается по сравнению с другими теплоносителями. Однако пар как теплоноситель в системах отопления уступает воде, так как температура приборов будет превышать 100˚С, что приводит к возгонке органической пыли, оседающей на приборах, и к выделению в помещение вредных веществ и неприятных запахов. Следует также учесть, что паровые системы могут быть источниками шума, кроме того, пар при низких давлениях (применяемых в системах отопления) имеет значительный удельный объем, что ведет к увеличению сечений трубопроводов.

        Воздух — подвижный теплоноситель — безопасен в пожарном отношении, в воздушных системах возможно простое регулирование температуры в помещении. Однако вследствие малой теплоемкости воздуха для удовлетворения заданной тепловой нагрузки масса воздуха должна быть значительной, что приводит к необходимости иметь каналы с большим сечением для его перемещения и дополнительному расходу энергии. К тому же воздушное отопление в некоторых случаях может спровоцировать развитие вредоносных бактерий. Поэтому воздушное отопление применяют преимущественно на промышленных предприятиях.

        Водяное отопление получило в настоящее время наибольшее распространение в силу преимуществ перед другими системами отопления. Опыт эксплуатации водяных систем показал их наилучшие гигиенические и эксплуатационные свойства. Системы водяного отопления более надежны, бесшумны, просты и удобны в эксплуатации, могут иметь значительный радиус действия по горизонтали. Радиус действия системы по вертикали определяется гидростатическим давлением. Особое значение получило водяное отопление с развитием централизованного теплоснабжения и теплофикации.

        3 Правила монтажа и испытания систем отопления

        Трубопроводы систем отопления, теплоснабжения воздухонагревателей и водоподогревателей систем вентиляции, кондиционирования, воздушного душирования и воздушно-тепловых завес (далее - трубопроводы систем отопления) следует проектировать из стальных, медных, латунных и полимерных труб, разрешенных к применению в строительстве. В комплекте с полимерными трубами следует применять, как правило, соединительные детали и изделия, одного производителя.

        Полимерные трубы, применяемые в системах отопления совместно с металлическими трубами (в том числе в наружных системах теплоснабжения) или с приборами и оборудованием, имеющим ограничения по содержанию растворенного кислорода в теплоносителе, должны иметь кислородопроницаемость не более 0,1 г/(м3∙сут).

        Прокладка трубопроводов систем отопления не допускается:

        А) на чердаках зданий (кроме теплых чердаков) и в проветриваемых подпольях в районах с расчетной температурой минус 40°С и ниже (параметры Б);

        Б) транзитных - через помещения убежищ, электротехнические помещения, шахты с электрокабелями, пешеходные галереи и тоннели.

        На чердаках допускается установка расширительных баков с тепловой изоляцией из негорючих материалов.

        Способ прокладки трубопроводов систем отопления должен обеспечивать легкую замену их при ремонте. Замоноличивание труб без кожуха в строительные конструкции допускается:


        условий по формуле (1) и условия энергосбережения по [4, табл. 4].

        Требуемое сопротивление теплопередачи ограждающих конструкций (за исключением

        светопрозрачных), отвечающих санитарно-гигиеническим условиям, определяют по формуле

        где n - коэффициент, принимаемый в зависимости от положения ограж дения по

        отношению к наружному воздуху по [3, табл. 3*] или [4, табл. 6]: для наружных стен и

        отапливаемыми подвалами без свето вых проемов в стенах, расположенных выше уровня

        температура наружного воздуха, °С, равная сре дней температ уре наиболее холодной

        - нормативный температурный перепад между температурой

        внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции,

        принимают по [3, табл. 2*] или [4, табл. 5] для жилых зданий: для наружных стен -

        внутренней поверхности ограждающих конструкций принимается по [3, табл. 4*] или [4,

        стен зданий , определяемого по формуле (1) при расчетной

        зимней температуре наружного воздуха, равной средней температуре наиболее холодной

        Требуемое сопротивление теплопередаче наружных ограждений, исходя из условий

        определяется по [3, табл. 16], [4, табл. 4] в зависимости от значения

        Градусо-сутки отопительного периода определяются по формуле

        температура, °С, за отопительный период и продолжите льность, в сут., пе риода со средней

        суточной температурой воздуха ниже или равной 8 °С, определяются заданием.

        Значения требуемого сопротивления теплопередачи для в еличин

        где а, b - коэффициенты, значения которых следует принимать по дан ным [4, табл. 4]

        за исключением столбца 6. Для окон, балконных дверей, витрин и витражей в интервале до

        6000 °С·сут: а = 0,000075, b = 0,15; в интервале 6000-8000 °С·сут: a = 0,00005, b = 0,3; для


        Для каждого ограждения из двух вычисленных величин

        расчет фактического сопротивления теплопередачи следует при нимать большее значение.

        соответствии с принятой конструкцией ограждения по формуле (4) [6]

        - сопротивление теплоотдаче внутренней поверхности, (м²·°С)/Вт;

        поверхности ограждающей конструк ции, определяемый по [6, табл. 4.2] или [3, табл. 6*]: для

        ·°С); для перекрытий над неотапливаемыми подвалами без световых проемов

        сопротивление ограждающей конструкции с последовательно расположенными

        определяется как сумма термических сопротивлений отдельных слоев

        — термическое сопротивление отдельных слоев ограж дающей

        Сопротивление каждого слоя однородной ограждающей конструкции

        При этом должно быть соблюдено условие: фактическое сопротивление теплопередачи

        должно быть больше или равно тре буемому исходя из санитарно-

        определяется коэффициент теплопередачи ограждения в Вт/(м·°С)


        Требуется выполнить технический расчет изображенной на рис. 1 наружной стены для

        жилого дома и установить значения ее сопротивления и коэффициента теплопередачи.

        1) Определим требуемое сопротивление теплопередаче наружного ограждения по

        2) Определим градусо-сутки отопительного периода по формуле

        3) Определим требуемое сопротивление теплопередаче для полученной величины

        Так как для наружного ограждения требуемое сопротивление теплопередаче,

        определенное с учетом величины градусо-суток отопительного периода

        величину по сравнению со значением, полученным при вычислениях по формуле (1), то в

        4) Определим требуемую толщину утеплителя из формулы (4), замещая

        Толщина конструктивных слоев указана справа от рис. 1. Соответствующие


        = 0,11 м, то толщину утепляющего слоя для наружной стены

        принимаем ближайшую большую к э тому значению по сортаменту выпускаемых плоских

        листов пенополистерола. Толщина используемого утеплителя в данном случае составит 0,12

        5) Определим по формуле (4) фактическое сопротивление наружного ограждения с

        6) Определим коэффициент теплопередачи по формуле (7)

        7) Определим требуемое сопротивление теплопередаче окон и балконных дверей по [4,

        Используя [3, прил. 6*], выбираем равное или ближайшее большее приведенное

        сопротивление теплопередаче и соответствующую конструкцию окна.

        = 0,55 (м²·°С)/Вт, что соответствует тройному остеклению в деревянных или

        8) Определим коэффициент теплопередачи окон и балконных дверей по формуле (7)

        9) Определим требуемое сопротивление теплопередаче дверей (кроме балконных) и

        10) Определим коэффициент теплопередачи дверей и ворот по формуле (7)

        1 . 1 . 2 . Б е с че р д а ч н о е п е р е к ры т и е

        Требуется выполнит ь технический расчет изображенного на рис. 1.1.2 бесчердачного

        перекрытия для ж илого дома и установить значения его сопротив ления и коэффициента

        1) Определим требуемое сопротивление теплопередаче наружного ограждения по


        2) Определим градусо-сутки отопительного периода по формуле (2)

        3) Определим требуемое сопротивление теплопередаче для полученной величины

        Так как для наружного ограждения требуемое сопротивление теплопередаче,

        определенное с учетом величины градусо-суток отопительного периода

        величину по сравнению со значением, полученным при вычислениях по формуле (1), то в

        4) Определим требуемую толщину утеплителя из формулы (4), замещая

        Толщина конструктивных слоев указана справа от рис. 2. Соответствующие

        = 0,22 м, то толщину утепляющего слоя для бесчердачного

        перекрытия принимаем ближайшую большую к э тому значению по сортаменту выпускаемых

        плит из резольного фенолформальдегидного пенопласта. Толщина используемого

        Расчет термического сопротивления многопустотной железобетонной плиты

        5) Определим по формуле (4) фактическое сопротивление наружного ограждения с

        учетом принятой толщины плит из резольного фенолформальдегидного пенопласта

        6) Определим коэффициент теплопередачи по формуле (7)

        Требуется выполнить технический расчет изображенного на рис. 3 подвального

        перекрытия для ж илого дома и установить значения его сопротив ления и коэффициента


        1) Определим требуемое сопротивление теплопередаче наружного ограждения по

        2) Определим градусо-сутки отопительного периода по формуле (2)

        3) Определим требуемое сопротивление теплопередаче для полученной величины

        Так как для наружного ограждения требуемое сопротивление теплопередаче,

        определенное с учетом величины градусо-суток отопительного периода

        величину по сравнению со значением, полученным при вычислениях по формуле (1), то в

        4) Определим требуемую толщину утеплителя из формулы (4), замещая

        Толщина конструктивных слоев указана справа от рис. 3. Соответствующие

        перекрытия принимаем ближайшую большую к э тому значению по сортаменту выпускаемых

        перлитофосфогелевых изделий. Толщина используемого утеплителя в данном случае

        Расчет термического сопротивления многопустотной железобетонной плиты

        5) Определим по формуле (4) фактическое сопротивление наружного ограждения с

        учетом принятой толщины перлитофосфогелевых изделий:

        6) Определим коэффициент теплопередачи по формуле (7)


        1 . 1 . 4 Р а с че т т е рм и ч е с к ог о с оп р о т ив л е н и я м н о г оп у с т о т н ой ж е л е зо б е т о нн о й п л и т ы

        п о д в а ль н о г о и че р д а чн о г о пе р е к р ы т ия

        1. Для простоты расчета принимае м схему сечения плиты с квадратными отверстиями в

        плите вместо круглых. Так, сторона эквивалентного по площади квадрата ( А

        Рис. 1.1.4. Поперечное сечение плиты (а) и расчетная схема (б)

        2. При делении плоскостями, параллельными тепловому потоку. Получаем два

        параллельных участк а. Участок I - однородный, участок II - многослойный, состоящий из

        двух одинаковых по толщи не слоев а и в , а также горизонтальной воздушной прослойки.

        Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

        СодержаниеВведение

        . Общее понятие системы отопления

        .1 Классификация систем отопления

        .2 Отопительные приборы

        2. Водяное отопление

        2.1 Виды водяного отопления

        .1 Виды воздушного отопления

        .1 Виды парового отопления

        Использованная литература Введение Каким бы ни было здание, большим или маленьким, чтобы в нем было уютно и тепло круглый год, необходимо надежное и удобное отопление. С развитием строительства в последние годы, наряду с поиском архитектурно - планировочных решений строений, на первый план выходят требования по обеспечению комфорта находящихся в них людей.

        Одной из основных задач в этой области являются системы отопления, отвечающие современным требованиям.

        Под современными требованиями подразумевается:

        . Высокая эффективность системы.

        . Возможность автоматического регулирования и создания максимально комфортных условий проживания.

        . Возможность получения необходимого количества горячей воды.

        Отопительные системы разрешают одну из задач по созданию искусственного климата в помещениях. Они служат для поддержания заданной температуры воздуха во внутренних помещениях зданий в холодное время года.

        Системы отопления могут различаться в зависимости от разных критериев. Существуют такие основные виды систем отопления, как: воздушное отопление, электрическое отопление, водяное отопление, паровое, и другие. Классификация систем отопления включает множество видов. Рассмотрим основные из них, а также проведем сравнение видов топлива для отопления.

        Цель данного реферата: Изучить общее понятие системы отопления, основные виды (водяное, воздушное, паровое отопление). 1. Общее понятие системы отопления Система отопления - это совокупность технических элементов, предназначенных для получения, переноса и передачи во все обогреваемые помещения количества теплоты, необходимого для поддержания температуры на заданном уровне.

        Основные конструктивные элементы системы отопления:

        . теплоисточник (теплогенератор при местном или теплообменник при централизованном теплоснабжении) - элемент для получения теплоты;

        . теплопроводы - элемент для переноса теплоты от теплоисточника к отопительным приборам;

        . отопительные приборы - элемент для передачи теплоты в помещение. [1] .1 Классификация систем отопления Системы отопления можно разделить:

        По радиусу действия - местные и центральные;

        По типу источника нагрева - газовые, мазутные, электрические, пеллетные, дровяные, угольные, дизельные, торфяные, солнечные, геотермальные.

        По виду циркуляции теплоносителя - с естественной и искусственной (механической, с использованием насосов);

        По типу теплоносителя - воздушные, водяные, паровые, комбинированные;

        По способу разводки - с верхней, нижней, комбинированной, горизонтальной, вертикальной;

        По способу присоединения приборов - однотрубные, двухтрубные, трёхтрубные, четырёхтрубные, комбинированные;

        Однотрубная. Устроена следующим образом: отопительные приборы одного стояка подключены последовательно, т.е. теплоноситель, постепенно охлаждаясь, проходит стояк из прибора в прибор. При этом, логично, в последний из них он

        Читайте также: