Основные законы химии реферат

Обновлено: 06.07.2024

Закон сохранения массы веществ впервые сформулирован в 1748 г. М. В. Ломоносовым. Позднее (в 1756 г.) он экспериментально обосновал этот закон. Современная формулировка закона такова: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции. Независимо от Ломоносова этот закон сформулировал в 1789 г. французский химик Лавуазье

Файлы: 1 файл

Основные законы химии.docx

ЧАСТНОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«МЕЖДУНАРОДНЫЙ ГУМАНИТАРНО- ЭКОНОМИЧЕСКИЙ

Факультет заочного обучения

Кафедра социально-гуманитарных дисциплин

ОСНОВНЫЕ ЗАКОНЫ ХИМИИ

Шинкевич Ксении Александровны

студентки 4 курса

заочной формы обучения

Основные законы химии

1 Закон сохранения массы веществ

Закон сохранения массы веществ впервые сформулирован в 1748 г. М. В. Ломоносовым. Позднее (в 1756 г.) он экспериментально обосновал этот закон. Современная формулировка закона такова: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции. Независимо от Ломоносова этот закон сформулировал в 1789 г. французский химик Лавуазье. Он также получил экспериментальные доказательства закона, изучив многие реакции окисления металлов. Закон сохранения массы веществ может быть объяснен с точки зрения атомно-молекулярного учения так: при химических реакциях атомы не исчезают и не могут возникнуть из ничего; общее число атомов остается постоянным до и после реакции.

Например, при взаимодействии двухатомных молекул водорода и хлора должно образоваться столько молекул НСl, чтобы число атомов водорода и хлора осталось равным двум, т.е. две молекулы:Н2+ Cl2= 2HCl и, поскольку атомы имеют постоянную массу, не меняется и масса веществ до и после реакции.

Закон сохранения массы веществ дает материальную основу для составления уравнений химических реакций. Опираясь на него, можно производить расчеты по химическим уравнениям.

2 Закон постоянства состава вещества

К основным законам химии относится закон постоянства состава. Закон постоянства состава впервые сформулировал французский ученый-химик Ж. Пруст в 1808 г. Всякое чистое вещество независимо от способа его получения всегда имеет постоянный качественный и количественный состав.

Рассмотрим, например, состав оксида углерода (IV) (углекислого газа) СО2. Он состоит из углерода и кислорода (качественный состав). Содержание углерода в СО2 27,27%, кислорода — 72,73% (количественный состав). Получить углекислый газ можно многими способами: синтезом из углерода и кислорода, из оксида углерод (II) и кислорода, действием кислот на карбонаты и др. Во всех случаях чистый оксид углерода (IV) будет иметь приведенный выше состав независимо от способа получения.

Атомно-молекулярное учение позволяет объяснить закон постоянства состава. Поскольку атомы имеют постоянную массу, то и массовый состав вещества в целом постоянен.

Известны соединения переменного состава, для которых закон Пруста несправедлив, например, сверхпроводники общей формулы YBa2CU3O7-x.

3 Закон кратных отношений

Закон кратных отношений открыт в 1803г. Дж.Дальтоном и истолкован им с позиций атомизма. Атомизм — натурфилософская и физическая теория, согласно которой чувственно воспринимаемые (материальные) вещи состоят из химически неделимых частиц — атомов. Возникла в древнегреческой философии. Дальнейшее развитие получила в философии и науке Средних веков и Нового времени.

Если два химических элемента дают несколько соединений, то весовые доли одного и того же элемента в этих соединениях, приходящиеся на одну и ту же весовую долю второго элемента, относятся между собой как небольшие целые числа.

Например: N2O N2O3 NO2(N2O4) N2O5. Число атомов кислорода в молекулах этих соединений, приходящиеся на два атома азота, относятся между собой как 1 : 3 : 4 : 5.

4 Закон объемных отношений

Открыл Гей-Люссак в 1808 г. "Объемы газов, вступающих в химические реакции, и объемы газов, образующихся в результате реакции, относятся между собой как небольшие целые числа".

Следствие. Стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объемных отношениях реагируют или получаются газообразные вещества.

a) 2CO + O2 --> 2CO2

При окислении двух объемов оксида углерода (II) одним объемом кислорода образуется 2 объема углекислого газа, т.е. объем исходной реакционной смеси уменьшается на 1 объем.

b) При синтезе аммиака из элементов:

Один объем азота реагирует с тремя объемами водорода; образуется при этом 2 объема аммиака - объем исходной газообразной реакционной массы уменьшится в 2 раза.

5 Уравнение Клайперона- Менделеева

Основным уравнением, характеризующим состояние идеального газа, является уравнение Клайперона-Менделеева.

Уравнение состояния идеального газа, выведенное П. Э Клапейроном в 1834 г., объединившее закон Бойля-Мариотта и закон Гей-Люссака.
представляет собой зависимость между параметрами идеального газа (давлением p, объемом V и абсолютной температурой T) определяющими его состояние.
В 1874 г. Д. И. Менделеев на основе уравнения Клайперона вывел уравнение для 1 моля идеального газа, получившее название уравнения Клапейрона – Менделеева.

Уравнение состояния идеального газа — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

— универсальная газовая постоянная,

— абсолютная температура, К.

6 Закон Авогадро

Первые количественные исследования реакций между газами принадлежат французскому ученому Гей-Люссаку. Он является автором законов о тепловом расширении газов и закона объемных отношений. Эти законы были объяснены в 1811 году итальянским физиком Амедео Авогадро.

В равных объемах различных газов при одинаковых условиях (температура, давление и т.д.) содержится одинаковое число молекул.

Закон справедлив только для газообразных веществ.

1. Одно и то же число молекул различных газов при одинаковых условиях занимает одинаковые объемы.

2. При нормальных условиях (0°C = 273°К , 1 атм = 101,3 кПа) 1 моль любого газа занимает объем 22,4 л.

7 Периодический закон Менделеева

Периодический закон — фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс.

С развитием атомной физики и квантовой химии Периодический закон получил строгое теоретическое обоснование. Благодаря классическим работам Й. Ридберга (1897), А. Ван-ден-Брука (1911), Г. Мозли (1913) был раскрыт физический смысл порядкового (атомного) номера элемента. Позднее была создана квантово-механическая модель периодического изменения электронного строения атомов химических элементов по мере возрастания зарядов их ядер (Н. Бор, В. Паули, Э. Шрёдингер, В. Гейзенберг и др.).

Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является разработанная Менделеевым Периодическая система элементов.

Рассмотрение основных законов химии: постоянства состава, кратных и объемных отношений, Авогадро ди Кваренья, уравнение Клайперона-Менделеева. Планетарная модель строения атома Резерфорда. Понятие электролиза и периодической системы элементов Менделеева.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 20.02.2012
Размер файла 828,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

химия атом электролиз менделеев

1. Основные законы химии

2. Электролиз. Законы электролиза

3. Периодический закон и периодическая система элементов Д.И. Менделеева. Периоды, группы

Список используемой литературы

Химия изучает состав, свойства и превращения веществ, а также явления, которые сопровождают эти превращения. Одно из первых определений химии как науки дал русский ученый М.В. Ломоносов: "Химическая наука рассматривает свойства и изменения тел. состав тел. объясняет причину того, что с веществами при химических превращениях происходит".По Менделееву, химия -- это учение об элементах и их соединениях. Химия относится к естественным наукам, которые изучают окружающий нас мир. Она тесно связана с другими естественными науками: физикой, биологией, геологией. Многие разделы совр науки возникли на стыке этих наук: физическая химия, геохимия, биохимия. Химия тесно связана также с другими отраслями науки и техники. В ней широко применяются математические методы, используются расчеты и моделирование процессов на электронно-выч машинах. В совр химии выделилось много самостоятельных разделов, наиболее важные из которых, кроме отмеченных выше, неорганическая химия, органическая химия, х. полимеров, аналитическая химия, электрохимия, коллоидная химия и другие. Объектом изучения химии являются вещества. Обычно их подразделяют на смеси и чистые вещества. Среди последних выделяют простые и сложные. Простых веществ известно более 400, а сложных веществ -- намного больше: несколько сот тысяч, относящихся к неорганическим, и несколько миллионов органических. Курс химии, изучаемый в средней школе, можно разделить на три основные части: общую, неорганическую и органическую химию. Общая химия рассматривает основные химические понятия, а также важнейшие закономерности, связанные с химическими превращениями. Этот раздел включает основы из различных разделов современной науки: "физической химии, химической кинетики, электрохимии, структурной химии и др. Неорганическая химия изучает свойства и превращения неорганических (минеральных) веществ. Органическая химия из. свойства и превращения органических веществ. Роль химии в промышленности и сельском хозяйстве. Во все времена химия служит человеку в его практической деятельности. Еще в древности возникли ремесла, в основе которых лежали химические процессы: получение металлов, стекла, керамики, красителей. Большую роль играет химия в современной промышленности. Химическая и нефтехимическая промышленность являются важнейшими отраслями, без которых невозможно функционирование экономики. Среди важнейших продуктов следует назвать кислоты, щелочи, соли, минеральные удобрения, растворители, масла, пластмассы, каучуки и резины, синтетические волокна и многое другое. В настоящее время химическая промышленность выпускает несколько десятков тысяч наименований продукции. Исключительно важную роль играют химические продукты и процессы в энергетике, которая использует энергию химических реакций. Для энергетических целей используются многие продукты переработки нефти (бензин, керосин, мазут), каменный и бурый уголь, сланцы, торф. В связи с уменьшением природных запасов нефти вырабатывается синтетическое топливо путем химической переработки различного природного сырья и отходов производства. Развитие многих отраслей промышленности связано с химией: металлургия, машиностроение, транспорт, промышленность строительных материалов, электроника, легкая, пищевая промышленность-- вот неполный список отраслей экономики, широко использующих химические продукты и процессы. Во многих отраслях применяются химические методы, например, катализ (ускорение процессов), химическая обработка металлов, защита металлов от коррозии. Большую роль играет химия в развитии фармацевтической промышленности: основную часть всех лекарственных препаратов получают синтетическим путем. Исключительно большое значение химия имеет в сельском хозяйстве, которое использует минеральные удобрения, средства защиты растений от вредителей, регуляторы роста растений, химические добавки и консерванты к кормам для животных и другие продукты. Использование химических методов в сельском хозяйстве привело к возникновению ряда смежных наук, например, агрохимии и биотехнологии, достижения которых в настоящее время широко применяются в производстве сельскохозяйственной продукции. Бурное развитие промышленности, в том числе химической, создало серьезную проблему: необходимость снизить отрицательное ее воздействие на окружающую среду. Наука, которая изучает взаимоотношение человечества с окружающей средой, получила название экология. Экология имеет тесную связь с химией. С одной стороны, химическое воздействие на окружающую среду наносит ей большой вред, но с другой стороны, предупредить деградацию природы можно путем использования химических методов. Химия и химическая промышленность являются одними из наиболее существенных источников загрязнения окружающей средь. Другими наиболее неблагоприятными в экологическом отношении производствами являются черная и цветная металлургия, автомобильный транспорт и энергетика (главным образом, тепловые станции). Только разумное знание и использование химии будет способствовать увеличению богатств страны.

1. Основные законы химии

Закон постоянства состава.

Впервые сформулировал Ж.Пруст (1808 г). Все индивидуальные химические вещества имеют постоянный качественный и количественный состав и определенное химическое строение, независимо от способа получения. Из закона постоянства состава следует, что при образовании сложного вещества элементы соединяются друг с другом в определенных массовых соотношениях. Массовая доля элемента w(Э) показывает, какую часть составляет масса данного элемента от всей массы вещества: где n - число атомов; Ar(Э) - относительная атомная масса элемента; Mr - относительная молекулярная масса вещества. w(Э) = (n*Ar(Э)) / Mr Зная количественный элементный состав соединения можно установить его простейшую молекулярную формулу:

1. Обозначают формулу соединения Ax By Cz

2. Рассчитывают отношение X : Y : Z через массовые доли элементов:

w(A) = (х*Ar(А)) / Mr(AxByCz)

w(B) = (y*Ar(B)) / Mr(AxByCz)

w(C) = (z*Ar(C)) / Mr(AxByCz)

X = (w(A)*Mr) / Ar(А) Y = (w(B) *Mr) / Ar(B)

x : y : z = (w(A) / Ar(А)) : (w(B) / Ar(B)) : (w(C) / Ar(C))

3. Полученные цифры делят на наименьшее для получения целых чисел X, Y, Z.

4. Записывают формулу соединения.

Закон кратных отношений. (Д.Дальтон, 1803 г.)

Если два химических элемента дают несколько соединений, то весовые доли одного и того же элемента в этих соединениях, приходящиеся на одну и ту же весовую долю второго элемента, относятся между собой как небольшие целые числа.

N2O N2O3 NO2(N2O4) N2O5

Число атомов кислорода в молекулах этих соединений, приходящиеся на два атома азота, относятся между собой как 1 : 3 : 4 : 5.

Закон объемных отношений.

(Гей-Люссак, 1808 г.)

"Объемы газов, вступающих в химические реакции, и объемы газов, образующихся в результате реакции, относятся между собой как небольшие целые числа".

Следствие. Стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объемных отношениях реагируют или получаются газообразные вещества.

a) 2CO + O2 --> 2CO2

При окислении двух объемов оксида углерода (II) одним объемом кислорода образуется 2 объема углекислого газа, т.е. объем исходной реакционной смеси уменьшается на 1 объем.

b) При синтезе аммиака из элементов:

Один объем азота реагирует с тремя объемами водорода; образуется при этом 2 объема аммиака - объем исходной газообразной реакционной массы уменьшится в 2 раза.

Закон Авогадро ди Кваренья (1811 г.)

В равных объемах различных газов при одинаковых условиях (температура, давление и т.д.) содержится одинаковое число молекул.

Закон справедлив только для газообразных веществ.

1. Одно и то же число молекул различных газов при одинаковых условиях занимает одинаковые объемы.

2. При нормальных условиях (0°C = 273°К , 1 атм = 101,3 кПа) 1 моль любого газа занимает объем 22,4 л.

Объединенный газовый закон - объединение трех независимых частных газовых законов: Гей-Люссака, Шарля, Бойля-Мариотта, уравнение, которое можно записать так:

P1V1 / T1 = P2V2 / T2

И наоборот, из объединенного газового закона при P = const (P1 = P2) можно получить

V1 / T1 = V2 / T2 (закон Гей-Люссака);при Т= const (T1 = T2):P1V1 = P2V2

Если записать объединенный газовый закон для любой массы любого газа, то получается уравнение Клайперона-Менделеева:

где m - масса газа; M - молекулярная масса; p - давление; V - объем; T - абсолютная температура (°К); R - универсальная газовая постоянная (8,314 Дж/(моль*К) или 0,082 л атм/(моль*К)).

Для данной массы конкретного газа отношение m / M постоянно, поэтому из уравнения Клайперона-Менделеева получается объединенный газовый закон.

Относительная плотность газов показывает, во сколько раз 1 моль одного газа тяжелее (или легче) 1 моля другого газа.

DA(B) = r(B) / r(A) = M(B) / M(A)

Средняя молекулярная масса смеси газов равна общей массе смеси, деленной на общее число молей:

Mср = (m1 +. + mn) / (n1 +. + nn) = (M1*V1 + . Mn*Vn) / (n1 +. + nn)

Планетарная модель строения атома. (Э.Резерфорд, 1911 г.)

1. Атомы химических элементов имеют сложное внутреннее строение.

2. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.

3. Весь положительный заряд и почти вся масса атома сосредоточена в ядре атома(масса электрона равна 1/1823 а.е.м.).

4. Вокруг ядра по замкнутым орбиталям движутся электроны. Их число равно заряду ядра. Поэтому атом в целом - электронейтрален.

Ядро атома состоит из протонов и нейтронов (общее название - нуклоны). Число протонов в ядре атома элемента строго определено - равно порядковому номеру элемента в периодической системе - Z. Число нейтронов в ядре атомов одного и того же элемента может быть различным - A - Z (где А - относительная атомная масса элемента; Z - порядковый номер).

Заряд ядра атома определяется числом протонов. Масса ядра определяется суммой протонов и нейтронов.

Изотопы - разновидности атомов определенного химического элемента, имеющие одинаковый атомный номер, но разные массовые числа. Обладают ядрами с одинаковым числом протонов и различным числом нейтронов, имеют одинаковое строение электронных оболочек и занимают одно и то же место в периодической системе химических элементов.

Относительные атомные массы элементов, приводимые в периодической системе - есть средние массовые числа природных смесей изотопов. Поэтому они и отличаются от целочисленных значений.

Когда впервые обнаруживается, что некоторая идея объясняет или коррелирует многие факты, то такую идею называют гипотезой . Гипотезу можно подвергнуть дальнейшей проверке и экспериментально подтвердить выводы, которые из нее следуют. Если гипотеза при этом согласуется с результатами эксперимента, то ее называют теорией или законом.

Теория, например атомная теория, обычно включает некоторые представления о строении той или иной части Вселенной, тогда как закон может быть просто обобщением положений, относящихся к экспериментально выявленным фактам. Так, существует закон постоянства углов между гранями в кристаллах. Этот закон утверждает, что при изменении углов между соответствующими гранями нескольких кристаллов одного и того же чистого вещества оказывается, что величины этих углов одинаковы. Закон просто выражает тот факт, что углы между соответствующими гранями кристалла чистого вещества одинаково независимо от того, большой это кристалл или маленький; какого либо объяснения самому этому факту закон не дает. Объяснение дает атомная теория кристаллов теория, которая исходит из того, что атомы кристаллов расположены в определенном порядке.

Амадео Авогадро в 1811г. выдвинул гипотезу, которая в дальнейшем была подтверждена опытными данными и потому стала называться законом Авогадро:4

Одинаковые объемы различных газов при одинаковых условиях (температуре и давлении) содержат одинаковое число молекул.

Таким образом, Авогадро указал, что противоречие между законом объемных отношений Гей-Люссака и учением Дальтона легко устраняется, если ввести представление о молекуле и атоме как о различных формах материи. Закон Гей-Люссака есть закон о числе молекул, а не атомов, находящихся в объеме газа.

Авогадро предположил, что молекулы простых газов состоят из двух одинаковых атомов. Таким образом, при соединени водорода с хлором их молекулы хлористого водорода. Из одной молекулы водорода и одной молекулы хлора образуются две молекулы хлористого водорода.

Из закона Авогадро вытекает важное следствие: при одинаковых условиях 1 моль газа занимает одинаковый объем. Этот объем легко вычислить, если известна масса 1л газа.

Экспериментально установлено, что масса 1л кислорода при нормальных условиях (при температуре 273ºК (0ºС) и давлении 1 атм.) равна 1,429г. Следовательно, объем, занимаемый 1 молем при этих условиях, равен:


При нормальных условиях 1 моль любого газа занимает объем, равный 22.4л. Этот объем называется молярным объемом газа.

Молярный объем газа – это отношение объема вещества к количеству этого вещества:


, где

Vm – молярный объем газа (м³/моль или л/моль);

V – объем вещества,

n – количество вещества системы.

Точное значение молярного объема газа 22.4135±0.0006 л/моль.

На основе закона Авогадро определяют молекулярные массы газообразных веществ по их плотности.


По закону Авогадро массы m1 и m2 л каждого из двух разных газов равняются произведению молярной массы М1 и М2 на число - постоянная (число) Авогадро: число частиц (атомов, молекул или ионов) в моле вещества.

=моль ˜¹



или , где

D-относительная плотность газа.

Отношение массы определенного объема одного газа к массе такого же другого газа, взятого при тех же условиях (объем, температура, давление), называется плотностью первого газа по второму.

Обычно плотности газов определяют по отношению к самому легкому газу – водороду (обозначают Dh2). Молярная масса водорода равна 2.016 г/моль или приближенно 2 г/моль, следовательно:


Молекулярная масса вещества в газообразном состоянии равна удвоенной плотности по водороду.

Если плотность определяют по воздуху, то исходят из средней молярной массы, равной 29 г/моль).


Молярную массу газа можно определить, исходя из его молярного объема при нормальных условиях в соответствии с формулами n=m/M, n=V/Vm. Если в этих формулах n для одного и того же газа имеет одинаковое значение, то , и .


При нормальных условиях л/моль, тогда


В условиях, отличных от нормальных, для приведения объема газа к нормальным условиям пользуются газовыми законами.

При постоянной температуре объем данного количества газа обратно пропорционально давлению, под которым он находится.


, где

Закон Бойля-Мариотта выполняется при очень малых давлениях

При постоянном давлении изменение объема газа прямо пропорционально температуре.


, где

T – абсолютная температура (К)

При одинаковых условиях (при неизменной температуре и давлении) объемы газов, вступающих, в реакцию, относятся друг к другу, а так же к объемам газообразных продуктов, как небольшие целые числа.

Так, 1 объем водорода и 1 объем хлора дают 2 объема хлористого водорода. 2 объема водорода и 1 объем кислорода – 2 объема водяного пара, 3 объема водорода и 1 объем азота – 2 объема аммиака.

Одним из первых признал закон кратных отношений Гей-Люссака шведский химик Й. Я. Берцелиус (1779-1848), предположивший, что основное свойство газов заключается в том, что равные объемы газов при одинаковых условиях содержат одинаковое число атомов.

Закономерность, установленную Гей-Люссаком, невозможно было объяснить, руководствуясь учением Дальтона о том, что простые вещества состоят из атомов. В самом деле, если в равных объемах газов, например водорода и хлора, содержится одинаковое число атомов, то при их взаимодействии должен получиться один объем хлористого водорода, а не два, как показывал опыт.

Закон Гей-Люссака был объяснен итальянским физиком А. Авогадро (1776-1856).

Скорость химической реакции пропорциональна концентрации регулирующих веществ.

Закон действующих масс запишется следующим образом:


, где CAиCB- концентрации вещества А и В (моль/л),

k-коэффициент пропорциональности, константа скорости реакции, зависящая от природы реагирующих веществ и от температуры.

k=v, когда концентрации каждого их реагирующих равны 1 моль/л или их произведение равно единице.

Данное уравнение носит название кинетического уравнения реакции.

Концентрация твердого вещества в процессе химического превращения не меняется), процесс идет на поверхности), поэтому скорость в реакциях с участием твердого тела определяется только концентрацией газов или растворенных веществ.

В сложных (многостадийных реакциях) скорость всего процесса зависит от скорости наиболее медленной реакции.

Согласно правилу Фант-Гоффа, при повышении температуры на каждые 10°С скорость большинства реакций увеличивается в 2-4 раза. Число, показывающее, во сколько раз увеличивается скорость данной реакции при повышении температуры на 10°С, называется температурным коэффициентом реакции. Это правило является приближенным.

В 1889г. шведский ученый С. Аррениус предложил уравнение зависимости константы скорости реакции от температуры:


, где

k - константа скорости

A - постоянный коэффициент, характерный для каждой реакции,

R - универсальная газовая постоянная,

T - абсолютная температура,

Ea - энергия, названная Аррениусом энергией активации . Энергия активации измеряется в кДж/моль.

Энергия активации - это энергия, которую необходимо сообщить частицам реагентов для того, чтобы превратить их в активные. Энергия активации – это энергетический барьер реакции.

Затраченная на активацию молекул энергия выделяется полностью или частично при образовании продуктов реакции. Если при образовании продуктов реакции выделяется больше энергии, чем было необходимо для активации выделяется больше энергии, чем было необходимо для активации молекул, то такая реакция называется экзотермической, если меньше – то эндотермической. Для протекания эндотермических реакций необходимо подводить энергию из вне.

Пьер Кюри в 1895г. показал, что парамагнитная восприимчивость сильно зависит от температуры и для многих веществ обратно пропорциональна абсолютной температуре. Уравнение, выражающее эту зависимость,


,


называют законом Кюри, а входящую в него величину называют мольной константой Кюри ; D выражает диамагнитный вклад (он обычно отрицателен).

Первый член этого уравнения можно рассчитать на основе принципа Больцмана при допущении, что данное вещество содержит постоянные магнитные дипольные моменты, способные ориентироваться в магнитном поле. Такой теоретический расчет был выполнен французским ученым Полем Ланжевеном в 1905г. Он вывел уравнение


, где


- величина дипольного магнитного момента в расчете на один атом или молекулу.

Это уравнение позволяет рассчитать значения магнитных моментов по экспериментальной магнитной восприимчивости парамагнитных веществ, измеренной в некотором интервале температур. На основании полученных значений можно определить число не спаренных электронов в молекулах веществ.

Закон постоянства состава был впервые сформулирован французским ученым Ж. Прустом в 1808г.

Современная формулировка закона такова:

Всякое чистое вещество независимо от способа его получения имеет постоянный качественный и количественный состав.

Закон постоянства состава вещества вытекает из атомно-молекулярного учения. Вещества с молекулярной структурой состоят из одинаковых молекул, потому и состав таких веществ постоянен. При образовании из двух элементов нескольких соединений атомы этих элементов соединяются друг с другом в молекулы различного, но определенного состава. Например, азот с кислородом образует шесть соединений.

В начале ХХ века выяснилось, что соединения переменного состава встречаются не только среди соединений металлов друг с другом, но и среди других твердых тел, например оксидов, сульфидов, нитридов, карбидов и других неорганических веществ, имеющих кристаллическую структуру.

Для многих соединений переменного состава установлены пределы, в которых может изменяться их состав. Например, оксид урана (IV) имеет состав UO2.5 до UO3, оксид ванадия (II) – от VO0.9 до VO1.3

Таким образом, в формулировку закона постоянства состава вносится уточнение:

Состав молекулярной структуры, т. е. состоящих из молекул является постоянным независимо от способа получения. Состав соединений с молекулярной структурой (с атомной, ионной и металлической решеткой) не является постоянным и зависит от условий получения.

М. В. Ломоносов впервые сформулировал закон сохранения массы вещества в 1748г., а экспериментально подтвердил его на примере обжига металлов в запаянных сосудах в 1756г. Современная формулировка закона такова:

Масса веществ, вступивших в химическую реакцию, равна массе веществ, образующихся в результате реакции.

Независимо от Ломоносова это закон был установлен в 1789г. французским химиком Лавуазье, который показал, что при химических реакциях сохраняется не только общая масса веществ, но и масса каждого из элементов, входящих в состав взаимодействующих веществ.

Закон сохранения массы веществ М. В. Ломоносов связывал с законом сохранения энергии (количества движения). Он рассматривал эти законы в единстве как все общий закон природы. Ломоносов писал:

Взгляды Ломоносова были подтверждены современной наукой. В 1905г. А. Эйнштейн показал, что между массой тела (m ) и его энергией (E ) существует связь, выражаемая уравнением:


,где

с – скорость света в вакууме.

Закон сохранения массы дает материальную основу для составления уравнений химических реакций.

Актуальность темы заключается в том что, Химия - наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении. В настоящее время известно более 100 тыс. неорганических и более 4 млн. органических соединений. Химические явления: одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, при этом состав ядер атомов не изменяется. Физические явления: меняется физическое состояние веществ (парообразование, плавление, электропроводность, выделение тепла и света, ковкость и др.) или образуются новые вещества с изменением состава ядер атомов.

Содержание

Введение
1. Фундаментальный закон – Периодический закон Менделеева
1.1. Некоторые закономерности в Периодической таблице Д.И. Менделеева
2. Закон сохранения массы
3. Закон постоянства состава химических соединений
4. Закон Авогадро
Заключение

Работа состоит из 1 файл

КСЕ ред..docx

1. Фундаментальный закон – Периодический закон Менделеева

1.1. Некоторые закономерности в Периодической таблице Д.И. Менделеева

2. Закон сохранения массы

3. Закон постоянства состава химических соединений

4. Закон Авогадро

В данном реферате рассмотрена тема “Основные законы химии”. Были рассмотрены следующие теоретические вопросы: Фундаментальный закон – Периодический закон Менделеева, Закон сохранения массы, Закон постоянства состава химических соединений, Закон Авогадро.

Целью выполнения реферата является закрепление полученных теоретических знаний. Основной задачей является выработка навыков работы с учебной и научной литературой, знакомство с понятием Химии и его основными законами.

Актуальность темы заключается в том что, Химия - наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении. В настоящее время известно более 100 тыс. неорганических и более 4 млн. органических соединений. Химические явления: одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, при этом состав ядер атомов не изменяется. Физические явления: меняется физическое состояние веществ (парообразование, плавление, электропроводность, выделение тепла и света, ковкость и др.) или образуются новые вещества с изменением состава ядер атомов.

Когда впервые обнаруживается, что некоторая идея объясняет или коррелирует многие факты, то такую идею называют гипотезой. Гипотезу можно подвергнуть дальнейшей проверке и экспериментально подтвердить выводы, которые из нее следуют. Если гипотеза при этом согласуется с результатами эксперимента, то ее называют теорией или законом.

1.Фундаментальный закон – Периодический закон Менделеева

Первый вариант Периодической таблицы элементов был опубликован Дмитрием Ивановичем Менделеевым в 1869 году. В это время Менделеев преподавал химию в Петербургском университете. Собирая материал для своего учебника "Основы химии", он раздумывал над тем, как сгруппировать материал таким образом, чтобы сведения о химических свойствах элементов не выглядели набором разрозненных фактов. После Всемирного конгресса химиков в 1860 году, в работе которого участвовал и Менделеев, проблема правильного определения атомных весов была постоянно в центре внимания многих ведущих химиков мира. Расположив элементы в порядке возрастания их атомных весов, Дмитрий Иванович обнаружил фундаментальный закон природы, который теперь называется Периодический закон.

В 1864 году англичанин Дж. Ньюлендс заметил, что если располагать элементы в порядке возрастания их атомного веса, то примерно каждый восьмой элемент является повторением первого. На рис.1 показана таблица Ньюлендса, относящийся к 1865 году. Элементы, имеющие одинаковый атомный вес помещались под одним номером. Наметившиеся закономерности быстро разрушались, поскольку в его системе не была учтена возможность существования еще не открытых элементов.

1. Устанавливалась связь между несходными по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения периодически повторяются.

2. В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались пробелы, которые надо было заполнить еще не открытыми элементами. Мало того, Периодический закон позволял предсказывать свойства этих элементов.

Первый вариант Периодической таблицы (рис.2) выглядит непривычно для нас. Не проставлены атомные номера, будущие группы элементов расположены горизонтально (а будущие периоды - вертикально), еще не открыты инертные газы, встречаются незнакомые символы элементов, многие атомные массы отличаются от современных. Однако важно видеть, что уже в первый вариант Периодической таблицы Менделеев включал больше элементов, чем их было открыто на тот момент. Он оставил свободными 4 клеточки своей таблицы для еще неизвестных элементов и даже смог правильно оценить их атомный вес. Атомные единицы массы тогда еще не были приняты и атомные веса элементов измеряли в "паях", близких по значению к массе атома водорода. Глубокое знание химических свойств различных элементов позволило Менделееву не только указать на еще не открытые элементы, но и предсказать их свойства. Дмитрий Иванович предсказал свойства элемента, названного им "эка-силицием". Спустя 16 лет предсказание подтвердилось. Сопоставление свойств, предсказанных для еще не открытого элемента "эка-силиция" со свойствами элемента германия (Ge). В современной Периодической таблице германий занимает место "эка-силиция". С момента появления Периодического закона химия перестала быть описательной наукой. Как образно заметил известный русский химик Н. Д. Зелинский, Периодический закон явился "открытием взаимной связи всех атомов в мироздании".

1.1. Некоторые закономерности в Периодической таблице Д.И. Менделеева

Помимо глубокой фундаментальной связи между элементами, она отражает ряд полезных для изучения химии закономерностей.

Рассмотрим важнейшие из них.

При перемещении вдоль периода справа налево металлические свойства элементов усиливаются. В обратном направлении возрастают неметаллические. Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях.

Размеры атомов при перемещении слева направо вдоль периода уменьшаются. Это объясняют тем, что электроны все сильнее притягиваются к ядру по мере возрастания заряда ядра. Даже увеличение числа электронов на внешней оболочке не приводит к увеличению размеров атома. Наоборот, размеры атома фтора меньше, чем атома кислорода.

При перемещении сверху вниз атомные радиусы элементов растут, потому что заполнено больше электронных оболочек.

S – Элементы имеют валентности, совпадающие с номером их группы.

Не только элементы, но и многие их соединения - оксиды, гидриды, соединения с галогенами - обнаруживают периодичность. Для каждой ГРУППЫ элементов можно записать формулы соединений, которые периодически "повторяются" (то есть могут быть записаны в виде обобщенной формулы).

2. Закон сохранения массы

Закон сохранения массы гласит: Масса веществ, вступающих в реакцию, равна массе веществ, образующихся в результате реакции.

Впервые закон сохранения массы сформулировал русский ученый Ломоносов, в 1748 году, а экспериментально подтвердил его на примере обжигания металлов в запаянных сосудах в 1756 году. Позднее в 1789 году закон сохранения массы был установлен независимо от Ломоносова, французским химиком Лавуазье, который показал, что при химических реакциях сохраняется не только общая масса веществ, но и масса каждого из элементов, входящих в состав взаимодействующих веществ.

При химических реакциях всегда выделяется или поглощается энергия. Поэтому при учете массы веществ необходимо принимать во внимание прирост или убыль, отвечающие поглощению или выделению энергии при данной реакции. При химических реакциях принято не принимать во внимание ту массу, которая приносится или уносится с энергией.

Теперь, с учетом закона сохранения массы, мы можем сформулировать правила составления химических уравнений:

1) Нужно знать формулы веществ, вступивших в реакцию и формулы веществ, полученных в результате реакции (формулы продуктов).

2) Следует записать левую часть уравнения, где располагаются формулы реагентов. Между формулами ставятся знаки "плюс".

3) Далее следует поставить знак равенства или стрелку и записать правую часть уравнения: формулы продуктов (в любом порядке) и знаки "плюс" между ними.

4) Число атомов каждого элемента в левой части уравнения должно быть равно числу атомов каждого элемента в правой части уравнения. Для достижения этого нужно подобрать и поставить перед формулами соответствующие коэффициенты.

5) Нельзя менять местами левую и правую части уравнения. Нельзя переносить формулы веществ из одной части уравнения в другую.

Читайте также: