Основы строительной светотехники реферат

Обновлено: 04.07.2024

Строительная светотехника – раздел строительной физики, освещающий вопросы обеспечения помещений естественным светом и прямым солнечным облучением.

Строительная светотехника включает в себя следующие вопросы:

1. Проектирование систем естественного освещения зданий. Это особенно важно при проектировании промышленных зданий, где светопроемы имеют очень большие площади.

2. Проектирование городской застройки. Проверка соблюдения норм естественного освещения при затенении жилых помещений зданиями окружающей застройки. Эта задача является особенно важной в современных условиях, когда только соблюдение норм естественного освещения и инсоляции позволяет избежать недопустимого переуплотнения застройки современных городов.

Освещение помещений может быть естественное, искусственное и совмещённое. Естественными источниками света является солнце и рассеянный (диффузный) свет небосвода. Искусственными источниками света являются электрические лампы (накаливания, люминесцентные, ртутные, натриевые, ксеноновые, галогенные и др.). При совмещенном освещении помещение одновременно освещается естественным и искусственным светом в определенных соотношениях.

Без естественного освещения допускается проектировать помещения, которые определены соответствующими главами СНиП на проектирование зданий и сооружений, нормативными документами по строительному проектированию зданий и сооружений отдельных отраслей промышленности, утвержденными в установленном порядке, а также помещения, размещение которых разрешено в подвальных и цокольных этажах зданий и сооружений.

Световые проемы – один из основных элементов, определяющих архитектурное решение здания и его интерьеров. От размеров, формы и размещения светопроемов зависит обеспечение оптимального светового режима в здании. Правильное решение естественного освещения имеет большое технико-экономическое значение, поскольку заполнение светопроемов, конструкции фонарей и остекления атриумов имеет относительно высокую стоимость. Кроме того, с ними связаны более высокие эксплуатационные расходы на очистку светопроемов, восполнение теплопотерь через светопроемы зимой и ликвидацию избыточных теплопоступлений летом.

В настоящее время разработаны конструкции светопроемов, имеющие очень высокое сопротивление теплопередаче. Но, несмотря на это, их сопротивление теплопередаче (даже в случае вакуумных стеклопакетов) не менее чем в 3 раза ниже, чем требуемое по нормам сопротивление теплопередаче глухих стен и покрытий. Поэтому формальное применение сплошных остекленных поверхностей фасадов в качестве ограждающих конструкций, часто используемых только по условиям архитектурной композиции, без учета требуемого светового режима, дополнительных теплопотерь и теплопоступлений, приводит не только к увеличению стоимости здания и значительно увеличивает эксплуатационные расходы, но и часто ухудшает температурно-воздушную среду помещений, в основном за счет их перегрева летом.

Естественное освещение осуществляется через проемы в наружных ограждениях. В зависимости от расположения проемов (в стенах или покрытиях) различают боковое (рис. 108, а, б) (одно- или двустороннее), верхнее и комбинированное (верхнебоковое) освещение помещений (рис. 108, в, г). Боковое одностороннее освещение используют в жилых и большинстве общественных зданий с относительно малой глубиной помещений (6–9 м). Верхнее освещение в жилых зданиях используется очень редко (например, для освещения лестничных клеток, расположенных в центральной темной части плана здания), в общественных зданиях – в соответствии со специфическими функциональными требованиями (например, в музейных залах), в одноэтажных промышленных зданиях – в большинстве случаев.

Верхнебоковое освещение применяют в крупных залах общественных зданий с большепролетными перекрытиями (в крытых рынках, выставочных, спортивных и тому подобных залах) и в крайних пролетах одноэтажных промышленных зданий.


ис. 108. Естественное освещение помещений

а – боковое одностороннее; б – то же, двухстороннее; в – верхнее; г – верхнебоковое

роектирование естественного освещения практически сводится к выбору размеров, формы и мест расположения световых проёмов с учётом технологии производства, светового климата района застройки и т. п.

Освещённость, создаваемая естественным светом, переменна, так как она зависит от времени дня, месяца и года, отражательных свойств земного покрова, прозрачности воздуха, положения солнца на небосводе, степени и характера облачности и др. В силу этого установить значение естественной освещённости в здании в абсолютных единицах (люксах) практически невозможно. Поэтому освещённость в помещениях регламентируют относительной величиной – коэффициентом естественной освещённости.

Коэффициент естественной освещённости (КЕО) выражает отношение естественной освещённости, создаваемой в некоторой точке заданной плоскости внутри помещения светом неба (непосредственно или после отражений), к одновременному значению наружной горизонтальной освещённости, создаваемой светом полностью открытого небосвода.


Нормированное значение коэффициента естественной освещённости в % с учётом характера зрительной работы и района расположения здания на территории России следует определять по формуле:


,

где N – номер группы обеспеченности естественным светом; – значение КЕО в % при рассеянном свете от небосвода, определяемое с учётом характера зрительной работы по таблице СНиП; – коэффициент светового климата (без учёта прямого солнечного света), в зависимости от района расположения здания на территории России.

Освещенность в помещениях КЕО нормируется в точках ее минимального значения на условной рабочей поверхности, которая в большинстве случаев принимается горизонтальной, расположенной на высоте 0,8 м от уровня пола. В некоторых помещениях за уровень условной рабочей поверхности принимается пол (спортивные, актовые залы, вестибюли и т. п.) или вертикальная плоскость (выставочные залы музеев, экспозиционные залы картинных галерей и т. п.).

В небольших помещениях при одностороннем боковом естественном освещении нормируется минимальное значение КЕО в точке, расположенной на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности на расстоянии 1 м от стены, наиболее удаленной от световых проемов, а при двустороннем боковом освещении – в точке посередине помещения. В крупногабаритных производственных помещениях при боковом освещении минимальное значение КЕО нормируется в точке, удаленной от световых проемов:

I–IV разрядов – на 1,5 высоты помещения;

V–VII разрядов – на 2 высоты помещения;

VIII разрядов – на 3 высоты помещения;

При верхнем и комбинированном естественном освещении нормируется среднее значение КЕО в точках, расположенных на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности. Первую и последние точки принимают на расстоянии 1 м от поверхности наружных стен или от осей средних рядов колонн.

Допускается деление помещения на зоны с боковым освещением (зоны, примыкающие к наружным стенам с окнами) и зоны с верхним освещением, нормирование и расчет естественного освещения в каждой зоне производятся независимо друг от друга.

Освещенность нормируется на рабочей поверхности по характерному разрезу помещения (обычно посредине помещения по оси светопроемов).

Характерный разрез помещения – это поперечный разрез по середине помещения, плоскость которого перпендикулярна плоскости остекления световых проёмов (при боковом освещении) или продольной оси пролётов помещения (при верхнем освещении). В этот разрез должны попадать участки, наиболее загруженные оборудованием, и точки рабочей зоны, наиболее удалённые от световых проёмов.

В помещениях с верхним освещением для производств Ι–ΙV разрядов работ помимо значения е нормируют неравномерность естественного освещения; она характеризуется отношением наибольшего КЕО к наименьшему, определённых по кривой распределения КЕО в пределах характерного разреза помещения. Этот показатель не должен превышать 2:1 для работ Ι и ΙΙ разрядов и 3:1 для работ ΙΙΙ и ΙV разрядов.

В производственных помещениях с постоянным пребыванием работающих, выполняющих работы Ι–ΙV разрядов на предприятиях, располагаемых в ΙΙΙ и ΙV строительно-климатических районах, следует предусматривать солнцезащитные устройства.

Размеры световых проёмов определяют в соответствии с нормативными значениями КЕО еN. Отклонение площади световых проёмов допускается на ±10 % от требуемой по расчёту.

Найденные значения КЕО в виде отрезков (в соответствующем масштабе) откладывают вверх от условной рабочей поверхности из точек, в которых определялась освещённость. Соединив концы отрезков, получают кривую освещённости, дающую наглядное представление об освещённости помещения и помогающую рационально расположить на его площади технологический процесс. Кривые освещённости при различных видах естественного освещения показаны на рис. 109.

Расчёт КЕО в какой-либо точке характерного разреза помещения производят:

– при боковом освещении по формуле


;

– при верхнем освещении по формуле


– при комбинированном освещении по формуле



где L – количество участков небосвода, видимых через световой проём из расчётной точки; M – количество участков фасадов зданий противостоящей застройки, видимых через световой проём из расчётной точки; Т – количество световых проёмов в покрытии; – геометрический коэффициент естественной освещённости в расчётной точке при боковом освещении, учитывающий прямой свет от i-го участка неба, определяемый с помощью графиков Данилюка; qi – коэффициент, учитывающий неравномерную яркость i – го участка облачного неба, определяемый в зависимости от угловой высоты середины светопроёма над рабочей поверхностью (θ в 0); εздj – геометрический КЕО в расчётной точке при боковом освещении, учитывающий свет, отражённый от j – го участка фасадов противостоящих зданий; bфj – средняя относительная яркость j – го участка фасада противостоящего здания; kздj – коэффициент, учитывающий изменения внутренней отражённой составляющей КЕО в помещении при наличии противостоящих зданий; r0 – коэффициент, учитывающий повышение КЕО при боковом освещении благодаря свету, отражённому от поверхностей помещения и подстилающего слоя; τ0 – общий коэффициент светопропускания; Кз – коэффициент запаса; r2 – коэффициент, учитывающий повышение КЕО при верхнем освещении благодаря свету, отражённому от поверхностей помещения; kф – коэффициент, учитывающий тип фонаря; eср – среднее значение КЕО при верхнем и комбинированном освещении; εbi – геометрический КЕО в расчётной точке при верхнем освещении от i – го проёма, определяемый с помощью графиков Данилюка

Строительная светотехника изучает методику расчета и проектирования естественного освещения помещений. Такое освещение осуществляется через окна (боковое освещение), остекленные фонари (верхнее освещение) или одновременно через окна и фонари (комбинированное освещение).

Свет — это электромагнитные волны длиной от 400 до 800 ммк, воспринимаемые глазом и вызывающие зрительные ощущения.

Для количественной характеристики световой энергии пользуются понятиями световой поток и освещенность.

Световой поток — количество световой энергии, проходящей через какую-либо площадь в единицу времени. Световой поток измеряется в люменах (лм).

Освещенность — световая величина, равная световому потоку, приходящемуся на единицу площади освещаемой поверхности. За единицу освещенности принимают люкс (лк), равный равномерному распределению светового потока в 1 лм на поверхности в 1 м2.

Естественное освещение в какой-либо точке в помещении характеризуется коэффициентом естественной освещенности. Этот коэффициент представляет собой процентное отношение освещенности помещения в данной точке к одновременной освещенности рассеянным светом всего небосвода наружной точки, находящейся на горизонтальной плоскости. Определяется он по нормам в зависимости от назначения помещений.

img-271

Рис. 37. Устранение шума от проводов:
а — размещение демпферов-накладок на проводах; б — крепление проводов к стене; 1 — демпферы на растяжках; 2 — демпферы на проводах; 3 — стойка; 4 — растяжка; 5 — защитная обойма из кровельной стали; 6 — провод; 7 — хомут из кровельного железа; 8 — болт; 9 — резина из двух пластинок (мягкая); 10 — демпфер-глушитель

Задачей светотехнических расчетов является определение необходимой площади световых проемов.

Существуют аналитический, графический и геометрический методы расчета. При проектировании жилых и ряда общественных зданий, как правило, применяют геометрический метод, опирающийся на выработанные практикой нормативные соотношения площади окон и площади пола, принимаемые по СНиПу. Так, в жилых комнатах квартир и общежитий, в кухнях, в зависимости от климатических условий района строительства, минимальное значение этого соотношения колеблется от 1/8 до 1/10 и определяется, как и для зданий другого назначения, соответствующими главами СНиПа. Геометрический метод нормирования освещенности не учитывает загрязнения стекол, затемнения окон соседними зданиями, неравномерности расположения проемов и пригоден только для небольших помещений.

Расчеты освещенности естественным светом промышленных помещений ведутся аналитическим или графическим методами. Необходимость расчета вызывается большим разнообразием технологических процессов: для прокатного цеха металлургического завода или конвейерной линии часового завода требуются совершенно разные условия освещенности.

Расчеты естественной освещенности не отражают действительной освещенности рабочего места даже в течение одной рабочей смены, так как уровень естественного освещения зависит не только от времени года, но и от погоды и времени суток.

Практически в зависимости от сменности и технологии предприятий период освещения естественным светом колеблется от 10 до 25% рабочего времени.

Недостаток естественного света компенсируется искусственным (электрическим) освещением. До недавнего времени естественное освещение по многим причинам нельзя было заменить искусственным без ущерба для здоровья людей.

С появлением люминесцентных ламп, свет которых по своему составу близок к составу света, излучаемого солнцем, стало возможным почти полностью освещать производственные помещения искусственным светом (с помощью люминесцентных светильников).

При решении вопроса достаточности естественного освещения для производственных нужд следует иметь в виду:
1) нормы естественного освещения предусматривают обязательную регулярную очистку стекол световых проемов не реже двух раз (для помещений с незначительными выделениями копоти и пыли) или четырех раз в год (для помещений со значительным технологическим загрязнением стекол);
2) цветовая отделка поверхностей помещений и оборудования отражается на освещенности помещения и потому не должна назначаться произвольно.

При решении вопросов освещенности необходимо учитывать, что всякое излишнее увеличение площади световых проемов ведет к удорожанию строительства и усложняет эксплуатацию зданий.

Строительная С. — отрасль С., изучающая закономерности распространения и распределения в зданиях световой энергии Солнца и искусственных источников света, оптические свойства строительных материалов и конструкций, влияние света на зрительное восприятие интерьеров, эстетические функции света в архитектуре общественных зданий, площадей, городских ансамблей и т. д.; раздел строительной физики. Строительная С. понимается и как отрасль строительной техники, разрабатывающая приёмы рационального (с точки зрения эффективного использования утилитарных и художественных функций света) проектирования и строительства зданий, светопрозрачных ограждающих конструкций, солнцезащитных средств и осветительных установок. Одна из основных задач строительной С. — разработка методов светотехнического расчёта строительных объектов сообразно с требуемым уровнем освещения рабочих мест, а также с оздоровительным, тонизирующим и бактерицидным действием световой среды в диапазонах видимой, ультрафиолетовой и инфракрасной частей спектра. Разделы строительной С. — естественное освещение, искусственное освещение, архитектурное освещение, инсоляция помещений и населённых мест и др.

Становление строительной С. как особой научной дисциплины относится к 50-м гг. 20 в. Развитие строительной С. обусловлено большими масштабами индустриального строительства, совершенствованием существующих и созданием новых светопропускающих материалов и конструкций, разработкой и массовым внедрением новых типов источников света.

В строительной С. при решении её задач используют: теоретические расчёты на основании установленных физических закономерностей; оценки светотехнических характеристик помещений с помощью моделей (см. Моделирование); лабораторные испытания светопропускающих строительных материалов и элементов конструкций окон, фонарей, солнцезащитных устройств; натурные наблюдения и измерения на объектах. В строительной С. широко пользуются методами фотометрии, в частности колориметрическими методами. Для исследования светотехнических характеристик элементов конструкций и моделей зданий сооружают установки типа "искусственный небосвод". Подобная установка представляет собой т. н. светомерный шар, на внутренней поверхности которого моделируется естественный небосвод, и светоприёмную камеру с проёмом, в котором устанавливается испытываемый образец.

Строительная С. находит многочисленные приложения при проектировании и строительстве городов, промышленных и с.-х. зданий, искусственных сооружений, картинных галерей, музеев, памятников, выставочных павильонов и т. д. Значение строительных С. для развития материального производства определяется тем, что установление оптимальных количественных и качественных характеристик освещения и их осуществление в строительстве способствуют росту производительности труда, улучшению качества продукции, повышению продуктивности животноводства и растениеводства.

Перспективы развития строительной С. связаны с совершенствованием нормирования естественного и искусственного освещения (с учётом комплексного воздействия свето-цветовой среды на архитектурно-художественное восприятие помещений, работоспособность и здоровье человека), с решением вопросов оптимизации параметров строительных конструкций и осветительных установок в соответствии со светотехническими, а также теплотехническими, прочностными, акустическими, аэродинамическими и др. требованиями, определяющими эксплуатационные качества зданий и микроклимат помещений.

Естественное освещение, создаваемое природными источниками света, меняется в зависимости от времени суток и года, географических широт местности, состояния атмосферы и т.д. При естественном освещении открытых пространств освещенность горизонтальных поверхностей составляет: в безлунную ночь - 0,0005 лк, при свете полной луны - до 0,2 лк, при прямом свете солнца - до 100 000 лк. Для оценки естественного освещение внутри зданий служит коэффициент естественной освещенности (КЕО), равный процентному отношению освещенности в какой-либо точке помещения к одновременно измеренной освещенности наружной горизонтальной площадки, освещаемой рассеянным светом всего небосвода. КЕО зависит от величины и расположения светопроемов, степени пропускания ими света, наличия внешних экранирующих предметов, отражающей способности внутренних поверхностей помещения и т.д.

Естественное освещение помещений нормируется. Нормы освещения установлены в зависимости от назначения зданий и отдельных помещений. Основной нормируемой величиной является КЕО, который для различных производственных помещений определен в пределах от 0,25 до 10%.

Естественное освещение в зданиях осуществляется боковыми окнами, верхними фонарями или теми и другими одновременно. Улучшению естественного освещения помещений способствует рациональная застройка городских кварталов, правильная ориентация зданий, светлая отделка помещений, применение окон со спаренными переплетами. Для защиты помещения от излишнего прямого света солнца применяют козырьки, жалюзи и т.п. В ряде случаев технико-экономического соображения оправдывают сооружение зданий без естественного освещения. Отказ от естественного освещения зданий бывает вызван, например, необходимостью поддержания в помещении постоянной температуры и влажности, особой чистоты или определенного светового режима.

Искусственное освещение.Естественное освещение, являясь с физиологической точки зрения наиболее благоприятным для человека, не может полностью обеспечить его нормальную жизнедеятельность, поэтому еще в доисторические времена у людей возникла потребность в искусственном освещении.

В качестве искусственных источников света использовались костры, факелы, свечи, керосиновые лампы и т.д. На рубеже 19 и 20 вв. в быт стало прочно входить электрическое освещение, ставшее к настоящему времени основным видом искусственного освещения.

Существуют обязательные нормы искусственного освещения; основной количественной нормируемой характеристикой служит освещенность, которая устанавливается в пределах от 5 до 5000 лк в зависимости от назначения помещений, условий и рода выполняемой людьми работы.

При выборе искусственного освещения для улиц и площадей в качестве нормируемой величины используют среднюю яркость дорожных покрытий. Существующие нормы регламентируют также и качественные характеристики искусственного освещения. К ним относятся: равномерная освещенность рабочей поверхности, отсутствие пульсаций и резких изменений освещенности во времени, ограничение или устранение зрительного дискомфорта или состояние ослепленности, возникающие при наличии в поле зрения больших яркостей, устранение нежелательного блеска освещаемых поверхностей в направлении глаз человека, благоприятный спектральный состав света, благоприятные условия тенеобразования, а также достаточная яркость всех окружающих поверхностей, включая потолки и стены помещений. В соответствии с этим рациональное освещение производственных помещений требует так называемого общего освещение всей площади.

Общее освещение во многих случаях дополняется местным освещением рабочих мест, образуя комбинированное освещение. Устройство только местного освещения запрещено. Помимо рабочего освещения, обеспечивающего рациональное освещение производственных и общественных помещений, в ряде случаев требуется устройство аварийного освещения, дающего возможность эвакуировать людей или временно продолжить работу при выходе из строя рабочего освещения.

Для искусственного освещения в качестве источников света применяют лампы накаливания и газоразрядные источники света. Экономичные и с большим сроком службы, газоразрядные лампы с успехом (но не полностью) вытесняют лампы накаливания, причем среди них люминесцентные лампы обеспечивают наилучшее качество освещение и могут удовлетворительно имитировать естественное освещение.

С целью рационального использования световой энергии, создаваемой источниками света, а также для защиты их от воздействия окружающей среды и уменьшения слепящего действия применяют соответствующие световые приборы - светильники и прожекторы.

Рационально запроектированные на­ружные ограждающие конструкции дол­жны удовлетворять следующим теплотех­ническим требованиям:

- обладать достаточными теплозащит­ным свойствами, чтобы лучше сохранять теплоту в помещениях в холодное время года или защищать помещения от пере­грева в летнее время (для южных райо­нов);

- не иметь при эксплуатации на внутрен­ней поверхности слишком низкой темпе­ратуры, значительно отличающейся от температуры внутреннего воздуха, во из­бежание образований в ней конденсата и охлаждения тела человека от теплопо-терь излучением;

- обладать воздухонепроницаемостью не выше установленного предела, выше ко­торого воздухообмен будет понижать те­плозащитные качества ограждения и ох­лаждать помещение, вызывая у людей, находящихся вблизи ограждения, ощуще­ние дискомфорта;

- сохранять нормальный влажностный режим, так как увлажнение ограждения ухудшает его теплозащитные свойства, уменьшает долговечность и ухудшает температурно-влажностный климат в по­мещении.

В простейшем виде ограждающая кон­струкция здания по своей расчетной схе­ме представляет плоскую конструкцию (стенку или плиту), ограниченную парал­лельными поверхностями. Она разделяет воздушные среды с разными температу­рами.

Ограждающая конструкция называется однородной, если выполнена из одного материала, и слоистой, если состоит из нескольких материалов, слои которых расположены параллельно внешним по­верхностям ограждения.

Количество теплоты (Вт), проходящее через ограждающую конструкцию, может быть определено на основании закона Фурье:


(2.1)

где и — температуры на теплой и хо­лодной поверхности ограждения, °С;


- теплопроводность материала,


; —толщина ограждения, м;

F площадь ограждения, м 2 ;


— время передачи теплоты, ч (с).


Из равенства (2.1) получим


Если толщину ограждения, его пло­щадь, время передачи теплоты и разность температур принять равными единице, то ,

т. е. теплопроводность предста­вляет количество теплоты, которое про­ходит в единицу времени через 1 м 2 однородного ограждения толщиной 1 м при разности температур на его поверх­ности 1° С.

Эта величина является одной из основных теплофизических характери­стик строительных материалов и зависит от влажности материала, его природы, химического состава и особенностей кри­сталлической структуры. Так, теплопро­водность увеличивается с повышением влажности материала.

Однако целью теплофизического расче­та ограждающих конструкций является не определение их теплопроводности, а придание необходимых теплозащитных качеств. В связи с этим отношение тепло­проводности к толщине ограждения заменяют обратной величиной (°С-м 2 /Вт), которая называется термиче­ским сопротивлением К однородного ограждения или отдельного конструктив­ного слоя, входящего в состав слоистой конструкции.

Тогда термическое сопротивление cлоистой конструкции равно сумме термиче­ских сопротивлений всех слоев, т. е.



где — толщина отдельных слоев,


м;, — теплопроводность мате-


При передаче теплоты через ограж­дающую конструкцию перепад темпера­тур от tвдо tн состоит из суммы трех расчетных температурных перепадов (рис. 17.1): —разности температур

воздуха помещения и внутренней поверх­ности ограждения; — изменения температуры внутренней и наружной по­верхностей ограждения; — разности температур наружной поверхности огра­ждения и наружного воздуха.

Каждый из этих перепадов температур вызван конкретным сопротивлением переносу теплоты: — сопротивлением тепловосприятию (К8); — термическим сопротивлением ограждения (К); — сопротивлением теплоотдаче (Я„).

Тогда общее термическое сопротивле­ние ограждающей конструкции (м 2 • °С/Вт)


(2.2)

В теплофизических расчетах прини­мают: Rв =0,114 — для стен, полов и гладких потолков отапливаемых зда­ний;Rн = 0,04 — для наружных стен и бес­чердачных перекрытий и Rн = 0,08 — для чердачных перекрытий.

2. Основы звукоизоляции в строительстве.

При проектировании зданий особое вни­мание должно быть уделено звукоизоля­ции помещений. Это может быть достиг­нуто:

соответствующими планировочными решениями, при которых помещения с ис­точниками шума удалены от помещений, где требуется тишина;

целесообразным размещением инже­нерного и санитарно-технического обору­дования (лифтов, мусоропроводов, венти­ляторов, насосов, санитарных приборов) и осуществлением мероприятий по сни­жению шума, возникающего от этого оборудования;

применением строительных конструк­ций с достаточными звукоизолирующими качествами.

Из физики известно, что звук — волно­вое колебание упругой среды, подчиняю­щееся физическим законам. Колебания источника звука возбуждают в упругой среде колебания ее частиц, которые по­следовательно, от частицы к частице, распространяются в среде волнообразно с определенной скоростью в виде зву­ковых волн. При этом частицы среды не перемещаются вместе со звуковой волной, они только колеблются, попере­менно смещаясь и возвращаясь в перво­начальное положение.

Количество энергии, переносимое зву­ковой волной за 1 с через площадку в 1 см 2 , перпендикулярную направлению движения волны, называют силой звука и выражают в Вт/см 2 .

Ухо человека может ощущать звук только в том случае, когда его сила не меньше определенной величины, называе­мой порогом слышимости. Верхний пре­дел силы звука, который воспринимается как болевое ощущение, называется бо­левым порогом.

Сила звука у порога слышимости рав­на 1-10 -16 Вт/см 2 , а у болевого поро­га - около 1-10 -2 Вт/см 2 ; следователь­но, силы этих звуков отличаются один от другого в 10 14 раз.

На практике пользуются логарифмиче­ским масштабом этих величин. Для этого ввели понятие уровня силы звука. Он вы­ражается десятичным логарифмом отно­шения силы данного звука к силе звука на пороге слышимости и обозначается L. Выражают уровень силы звука в лога­рифмических единицах — белах (Б) (1 бел = 10 децибел). Обозначая силу данно­го звука с, а силу звука на пороге слыши­мости с0, будем иметь (дБ)


(2..4)

При распространении звука в упругой среде вследствие колебательных движе­ний частиц в последней возникает так на­зываемое звуковое давление р, выражае­мое в Па. Сила звука пропорциональна квадрату звукового давления:


Исходя из этого, формулу (2.4) можно преобразовать (дБ):


(2.5)

Это выражение носит название уровня звукового давления.

При решении вопросов звукоизоляции различают звуки воздушные и ударные.

Воздушный звук (в результате разговоров, игры на музыкальных инстру­ментах и др.) проникает в помещения че­рез неплотности в ограждении; вслед­ствие колебаний ограждения (мембрана); непосредственно через материал ограж­дения.

Основными средствами борьбы с воз­душным звуком являются тщательная за­делка неплотностей, особенно в местах примыкания перекрытий и перегородок к стенам; устранение мембранных коле­баний конструкций путем увеличения их массивности. Этот путь не всегда эконо­мичен. Более приемлемым решением является применение слоистых конструк­ций с разной звукопроницаемостью.

Ударный звук (в результате ходьбы, передвижения грузов и др.) про­никает в ограждение в виде звуковых волн. Для изоляции от этих звуков необ­ходимо применять упругие прокладки, че­редовать в конструкции перекрытия мате­риалы разной плотности и звукопрони­цаемости, устраивать раздельные кон­струкции пола и потолка.

Звукоизолирующая способность ограж­дения, подобно уровню силы звука и уровню звукового давления, выражает­ся в децибелах (дБ) и изменяется в зави­симости от высоты звука, т. е. от частоты звуковых колебаний. Поэтому звукоизо­лирующие свойства ограждающих кон­струкций определяют опытным путем. На основании опытов, проводимых при ча­стотах в диапазоне от 100 до 3200 Гц, для общепринятых конструкций соста­влены частотные характеристики звукои­золирующей способности. Частотная ха­рактеристика — это кривая, построенная в координатной сетке, где по абсциссе от­ложены частоты (Гц), а по ординатам — звукоизоляционные свойства (дБ).

Степень звукоизолирующей способно­сти конструкции устанавливают путем сопоставления ее частотной характери­стики с нормативными частотными ха­рактеристиками, разработанными для ограждающих конструкций зданий.

При проектировании зданий различно­го назначения принимают типовые кон­струкции стен, перегородок, перекрытий и других ограждающих конструкций. При этом необходимо произвести проверку, насколько звукоизолирующие свойства той или иной конструкции соответствуют нормативным показателям, приведенным в СНиПе.

Для приближенной оценки звукоизоля­ции ограждений от воздушного шума можно пользоваться величиной средней звукоизолирующей способности в диапа­зоне частот 100 . 3200 Гц.

Среднюю звукоизолирующую способ­ность ограждения с округлением до 1 дБ можно определить на основании имею­щейся частотной характеристики шума по формуле

где R1 ,R2 , . Rn значения звукоизоли­рующих способностей в частотных интер­валах шириной 1 или 1/3 октавы, дБ; п — число частот, для которых опреде­лены значения R.

Среднее значение звукоизоляции одно- родных конструкций (дБ) приближенно можно определить в зависимости от по­верхностной плотности по формулам: при т= 200 кг

Rср = 13,51gm+13; (2.7)

3. Строительная светотехника.

Задачей строителей светотехники являют­ся исследование условий, определяющих создание оптимального светового режи­ма в помещениях, отвечающего проте­кающим в них функциональным процес­сам, и разработка соответствующих архи­тектурных и конструктивных решений зданий. Прямым источником естественного ос­вещения является солнце, а диффузным (рассеянным) светом — свет небосвода. Свет в помещения проникает через све­товые проемы: окна, фонари верхнего ос­вещения и др.

Мощность лучистой энергии, приведен­ная к спектральной чувствительности че­ловеческого глаза, проходящая через ка­кую-либо площадку в одну секунду, назы­вается световым потоком Ф. За единицу светового Потока принят люмен (лм), со­ответствующий мощности 1/683 Вт при длине волны светового излучения h = 555 нанометра (нм), определяемой по спе­циальным эталонам.

Для оценки условий освещения, созда­ваемых источником света, пользуются понятием освещенности.

Освещенностью поверхности Е (лк) на­зывается отношение величины падающе­го светового потока Ф к площади осве­щаемой поверхности А :

Е = Ф/А. (2.9)

В практике проектирования естествен­ного освещения рассматривается не осве­щенность, а относительная величина — коэффициент естественной освещенности КЕО (е), равный отношению освещенно­сти в данной точке внутри помещения ЕВ к освещенности горизонтальной площа­ди, расположенной под открытым небом при диффузном свете небосвода ЕH:

Чтобы определить абсолютное значе­ние освещенности внутри помещения (лк), можно воспользоваться формулой

Для учета равномерной яркости неба введено понятие геометрического коэф­фициента естественной освещенности е. Этот коэффициент составляет процентное отношение площади светопропускания к площади небосвода.

Геометрический КЕО определяется различными методами. Однако наиболь­шее распространение имеет графический метод, разработанный А. М. Данилюком. Этот метод основан на закономерностях проекции телесного угла и светотехниче­ского подобия. Если расположить на го­ризонтальной плоскости в центре полусферы точку и эту полусферу принять за небосвод равномерной яркости, а сол­нечный и Отраженный свет не учиты­вать, то освещенность этой точки можно считать равной 1, или 100%.


Рис. 2.1 Схема разбивки полусферы.

А. М. Данилюк разбил полусферу не­босвода 100 меридианами и 100 паралле­лями на 10000 равновеликих по степени световой активности площадок (рис. 17.3), каждая из которых направляет на осве­щенный предмет световой луч. Проеци­руя световой проем на полусферу, полу­чаем площадь светового проема, выра­женного в световых лучах, а график проекции полусферы на горизонтальную плоскость дает возможность определить ширину светового проема, также выра­женную в световых лучах.

Обозначим количество световых лучей по вертикальной плоскости n1; а количе­ство световых лучей по горизонтальной плоскости — п2. Тогда площадь светового проема, выраженная в процентах от пло­щади полусферы, будет характеризовать геометрический коэффициент естествен­ной освещенности:

Таким образом, освещенность точки внутри помещения равна количеству све­товых лучей от небосвода, проходящих к этой точке через световой проем.

В зависимости от характера функцио­нального процесса, протекающего в зда­нии, района строительства и вида здания применяют боковое освещение через окна в наружных стенах, верхнее — через про­емы в покрытии (фонари) или комбини­рованное (боковое и верхнее). Для построения кривой освещенности по харак­терному разрезу помещения определяют КЕО для ряда точек. Найденные вели­чины откладывают от этих точек в со­ответствующем масштабе в виде верти­кальных отрезков вверх от рабочей по­верхности и концы соединяют кривой.

В качестве характерного разреза счи­тают такой, который проходит по середи­не помещения и перпендикулярно плоско­сти остекления световых проемов (при боковом освещении) или продольной оси пролетов помещения (при верхнем осве­щении). В характерный разрез должны попасть рабочие места. Следует иметь в виду, что рабочей условной считают по­верхность, расположенную на высоте 0,80 м от пола. Расчетные точки при­нимают на равных расстояниях друг от друга, располагая первую и последнюю точки на расстоянии 1 м от стен. Обычно число точек берут не менее 5.

Значения КЕО рассчитывают:

при боковом освещении


(2.13)

при верхнем освещении


(2.14)

при комбинированном освещении


(2.15)

где еб — геометрический коэффициент естественной освещенности в расчетной точке при боковом освещении:


(2.16)


(здесь п1 и п2 соответственно количе­ство лучей по графику / (рис. 17.4) и ко­личество лучей по графику // (рис. 17.5)]; — коэффициент, учитывающий неравно­мерную яркость облачного небосвода (определяется по графику рис. 17.6); Я — коэффициент, учитывающий свет, от­раженный от противостоящего здания (рис. 17.7):


(2.17)

(здесь и — соответственно количе­ство лучейпо графикам 1 и //); К — коэффициент, учитывающий относи­тельную яркость противостоящего зда­ния (принимается по табл. 17.2); - об­щий коэффициент светопропускания, определяемый по формуле


(2.18)


(здесь — коэффициент светопропускания материала; — коэффициент, учиты­вающий потери света в переплетах светопроема; — коэффициент, учиты­вающий потери света в слое загрязне­ния остекления; - коэффициент, учи­тывающий потери света в несущих кон­струкциях (при боковом освещении = 1); — коэффициент, учитывающий потери света в солнцезащитных устройствах). Ко­эффициенты приведены в табл. 17.3, а — в зависимости от конструкции солнцезащитных устройств в СНиП II- 4—79; — коэффициент,

Читайте также: