Осушка природного газа реферат

Обновлено: 05.07.2024

Природный газ, предназначенный для транспорта по магистральным трубопроводам, должен содержать определенное количество влаги и сероводорода. Влажность газа обычно доводится до 9,5—12,5 кг на 1 млн. л 3 , а содержание сероводорода до 0,23 — 0,58 г на 100 м 3 .

§ 1. ОСУШКА ПРИРОДНОГО ГАЗА

Осушкой природного газа называется процесс удаления воды, находящейся в природном газе в парообразном состоянии. Общепризнано, что осушка газа является необходимым условием для обеспечения бесперебойной работы магистральных газопроводов. Она предотвращает образование гидратов и уменьшает коррозию. При транспорте влажного газа в определенных условиях влага может сконденсироваться и накапливаться в пониженных местах газопровода, вследствие чего уменьшается пропускная способность магистрали.

В газовой промышленности применяются несколько методов осушки: адсорбцией, абсорбцией, прямым охлаждением, сжатием с последующим охлаждением и химическая осушка.

Поскольку ни один из этих методов не обладает безусловным преимуществом по сравнению с остальными, для выбора наиболее эффективного и экономичного в конкретных условиях процесса необходимо знать все эти методы.

В процессах осушки путем адсорбции в качестве адсорбента чаще всего применяют активированную окись алюминия, силикагель и бокситы, а при осушке газа абсорбцией— диэтилен гликоль и триэтилен гликоль. Осушка газа охлаждением и химическими способами получила небольшое распространение, эти методы будут охарактеризованы лишь кратко.

1. ОСУШКА ОХЛАЖДЕНИЕМ

Количество влаги в насыщенном природном газе уменьшается при увеличении давления или снижении температуры (рис. V. 8). Таким образом, теплый или горячий газ, насыщенный водяным паром, можно частично осушить путем прямого охлаждения. Газ после сжатия обычно охлаждают, вследствие чего из него удаляется вода. Если при охлаждении не достигается минимум температуры, которую газ будет иметь при дальнейшем движении по системе при данном давлении, конденсация влаги газа в дальнейшем не будет исключена. Использование эффекта Джоуля-Томпсона или охлаждение расширением в промысловых сепараторах с целью осушки природного газа описано в главе XIII.

2. ХИМИЧЕСКАЯ ОСУШКА

Химическая реакция между водой и химическими веществами может быть столь полной, что образующиеся при ней продукты гидратации будут иметь чрезвычайно низкую упругость водяных паров. Имеются химические агенты, обеспечивающие практически полную осушку газа [XVI. 2]. Однако эти агенты очень трудно или вообще невозможно регенерировать. Это обстоятельство делает их непригодными для использования в качестве промышленных осушителей. Однако, как указывалось в главе V, они широко применяются при лабораторном определении влажности газов.

3. ОСУШКА ГАЗА АБСОРБЦИЕЙ

7) низкая или средняя вязкость; 8) низкая упругость паров при температуре контакта; 9) низкая растворяющая способность по отношению к природному газу и углеводородным жидкостям и низкая растворимость в иих; 10) низкая склонность к образованию пены или эмульсий.

Всем этим требованиям в той или иной степени удовлетворяют два органических соединения: диэтиленгли-коль

и триэтиленгликоль

Эти два эфира многоатомных спиртов наиболее часто применяются для осушки природных газов путем абсорбции [XVI. 4 —XVI. 9, XVI. 20].

Прежде всего рассмотрим те физические свойства гликолей, которые составляют основу для технологических расчетов процессов осушки. Затем будет показано, какие из этих свойств необходимы при выборе режимов процесса.

Вода и гликоли взаиморастворимы в жидкой фазе [XVI. 15]. Экспериментальные данные о равновесии пар — жидкость в водных растворах гликоля указывают на то, что упругость водяных паров в концентрированных растворах очень незначительна. Упругость паров воды, находящихся в равновесии с растворами гликоля различной концентрации, можно выразить при помощи кривых точек росы воды в зависимости от температуры раствора или контакта, поскольку выяснено, что точки росы относительно независимы от общего давления газа в системе. Такие кривые приведены на рис. XVI. 1 и XVI. 2 [XVI. 10]. Зная температуру контакта и концентрацию гликоля, можно легко определить температуру точки росы газа. Эти величины в сочетании с графиком водосодержания газа, приведенным на рис. V. 8, можно использовать для определения абсолютной влажности газа, находящегося в равновесии с гликолевыми растворами. Следует отметить, что, если гликоль не влияет на определение точки росы, точки замерзания, указанные ниже 0° С, могут представлять собой метастабиль-ные точки росы.

Си * Ц0 I 30

2 в 3—4 раза превышает соответствующий показатель при атмосферном давлении [XVI. 10]. Бриджмен (Bridgman) [XVI. 3] сообщает об аналогичном влиянии давления на вязкость соединений с сильно разветвленной молекулярной цепью. Вязкость и растворимость жидкой фазы являются основными переменными в корреляциях, определяющих общий к. п. д. тарелок в абсорберах.

Поскольку необходимо применять растворы с высокой концентрацией гликоля, регенерация разжиженных водных растворов гликоля не должна представлять трудности. Диаграммы изобарная температура — состав для системы гликоль — вода (рис. XVI. 5 и XVI. 6) и нормальная температура кипения водных растворов гликолей свидетельствуют о легкости, с которой можно повторно повышать концентрацию гликоля в этих растворах. Низкая концентрация воды в паровой фазе, находящейся в равновесии с 92—99%-ным весовым раство-

-60 -40 -20 0 20 40 60 80 93

Температура,°С

Рис, XVI, 3. Вязкость водных растворов диэтилен гликоля [XVI. 13],

Мольная концентрации диэтиленгликоля

Рнс. XVI. 5. Кривые фазового состава для водных растворов диэтиленгликоля [XVI. 13].

1 — пар; 2 — жидкость при 600 мм рт. ст.; 3 — жидкость при 300 мм рт. ст.; 4— жидкость при 100 мм рт. ст.

Рис. XVI. 6. Кривые фазового состава для водных растворов тризтиленгликоля [XVI. 13].

/ — пар; 2 — жидкость прн 600 мм рт. ст.\ 3 — жидкость при 300 мм рт. ст.\ 4 — жидкость при 100 мм рт. ст.

¦100%6ес глиноля -90

тризтиленгликоля

¦60 - 40 -20 0 20 40 60 8093

Температура,°С

XVI. 4. Вязкость водных растворов три-этиленгликоля [XVI. 13].

ром гликоля, объясняется в основном низкой мольной концентрацией воды в этих растворах, а также тем обстоятельством, что коэффициент активности воды меньше единицы. Коэффициент активности при низких давлениях

где fi — коэффициент активности воды; р — общее давление системы, представляющее собой сумму парциальных давлений воды и гликоля; у\ — мольная концентрация воды в газовой фазе; Р — упругость паров чистой воды; х — мольная концентрация воды в жидкой фазе.

Как сообщают Поллитцнер (Pollitzner) и другие [XVI. 9], потери триэтяленгликоля вследствие испарения составляют 0,16 л на 100 000 м 3 газа, что согласуется с общей цифрой потерь гликоля, определенной в производственных условиях (0,33 л на 100 000 м 3 газа) [XVI. 7], В последнюю цифру, помимо потерь от испарения, включены потери вследствие уноса, утечки, растворения и т. п.

Другим важным свойством гликолей является незначительная растворимость их в легких углеводородах. В связи с этим представляется возможной прямая ин-жекция диэтиленгликоля в двухфазные потоки, содержащие легкие углеводородные жидкости, С другой сторо-ны, легкие углеводороды (за исключением ароматических, — Ред.) в газообразном и жидком состояниях также очень мало растворимы в гликолях.

В присутствии легких углеводородов гликоли иногда склонны к пенообразованию. Однако при тщательном предварительном отбензинивании газа, поступающего в абсорберы, пенообразование доводится до минимума. Для уменьшения ценообразования с успехом были применены пеногасители [XVI, 7].

-20 0 20 W SD 80

Температура °С

Рис. XVI. 8. Плотность водных растворов триэтиленгликоля при различных температурах [XVI. 13].

Другие свойства водных растворов гликолей представлены в виде графиков на рис. XVI. 7—XVI. 15, Температура замерзания гликолевых растворов показана на рис. XVI, 14,

-Ч-0-30 -15 0° 15 30 Ь5 6 0 75 82

Температура, °С

РйС, XVI. 9. Удельная теплоемкость водных растворов диэтиленгликоля [XVI. 13].

Рис. XVI. 10. Удельная теплоемкость водных растворов триэтиленгликоля [XVI. 13].

Рис. XVI. 13. Диаграмма Кокса для гликолей [XVI. 13].

/ — пропнленглнколь; 2 — этнленглнколь; 3 — ДИ* прогщленгликоль; 4 — днэтнленглнколь; 5 —• три* пропнленглнколь*

Теплопроводность, ннал!мч°с Теплопроводность, ккал/м. ч.°С

Рис. XVI. 14. Температура замерзания водных растворов ди- и три-этиленгликоля [XVI. 10, XVI. 13].

I —- триэтилеигликоль; 2 — дипропиленгликоль: 3 — диэтиленгликоль; 4 — про-пиленгликоль; 5 — этнленгликоль.

Гликоль, % вес,

5. ПАРАМЕТРЫ ПРОЦЕССА ОСУШКИ ГАЗА ГЛИКОЛЯМИ С ИСПОЛЬЗОВАНИЕМ ЦИКЛА АБСОРБЦИИ — ДЕСОРБЦИИ

В настоящее время диэтиленгликоль и триэтиленгли-коль находят широкое применение при осушке природного газа жидкими поглотителями. Типовые технологические схемы установок^ для осушки газа этими сорбентами представлены на рис. XVI. 16 и XVI. 17 [XVI. 7|

В основном обе установки имеют аналогичную конструкцию. Нужно отметить лишь различие в устройствах Для орошения.

Рйс. XVI. 16. Технологическая схема установки осушки диэтиленгликолем [XVI. 7].

/ —| вход влажного газа; 2 — водоотбойник; 3 — сброс жидкости; 4 — абсорбер; 5 — выход сухого газа; 6 — холодильник гликоля; 7 — промежуточная емкость; 8 — выпарная колонна; 9 кипятильник-рибойлер; 10 — конденсатор орошения; 11 сборная емкость; 12 — сброс воды.

Абсорбер. Верхний предел температуры абсорбции определяется допускаемым уровнем потерь ди- и три-этиленгликоля от испарения, и практически верхний предел температуры составляет около 38° С. Фактическая температура абсорбции зависит от температуры, до которой можно охладить регенерированный гликоль, от температуры газа на входе в абсорбер, теплоты абсорбции воды и от соотношения между газом и жидкостью. Нижний предел температуры абсорбции усганавлива-

Рис. XVI. 15. Температура кипения водных растворов ди- и триэтиленгли-коля при атмосферном давлении [XVI. 13].

А — триэтилеигликоль; В — диэтилеигли-коль.

тСг*зз-

Рис. XVI. 17. Технологическая схема установки осушки триэтиленгликолем [XVI. 7].

/ — влажный газ из газопровода; 2— абсорбер; 3 — колпачковые тарелки; 4 — сухой газ в газопровод; 5 — регулятор уровня; 6 — гликоль с высоким содержанием воды; 7 — фильтр; 8 — промежуточная емкость; 9 — кипятильник-рибойлер (паровой илн прямого нагрева); 10—выпарная колонна; II — вода; 12 — насос; 13—ненасыщенный ГЛИКОЛЬ.

ется влиянием вязкости на влагопоглощающую способность при контакте.

Минимальная рабочая температура равна около 10° С, хотя установки с инжекцией гликоля рассчитаны на работу в условиях значительно более низких температур.

Давление, при котором должны работать гликолевые абсорберы, в значительно большей степени определяется экономическими соображениями (первоначальной стоимостью установок), чем равновесными фазовыми соотношениями. В литературе имеются данные о триэтиленгликолевых абсорберах, работающих при давлениях до 140 кГ/см 2 [XVI. 7]. По-видимому, опубликованные ранее данные о том, что константа равновесия для воды в системе гликоль—-вода — природный газ повышается по мере увеличения давления, неверны [XVI. 19]. Это можно объяснить весьма высокими критическими давлениями систем природный газ — гликоль.

Площадь поперечного сечения абсорбера определяется в основном его пропускной способностью по газу, поскольку расход жидкости, необходимой для осушки газа, очень невелик. Можно применять обычные методы определения размеров колонн с колпачковыми тарелками, рассмотренные в главе XIV. Несмотря на низкий расход жидкости, к. п. д. отдельных тарелок в правильно рассчитанной колонне может доходить до 70%.

Точка росы воды для газа, выходящего из абсорбера, определяется степенью регенерации и охлаждения гликолевого раствора. Можно добиться снижения точки росы примерно на 28° С, что соответствует 95— 96%-ной (по весу) концентрации раствора диэтилен-гликоля, поступающего в абсорбер. В свою очередь это соответствует максимальной температуре регенерации 165° С. Триэтиленгликоль позволяет снизить точку росы на 33—42° С, что соответствует регенерированным растворам, содержащим 98—99% (по весу) гликоля.

Выпарная колонна. Важным параметром ее работы является температура, поскольку ею определяется концентрация регенерированного абсорбента, а излишне высокая температура вызывает термическое разложение гликоля. Максимальная температура в регенераторе, допускаемая для водных растворов диэтиленгликоля, составляет 165° С, хотя иногда можно допустить повышение температуры до 175° С. Разложению гликолей соответствуют кислород и сероводород, вследствие чего их присутствие требует снижения температуры регенерации по сравнению с нормальным уровнем. Были высказаны рекомендации об удалении растворенных газов путем снижения давления отработанного гликоля, выходящего из абсорбера [XVI. 23].

Для десорбции тризтиленгликоля требуется еще меньшее орошение. В небольших установках достаточное орошение можно получить при использовании вертикальной трубы с развитой поверхностью, охлаждаемой непосредственно атмосферным воздухом.

Контакт между газом и жидкостью в десорбере обеспечивается при помощи колпачковых тарелок в больших колоннах и насадки в колоннах меньшего размера. Для разделения требуется небольшое число теоретических тарелок, тем не менее предусматривается большой запас тарелок или насадки.

Вспомогательное оборудование установок осушки гликолем включает насосы, теплообменники, кипятильники, рибойлеры, фильтры и т. п. Это оборудование обстоятельно описано в специальных статьях [XVI. 7,

§ 2. ОСУШКА ГАЗА АДСОРБЦИЕЙ

Твердые поглотители (или адсорбенты) широко применяются для осушки газов. В последнее время твердые поглотители стали использовать и для удаления воды из жидкостей. Адсорбенты имеют свойство поглощать воду из углеводородного потока и отдавать ее другому потоку с Оолее высокой температурой во время регенерации.

1. ПРИРОДА АДСОРБЦИИ

Изменение температуры и другие факторы, вызывающие разрушение физической структуры адсорбента, уменьшают его способность поглощать и удерживать воду. Кемпбелл, Скиннер и Лоуренс (Kampbell, Skinner and Laurence) [XVI. 5] приводят следующие требования, которым должен удовлетворять хороший зернистый поглотитель: I) высокая равновесная адсорбционная емкость по отношению к воде; 2) обратимость адсорбции и простота регенерации; 3) высокая скорость адсорбции; 4) малое сопротивление потоку газа; 5) высокая механическая прочность, предотвращающая дробление и распыление поглотителя; 6) химическая инертность; 7) небольшие объемные изменения в зависимости от температуры и степени насыщения.

В настоящее время разработаны и непрерывно совершенствуются поглотители, удовлетворяющие всем этим требованиям. Наиболее часто применяемыми адсорбентами являются боксит, активированная окись алюминия и силикагель, которые выпускаются различными фирмами под различными иаимеиованиями.

Ниже рассматриваются равновесные, кинетические, химические и механические качества некоторых наиболее экономичных поглотителей.

Поскольку осушку газов и жидкостей адсорбцией производят с использованием неподвижного слоя твердого адсорбента, этот процесс является периодическим. Однако поскольку приближение к равновесным условиям между потоком газа и слоем адсорбента может быть очень близким, знание равновесных соотношений необходимо для определения практически целесообразной предельной пропускной способности слоя адсорбента [XVI. 14].

На рис. XVI. 18 представлены типовые изотермы равновесной адсорбции, показывающие взаимозависимость между парциальным давлением паров воды в газе и поглощенным количеством воды, выраженным в процентах к весу регенерированного (активированного) адсорбента [XVI. 18]. Зависимость равновесных условий от температуры очевидна.

0,3 м/сек.

время контакта, сен

Рис. XVI. 20. Влияние времени контакта на поглотительную способность боксита (флорита) [XVI. 2],

Начиная со второй половины ХХ в. газовая промышленность становится наиболее быстро развивающейся отраслью топливно-энергетического комплекса. Продукция этой отрасли обеспечивает потребность всей промышленности (около 45% общего народнохозяйственного потребления), тепловой электроэнергетики (35%), коммунального бытового хозяйства (более 10%). Газ – самое экологически чистое природное топливо и ценное сырье для производства химической продукции. За последние десятилетия мировое потребление природного газа росло более высокими темпами по сравнению с другими видами энергии.

Оглавление

Введение
Теоретическая часть
Методы осушки
1. Абсорбционный метод
1.1 Основы процесса
1.2 Физическая и химическая абсорбция
1.3 Применение абсорбционной очистки
1.4 Недостатки и преимущества абсорбционного метода очистки газов
2. Адсорбционный и хемосорбционный метод
2.1 Основные понятия
2.2 Активные угли
2.3 Силикагели
2.4 Алюмогели
2.5 Цеолиты
2.6 Иониты
Заключение
Список использованной литературы

Файлы: 1 файл

Реферат.docx

  1. Введение
  2. Теоретическая часть
  3. Методы осушки

1. Абсорбционный метод

1.1 Основы процесса

1.2 Физическая и химическая абсорбция

1.3 Применение абсорбционной очистки

1.4 Недостатки и преимущества абсорбционного метода очистки газов

2. Адсорбционный и хемосорбционный метод

2.1 Основные понятия

2.2 Активные угли

  1. Заключение
  2. Список использованной литературы

Начиная со второй половины ХХ в. газовая промышленность становится наиболее быстро развивающейся отраслью топливно-энергетического комплекса. Продукция этой отрасли обеспечивает потребность всей промышленности (около 45% общего народнохозяйственного потребления), тепловой электроэнергетики (35%), коммунального бытового хозяйства (более 10%). Газ – самое экологически чистое природное топливо и ценное сырье для производства химической продукции. За последние десятилетия мировое потребление природного газа росло более высокими темпами по сравнению с другими видами энергии. В России, имеющей свыше 40% прогнозных топливных ресурсов планеты, доля природного газа в топливно-энергетическом балансе страны за последние 50 лет увеличилась с 1 до 50%. В настоящее время энергетическая стратегия России, несмотря на снижение общего объема добычи газа, предусматривает дальнейшее увеличение его удельного веса в производстве первичных энергоресурсов.

Интенсивные темпы развития газовой промышленности обусловлены высоким уровнем развития ее подотраслей – добычи, подготовки, транспорта и системы распределения (газоснабжения). В последние годы введены в эксплуатацию гигантские газовые и газоконденсатные месторождения с высокопроизводительными установками комплексной подготовки газа (УКПГ) к транспорту, расположенные в районах Сибири и Крайнего Севера.

Помимо использования природного газа в качестве топлива, он находит применения в различных областях промышленности. Эффективно используется газ в сельском хозяйстве. Система газового инфракрасного отопления с применением жидкого газа создает благоприятные микроклиматические и зоологические условия на животноводческих фермах. Жидкий газ используется в сушилках с газовыми горелками или инфракрасными излучателями для сушки зерна, фруктов и т.д. Газ используют в теплицах при выращивании ранних овощей. Газ, сгорая в теплице, не только поддерживает необходимую температуру, но и повышает содержание углекислоты внутри теплицы, что значительно увеличивает урожайность огурцов, помидоров, а также ускоряет их созревание. Большие возможности для химической промышленности открылись с появлением газа. Путем различных способов переработки из газа получают синтетические материалы и пластмассы, органические кислоты, каучук, лекарственные и моющие вещества, минеральные удобрения и ядохимикаты, водород, этилен и ацетилен, окись углерода, спирты и красители.

В связи с возрастающим спросом на природный газ необходимы конструктивные решения, направленные на усовершенствование подотраслей газовой промышленности (добычи, подготовки, транспорта и системы газораспределения), что позволит рационализировать поставку газа на внутрироссийские нужды и на экспорт для дальнейшего улучшения энергетической и экономической эффективности. Также необходимы разработки, связанные с увеличением количества извлекаемых полезных компонентов из добываемого природного газа. Разумеется, все эти действия не должны противоречить экологическим нормам.

Природный газ, поступающий из скважин, содержит механические примеси (песок, пыль), которые увеличивают абразивный износ газовых тракторов компрессоров, а углеводородный конденсат, пары воды и свободную влагу с растворенными в ней солями – они вызывают трудности (главным образом – коррозию, образование гидратов или льда, что является причиной возникновения пробок в нем) при транспортировки газа по трубопроводу.

Для удаления механических примесей используются сепараторы различных конструкций. Для предотвращения конденсации воды из газа при его охлаждении и образовании гидратов одним из наиболее важных звеньев в процессе подготовки газа транспорту является искусственная осушка, с помощью которой добиваются состояния газа, когда его точка росы ниже, чем температура транспортировки.

По своему классификационному признаку методы осушки газов подразделяются на три основные группы:

В основе лежит искусственное охлаждение газов, компримирование их, а также сочетание компримирования с охлаждением. Осуществляются следующими способами:

  • вымораживанием влаги из газа с использованием низких температур атмосферы;
  • охлаждением газа с дополнительным компримированием и без него;
  • инжекцией химических веществ в газовый поток промысловых газосборных трубопроводов с последующим улавливанием продуктов гидратации на сепарационных и центральных установках;
  • низкотемпературной сепарацией (т.е. охлаждением природного газа с последующим разделением газоконденсатной смеси в сепараторе на жидкую и газовую фазы).

Химическая реакция между водой и химическими веществами может быть столь полной, что образующиеся при этом продукты гидратации будут иметь чрезвычайно низкую упругость водяных паров. Имеются химические реагенты, обеспечивающие практически полную осушку газа. Однако эти реагенты очень трудно или вообще невозможно регенерировать, что делает их непригодными для использования в качестве промышленных осушителей. Они широко применяются при лабораторном определении влажности газов.

Основаны на поглощении влаги различными поглотителями (сорбентами) и делятся на две основные группы: адсорбция (с применением твердых сорбентов) и абсорбция (с применением жидких сорбентов).

1. Абсорбционный метод

1.1 Основы процесса

Абсорбция жидкостями применяется в промышленности для извлечения из газов диоксида серы, сероводорода и других сернистых соединений, оксидов азота, паров кислот (НСI, HF, H2SO4), диоксида и оксида углерода, разнообразных органических соединений (фенол, формальдегид, летучие растворители).

Абсорбционный метод реализует процессы, происходящие между молекулами газов и жидкостей. Если отсутствует взаимодействие между распыливающейся жидкостью и орошаемым газом, то эффективность поглощения компонентов из паровоздушной смеси определяется только равновесием пар-жидкость.

Скорость поглощения газа жидкостью зависит от:

а) диффузии поглощаемых веществ из газового потока к поверхности соприкосновения с поглощающей жидкостью;

б) перехода газовой частицы к поверхности жидкости;

в) диффузии абсорбированных веществ в промывной жидкости, где устанавливается равновесие;

г) химической реакции (если она имеет место).

Абсорбционная очистка применяется как для извлечения ценных компонентов из газового потока и возврата их снова в технологический процесс для повторного использования, так и для поглощения из выбросных газов вредных веществ с целью санитарной очистки газов. Обычно рационально использовать абсорбционную очистку, когда концентрация примесей в газовом потоке превышает 1%(об). В этом случае над раствором существует определенное равновесное давление поглощаемого компонента, и поглощение происходит лишь до тех пор, пока его парциальное давление в газовой фазе выше равновесного давления его над раствором. Полнота извлечения компонента из газа при этом достигается только при противотоке и подаче в абсорбер чистого поглотителя, не содержащего извлекаемого вещества.

1.2 Физическая и химическая абсорбция

Принято различать физическую и химическую абсорбцию (хемосорбцию). При физической абсорбции молекулы удаляемого газа компонента не вступают в химическое взаимодействие с молекулами поглощающей жидкости. Однако процесс поглощения газов жидкостями разделяется на физическую и химическую абсорбцию условно. На самом деле это сложное физико-химическое явление.

В качестве абсорбента в принципе может быть использована любая жидкость, в которой извлекаемая из газового потока примесь достаточно растворима. Но для эффективного использования жидкий поглотитель должен обладать высокой поглощающей способностью, хорошей избирательностью по отношению к поглощаемому веществу, термохимической устойчивостью, малой летучестью, хорошей способностью к регенерации, небольшой вязкостью и невысокой стоимостью, а также не оказывать коррозионного действия на аппаратуру. Следует отметить, что универсальной жидкости, которая удовлетворяла бы всем приведенным требованиям не существует. В каждом отдельном случае подбирают абсорбент, который наиболее полно удовлетворяет ряду требований.

При физической абсорбции в качестве абсорбента чаще всего используют воду, а также органические растворители и минеральные масла, не реагирующие с извлекаемым из газа веществом. При химической абсорбции применяют водные растворы щелочей и химических окислителей (перманганата калия, гипохлорита натрия, броматов, перекиси водорода и других), а также водные растворы моно- и диэтаноламина, аммиака, карбоната натрия и калия, трикалийфосфата.

Одним из параметров, определяющих выбор адсорбента, является способность примесей, содержащихся в отработанных газах, растворяться в данном абсорбенте.

1.3 Применение абсорбционной очистки

Абсорбционная очистка - непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. Применение абсорбционного метода очистки обусловлено высокой интенсивностью абсорбционных процессов, позволяющей создавать высокопроизводительные газоочистные установки, возможностью применения метода для очистки газов, содержащих и вредные газы, и пыль, и, наконец, наличием огромного опыта эксплуатации абсорбционного оборудования в различных технологических процессах и в первую очередь в химической технологии.

1.4 Недостатки и преимущества абсорбционного метода осушки газов

Абсорбционный метод очистки газов не свободен от определенных недостатков, связанных, прежде всего, с громоздкостью оборудования. Этот метод достаточно капризен в эксплуатации и связан с большими затратами. К недостаткам абсорбционного метода следует отнести также образование твердых осадков, что затрудняет работу оборудования, и коррозионную активность многих жидких сред. Однако, не смотря на эти недостатки, абсорбционный метод еще широко применяется в практике газоочистки, так как он позволяет улавливать наряду с газами и твердые частицы, отличается простотой оборудования и открывает возможности для утилизации улавливаемых примесей

2. Адсорбционный и хемосорбционный метод

2.1 Основные понятия

Адсорбционные методы используют для очистки газов с невысоким содержанием газообразных и парообразных примесей. В отличие от абсорбционных методов они позволяют проводить очистку газов при повышенных температурах.

Целевой компонент, находящийся в подвергаемой очистке газовой фазе, называют адсорбтивом, этот же компонент в адсорбированном состоянии — адсорбатом.

Различают физическую и химическую адсорбцию (хемосорбцию). При физической адсорбции поглощаемые молекулы газов и паров удерживаются силами Ван-дер-Ваальса, при хемосорбции— химическими силами.

В качестве адсорбентов используют пористые материалы с высокоразвитой внутренней поверхностью. Последние могут иметь синтетическое или природное происхождение.

Внутренняя структура наиболее распространенных на практике промышленных адсорбентов характеризуется наличием 'различных размеров и форм пустот или пор, среди которых различают макро-, переходные (мезо-) и микропоры. Суммарный объем последних в единице массы или объема адсорбента определяет в решении задач газоочистки как скорость (интенсивность) поглощения целевого компонента, так и адсорбционную способность (величину адсорбции) твердым поглотителем этого компонента.

Суммарный объем микропор обычно не превышает 0,5 см 3 /г. Их размеры условно ограничены величиной эффективного радиуса rэф=1,5*10 -9 м и соизмеримы с rэф адсорбируемых молекул. Характерной особенностью адсорбции в микропорах в этой связи является заполнение их объема адсорбируемыми молекулами.

Переходные поры характеризуются величинами эффективных радиусов от 1,5*10 -9 до 2*10 -7 м. В отличие от микропор в них возможна слоевая моно- или полимолекулярная адсорбция, так как адсорбционные силы здесь не перекрывают всего объема пор ввиду небольших полей их действия. Завершение заполнения объема переходных пор происходит при определенных условиях по механизму капиллярной конденсации, вызываемой понижением давления пара адсорбируемого вещества над вогнутым под действием сил поверхностного натяжения мениском жидкости в порах (капиллярах). Отнесенная к единице массы удельная поверхность переходных пор промышленных адсорбентов обычно находится в интервале 10 — 400 м 2 /г.

Макропоры промышленных адсорбентов обладают размерами эффективных радиусов, превосходящими 2*10 -7 м. Удельная поверхность этой разновидности пор обычно составляет лишь 0,5 -


Описание технологических процессов разных методов осушки газа от влаги; рассмотрение регенерации адсорбентов и абсорбентов; выделение преимуществ и недостатков данных методов.

Ключевые слова: осушка газа, абсорбция, адсорбция, регенерация, реагенты, схема осушки газа.

Keywords: gas drying, absorption, adsorption, regeneration, reagents, gas drying scheme.

Выбор способа осушки газа является важнейшим при проектировании разработки месторождения. Выбор подразумевает определение расходов на технологическое оборудование, на реагенты-поглотители и общие затраты на осушку газа. На данный момент существует два основных метода осушки газа: абсорбция (осушка жидкими поглотителями) и адсорбция (осушка твердыми поглотителями).

Сущность адсорбционной осушки газа заключается в поглощении порами твердых поглотителей молекул воды. Процесс осушки проходит в аппаратах периодического действия с неподвижным слоем адсорбента.

В качестве адсорбентов применяются в основном:

− Активированный оксид алюминия;

Наиболее распространенным адсорбентом является силикагель.

Для того, чтобы уменьшить сопротивление движения газа адсорбенты должны быть изготовлены в виде гранул. Температура регенерации адсорбентов обычно равна 160–180 ᵒС.

Процесс адсорбционной осушки газа является более простым по сравнению с абсорбцией. На первом этапе газ проходит через сепаратор, где идет отделение механических примесей и капельной влаги. Затем газ поступает в аппарат с адсорбентом (в технологической схеме таких аппаратов должно быть минимум два), где адсорбент поглощает влагу из газа. Далее уже осушенный газ идет далее по технологической линии или в газопровод. Другой аппарат в это время находится в регенерации. Часть осушенного газа, предварительно нагретого в теплообменнике, поступает в низ аппарата для регенерации осушителя. После этого газ вновь проходит через теплообменник, где уже охлаждается, поступает в сепаратор, а затем поступает в поток влажного газа.

Вторым методом осушки газа является абсорбционная осушка. Данный метод подразумевает использование жидких поглотителей влаги. В качестве абсорбентов чаще всего используют диэтиленгликоль (ДЭГ) и триэтиленгликоль (ТЭГ), поэтому рассмотрим в качестве поглотителя именно гликоли.

Принцип осушки газа абсорбентом заключается в последовательном проходе газа через сепаратор и абсорбер. В сепараторе от газа отделяются механические примеси и капельная жидкость. Далее газ поступает в нижнюю часть абсорбера и движется вверх, где контактирует со встречным потоком гликоля, при этом происходит поглощение абсорбентом из газа влаги. Затем осушенный газ движется дальше по технологической схеме, а насыщенный поглотитель поступает на регенерацию. Процесс регенерации является довольно сложным, поэтому мы выделим лишь основные этапы и аппараты регенерации.

После абсорбера насыщенный гликоль поступает в выветриватель, где происходит разделение абсорбента и остатков газа. Затем гликоль проходит теплообменник, в котором он нагревается из-за теплообмена с регенерированным гликолем. Далее нагретый гликоль последовательно проходит колонну регенерации (десорбер) и испаритель. В десорбере происходит массо- и теплообмен с потоком пара, который движется к верху колонны. В испарителе гликоль нагревается до заданной температуры и из него выпариваются остатки влаги. Потом уже регенерированный абсорбент поступает в рабочую емкость, предварительно охлажденный в теплообменнике. Из рабочей емкости абсорбент поступает вновь в абсорбер.

Заключение

На данный момент широко применяется метод абсорбционной осушки газа, так как адсорбция сложнее поддается автоматизации, поэтому является более затратной. Также жидкие поглотители имеют хорошую растворимость в воде, низкую стоимость, хорошую антикоррозионность, простоту регенерации.

Основные термины (генерируются автоматически): осушка газа, метод осушки газа, осушенный газ, адсорбционная осушка газа, газ, рабочая емкость, технологическая схема.

В ситуациях, когда заказчику требуется получить более высокое значение депрессии точки росы, специалисты компании для стадии регенерации насыщенного влагой гликоля применяют в своих установках процесс вакуумной десорбции. Процесс протекает при температуре около 200 °C. и давлении около 0,7 атм. При таком аппаратурном оформлении установки осушки газа, удается достичь концентрации регенерированного… Читать ещё >

Глубокая осушка газа ( реферат , курсовая , диплом , контрольная )

1. Глубокая осушка газа: адсорбционная и абсорбционная

2. Извлечения тяжёлых углеводородов: абсорбционное извлечение, низкотемпературная сепарация, низкотемпературная конденсация

3. Извлечение гелия

4. Стабилизация и переработка газовых конденсатов Список используемой литературы

1. Глубокая осушка газа: адсорбционная и абсорбционная осушка газ углеводород гелий В недрах земных пластов углеводородные газы (природный, попутный и др.) насыщены водяными парами до равновесного состояния. Количество паров воды зависит от условий в пласте (температуры и давления) а также от состава газа. С момента выхода газа из скважины в виду изменения этих параметров влагосодержание газа меняется.

Присутствие паров воды в газе негативно сказывается на аппаратах и коммуникациях установок переработки и транспорта газа вследствие образования в них гидратов, во избежание этого явления, обязательным условием подготовки газа к транспортировке по магистральным газопроводам или переработке на ГПЗ служит процесс осушки газа.

Абсорбционная осушка газа — в основе способа лежит применение специальных реагентов поглощающих влагу из газа при непосредственном контакте внутри аппарата.

В качестве влагопоглощающих агентов обычно используются растворы диэтиленгликоля (ДЭГ), триэтиленгликоля (ТЭГ) В ходе процесса осушаемый газ на тарелках абсорбера контактирует в противотоке с подаваемым сверху гликолем. Давление в абсорбере не превышает 120 атм., а температура гликоля порядка 40°C

Осушеный газ отводится сверху абсорбера и направляется в магистральный газопровод, а гликоль, насыщеный влагой, отводится снизу абсорбера и направляется в выветриватель — для отдува поглощенных углеводородов. После выветривателя насыщеный влагой гликоль нагревается в подогревателе и поступает на регенерацию в десорбер, в котором из-за меньшего давления (около 3 атм) и подвода тепла происходит испарение и отвод поглощенной гликолем в абсорбере влаги из газа.

Из десорбера регенерированный гликоль с концентрацией 95−97% поступает вновь на абсорбцию и цикл повторяется.

Глубина осушки газа очень сильно зависит от концентрации гликоля, с которым газ контактирует в абсорбере. Максимально возможная концентрация гликоля, которой можно достичь, равна 97%. Большую концентрацию гликоля получить невозможно, этому препятствует термическая десорбция воды, вследствие которой происходит разложение диэтиленгликоля при 164 °C и триэтиленгликоля при 206 °C.

Абсорбция гликолем с концентрацией гликоля 96−97% позволяет достичь депрессии точки росы осушаемого газа равную 30 °C.

Увеличение концентрации гликоля до 99% позволяет, значению депрессии точки росы вырасти до 40 °C.

В ситуациях, когда заказчику требуется получить более высокое значение депрессии точки росы, специалисты компании для стадии регенерации насыщенного влагой гликоля применяют в своих установках процесс вакуумной десорбции. Процесс протекает при температуре около 200 °C. и давлении около 0,7 атм. При таком аппаратурном оформлении установки осушки газа, удается достичь концентрации регенерированного гликоля порядка 99,5%, что в свою очередь делает возможным получении значения депрессии точки росы в 50−70°C. В тех редких случаях, когда стандартных настроек процесса осушки недостаточно для получения необходимого качества осушки газа требующегося заказчику, возможно аппаратурное оформление установки для осуществления процесса осушки в двух ступенчатом исполнении.

На первом этапе осушка происходит по стандартному циклу, газ осушается в абсорбере, контактируя с гликолем концентрацией 96%, после чего поступает в абсорбер вторичной осушки, где уже осушеный на первом этапе газ повторно осушается гликолем концентрации 99,5%, регенерация отработанного гликоля также аппаратурно оформлена в двух стадийном исполнении. В десорбере этапа первичной осушки, процесс регенерации гликоля происходит под давлением 1−2 атм, а в десорбере вторичной осушки под вакуумом, либо с участием отпарного агента.

Применение процесса двух стадийной осушки газа, позволяет получить на выходе с установки депрессию точки росы около 90 °C.

Выбор специалистами компании конкретной технологии осушки и аппаратурное оформление установки, всегда подбирается таким образом, чтобы максимально отвечать требованиям, предъявляемым заказчиком, с учетом его экономических возможностей и промышленных факторов на объекте установки. Все эти и многие другие моменты и нюансы изначально согласовываются с заказчиком.

Адсорбционная осушка газа — технологический процесс заключается в избирательном поглощении порами поверхности твердого адсорбента молекул воды из газа, с последующим извлечением их из пор посредством применения внешних воздействий. Процесс адсорбционной осушки газа позволяет достигать депрессия точки росы в 100 °C. (минимальная точка росы, достигаемая адсорбцией около -90°C.)

Депрессия точки росы — это понижение значения точки росы газа после осушки. Выбор применяемых адсорбентов на установках адсорбционной осушки газа специалисты компании делают, принимая во внимание состав газа, наличия в нем тех или иных компонентов влияющих на адсорбенты и других факторов влияющих на процесс и конечный результат. В зависимости от ситуации, специалисты компании делают свой выбор из следующих адсорбентов: оксиды алюминия, синтетические цеолиты, силикагели. На стандартной установке адсорбционной осушки технологический процесс осушки газа представляет собой последовательное выполнение следующих этапов в рамках одного рабочего цикла осушки:

— десорбция (очистка адсорбента)

— далее, если есть необходимость, цикл повторяется.

Влажный газ поступает в сепаратор 1 для удаления капель влаги, а затем на осушку в адсорберы 2, откуда сухой газ направляют в газопровод. Насыщенный влагой адсорбент регенерируют в адсорбере 4 отдувкой газом, нагретым в аппарате 5. Горячий газ (с т-рой до 350 °С) после регенерации поглотителя охлаждается в аппарате 7, сепарируется в аппарате 8 от влаги и смешивается с основным потоком газа. В адсорбере 3 поглотитель охлаждается сухим газом до 30−40 °С, после чего аппарат переключают на стадию осушки. Нагреваемый при этом газ перед поступлением в газопровод охлаждается в аппарате 6. Метод может обеспечить глубокую осушку (до точки росы — 80 °C и ниже), отличается простотой и надежностью аппаратуры. Недостатки: чувствительность адсорбентов к загрязнениям, сложность систем автоматизации, большие по сравнению с абсорбционным методом капитальные и эксплуатационные затраты.

2. Извлечения тяжёлых углеводородов: абсорбционное извлечение, низкотемпературная сепарация, низкотемпературная конденсация К основным технологическим методам извлечения тяжелых углеводородов относятся:

— Адсорбционное извлечение (масляная абсорбция);

Выбор того или иного способа извлечения тяжелых углеводородов (отбензинивания газа) определяется многими факторами, но в конечном итоге — сроками окупаемости затрат на добычу и переработку газа.

Адсорбционное извлечение — один из старейших методов. В качестве абсорбента в нем используют обычно керосиновую или дизельную фракцию нефти.

Низкотемпературная сепарация — состоит в однократной конденсации углеводородов при понижении температуры газа до минус 25 — минус 30 °C, за счет его дросселирования. Вместо дросселирования через клапан может быть использовано расширение газа в турбодетандере, что позволяет более эффективно использовать перепад давления газа.

Степень конденсации каждого углеводорода зависит от температуры и давления, только при температуре -40 °С достигается почти полная конденсация бутанов и пентанов. Этан и пропан при этом конденсируются лишь на 51 и 79%.

В связи с тем что процесс протекает при низких температурах, в поток газа вводят ингибитор гидратообразования, чтобы предотвратить образование гидратов — твердых, снегообразных комплексных соединений легких углеводородов с водой, способных забить газовые коммуникации и арматуру. В качестве ингибитора используют метанол или гликоли.

Процесс низкотемпературной конденсации — начал развиваться в 60-е годы, когда возрос спрос на этанодин из основных мономеров в ассортименте сырьевых ресурсов нефтехимии. Это потребовало перейти на низкие температуры охлаждения газа, с тем чтобы увеличить степень извлечения из него этана (и соответственно — более тяжелых углеводородов. Это, в свою очередь, потребовало наряду с эффектом дросселирования применять искусственное охлаждение с использованием пропанового холода (для охлаждения до -70 °С) или каскадного холодильного пропан-этанового цикла, с помощью которого стало возможным извлечь из газа 85−87% этана, и почти пополностью (99%) — пропан и 100% всех остальных углеводородов.

3. Извлечение гелия

Извлечение гелия из природных газов основано на двух его свойствах: гелий имеет самую низкую температуру кипения (- 269 С) среди других химических элементов и практически нерастворим в жидких углеводородах. Гелий выделяют из газов методами низкотемпературной конденсации и ректификации. Процесс охлаждения ведут так, чтобы все остальные компоненты природного газа, за исключением некоторой доли азота, перешли в жидкое состояние. Природный газ сжимают компрессором до давления 150 am, очищают от двуокиси углерода и сероводорода, охлаждают и подают в сепаратор высокого давления. Выделившийся при этом нерастворимый в жидкой фазе газообразный гелий направляется в регенератор холода.

Проблема извлечения гелия сводится к отделению от гелия всех присутствующих компонентов. Традиционно в производстве гелия используются низкотемпературные (криогенные) методы: низкотемпературные конденсация, ректификация и адсорбция.

Задача извлечения гелия из природных или попутных нефтяных ге-лионосных газов заключается в удалении из этих газов углеводородов и азота. В настоящее время промышленное выделение гелия из этих газов основано на использовании криогенной техники. В основу низкотемпературного метода разделения этих смесей положено то свойство гелия, что по сравнению со всеми остальными газами, содержащимися в смеси, он имеет наиболее низкую температуру кипения. Обычно технологический процесс извлечения гелия из гелионосных газов осуществляется в две стадии: на первой происходит получение так называемого сырого гелия (азотно-гелиевого концентрата) с объемной долей гелия от 50 до 90%, а на второй — технически чистого гелия.

4. Стабилизация и переработка газовых конденсатов Газовые конденсаты получают в результате разделения попутных нефтяных газов в газовых сепараторах. Жидкая фракция представляет собой фракцию жидких углеводородов с температурой конца кипения до 360 °C. В зависимости от месторождения нефти содержание в газовых конденсатах бензиновых фракций (н.к. — 200°С) может достигать 75−85%, а их октановое число, как правило, составляет 40−50 пунктов по моторному методу.

Пары тяжелых углеводородов, выделяемые при стабилизации, а затем при испарении газоконденсата, значительно тяжелее воздуха. Поэтому в безветренную погоду они стелятся по поверхности земли, скапливаются в низких местах по рельефу местности и медленно рассеиваются, создавая иногда на большой территории скопление взрывоопасных смесей паров и воздуха с очень низкими значениями НКПВ. НКПВ паров стабильных газоконденсатов обычно равен 1,1−1,3% (по объему).

С экологической точки зрения газоконденсат представляет собой легковоспламеняемую жидкость. Высокая взрывоопасность газоконденсата характеризуется низкими значениями НКПВ, их паров в воздухе, устойчивостью к рассеиванию тяжелых паров в атмосфере и сравнительно большой скоростью распространения пламени в паровоздушных смесях. Объем добычи и переработки газовых конденсатов постоянно увеличивается как в России, так и за рубежом. Одной из основных проблем переработки газовых конденсатов до настоящего времени остается наличие в их составе высокотоксичных сероводорода и меркаптанов. Наличие этих высокотоксичных соединений обуславливает необходимость стабилизации конденсатов перед стадией их переработки. Эта стабилизация обычно проводится в режиме дебутанизации, при которой практически весь наиболее токсичный метилмеркаптан полностью удаляется из конденсата. Необходимость такой стабилизации обусловлена неизбежным образованием токсичных сернисто-щелочных сточных вод, вероятное попадание которых в биосферу может привести к серьезным экологическим последствиям. Именно поэтому для обеспечения безопасности производства и получения высококачественных нефтепродуктов, не содержащих таких токсичных соединений серы как сероводород и меркаптаны, и используют процесс стабилизации.

Список используемой литературы

1. Технология, экономика и автоматизация процессов переработки нефти и газа: Учеб. пособие / С. А. Ахметов , М. Х. Ишмияров , А. П. Ве-ревкин, Е. С. Докучаев , Ю. М. Малышев ; Пол ред. С. А. Ахметова . — М.: Химия, 2005. — 736 с.

2. Ахметов С. А. и др. Технология и оборудование процессов переработки нефти и газа: Учебное пособие / С. А. Ахметов , Т. П. Сериков , И. Р. Кузеев , М. И. Баязитов ; Под ред С. А. Ахметова . — СПб.: Недра, 2006. — 868 с.

3. Коршак А. А. , Шаммазов А. М. Основы нефтегазового дела. Учебник для ВУЗов: — Уфа.: ООО ДизайнПолиграфСервис, 2007. — 528 с.

Читайте также: