Основные законы эволюции реферат

Обновлено: 05.07.2024

При построении филогенетических рядов биологи-эволюционисты, помимо палеонтологических данных, широко используют сравнительный метод, с помощью которого они устанавливают сходство в строении организмов, их биохимических реакциях, особенностях размножения или иных свойствах, по которым можно судить о путях развития группы от общего предка.

Содержимое работы - 1 файл

Документ Microsoft Office Word.docx

При построении филогенетических рядов биологи-эволюционисты, помимо палеонтологических данных, широко используют сравнительный метод, с помощью которого они устанавливают сходство в строении организмов, их биохимических реакциях, особенностях размножения или иных свойствах, по которым можно судить о путях развития группы от общего предка.

Изучая процесс эволюции, ученые выделяют следующие характерные типы эволюционных изменений: параллелизм, конвергенция и дивергенция. Иногда один филогенетический ряд может содержать в себе примеры изменений различного типа.

Параллелизм. Хороший пример параллельных изменений дает эволюция дикобраза. Два разных вида этого колючего млекопитающего эволюционируют независимо друг от друга в Африке и в Южной Америке. Более 70 млн лет назад, когда они обитали вместе, их общий предок был похож на большую, покрытую шерстью крысу. Когда два континента разошлись, популяция разделилась на две части, каждая из которых развивалась независимо от другой. Однако, поскольку условия существования обеих новых популяций были сходны, развитие дикобразов шло параллельными путями. Несмотря на то что они самостоятельно жили более 70 млн лет, и американский и африканский дикобразы очень близки по строению и образу жизни и занимают сходные ниши в сообществах.

Конвергенция. При конвергентной (от лат. convergo — приближаюсь, схожусь) эволюции два или более вида, не связанные близким родством, становятся все более и более похожими друг на друга. Такой тип эволюционных изменений является результатом приспособлений к сходным условиям внешней среды. Крупные водные хищники, показанные на рисунке 81, возникли в четырех совершенно разных группах: среди рыб, пресмыкающихся, птиц и млекопитающих. Их внешнее сходство возникло в процессе эволюционного развития под влиянием образа жизни и факторов внешней среды при совершенно разных исходных положениях организмов. Это сходство скрывает глубокие различия внутреннего строения и обмена веществ, которые свидетельствуют о столь же глубоких различиях эволюционной истории изображенных животных. Пути эволюционных преобразований их внешнего строения можно изобразить в виде сходящихся в общей точке векторов, начальное положение которых было совершенно различным.

Гомология и аналогия. При параллельной и конвергентной эволюции сходство внешнего строения может быть результатом гомологии — происхождения от общего предка (примером являются конечности разных групп позвоночных животных, рис. 82) или аналогии — независимой эволюции тех систем органов, которые выполняют сходные функции. Ясно, например, что крылья у птиц и насекомых имеют разное происхождение — это пример аналогии. Гомологичные структуры уже в эмбриональный период развиваются по одинаковым генетическим программам. Аналогичные структуры, наоборот, выполняют одинаковые функции, однако не имеют общего генетического базиса. Птицы и мухи летают в одной среде, но не имеют общего крылатого предка и путешествуют в эволюционной истории разными маршрутами.

Дивергенция. Одна из наиболее общих схем эволюционного процесса, реконструированная биологами на основе изучения палеонтологических данных, представлена обычно в виде эволюционного древа с расходящимися ветвями. Это образ дивергентной эволюции, или радиации: общий предок дал начало двум или большему количеству форм, которые, в свою очередь, стали родоначальниками многих видов и родов. Дивергенция (от лат. divergo — отклоняюсь) — расходящаяся эволюция — почти всегда отражает расширение адаптации к новым жизненным условиям. Так, класс млекопитающих распался на многочисленные отряды, представители которых различаются по внешнему строению, особенностям экологии, по характеру физиологических и поведенческих адаптации (насекомоядные, рукокрылые, хищные, китообразные и др.).

Главные линии эволюции. Изменения организмов в процессе эволюции могут иметь различный масштаб и характер. Для понимания исторического развития органического мира важно определить главные линии эволюции. Их выделяют три.

1. Ароморфоз (от греч. airomorphosis — поднимаю форму) — наиболее существенные эволюционные изменения. Такие изменения повышают общий уровень организации, вследствие чего жизнедеятельность организмов усиливается. Ароморфозы дают значительные преимущества в борьбе за существование, делают возможным переход в новую среду обитания. К ароморфозам у животных можно отнести появление живорождения, способности к поддержанию постоянной температуры тела, возникновение замкнутой системы кровообращения, а у растений — появление цветка, сосудистой системы, способности к поддержанию и регулированию газообмена в листьях.

2. Идиоадаптация (от греч. idios — своеобразный и лат. adaptatio — приспособление) — это прогрессивные, но мелкие эволюционные изменения, которые повышают приспособленность организмов к условиям среды обитания. Идиоадаптация не сопровождается изменением основных черт организации, общим подъемом ее уровня и повышением интенсивности жизнедеятельности организма. Примеры идио- адаптаций дает защитная окраска животных или приспособления некоторых рыб (камбала, сом) к жизни у дна — уплощение тела, окраска под цвет грунта, развитие усиков и пр. Другой пример — приспособления к полету у некоторых видов млекопитающих (летучие мыши, белки-летяги).

Примеры идиоадаптации у растений — многообразные приспособления к перекрестному опылению цветка насекомыми или ветром, приспособления к рассеиванию семян. Идиоадаптации приводят к возникновению низших таксономических групп (виды, роды, семейства).

3. Дегенерация (от лат. degenero — вырождение) ведет к упрощению организации, утрате ряда систем и органов и часто связана с переходом к паразитическому образу жизни. Упрощение организации паразита затрагивает прежде всего системы, необходимые для жизни в открытой среде, но лишние внутри хозяина — органы ориентации, пищеварения, движения и т. п.

При общем упрощении организации у паразитов возникают специфические приспособления (часто весьма изощренные) к условиям жизни внутри хозяина. У паразитических червей появляются присоски, крючки, получают значительное развитие органы размножения.

Пути эволюции крупных систематических групп (например, типов и классов) очень сложны. Нередко в развитии этих групп происходит смена эволюционных линий.

Ароморфозы случаются гораздо реже по сравнению с идиоадаптациями и знаменуют, как правило, новый этап развития органического мира. За каждым ароморфозом следует множество идиоадаптации, которые обеспечивают более полное использование всех ресурсов среды и освоение новых местообитаний. У животных, например, крупным ароморфозом при переходе на сушу явилось развитие внутреннего оплодотворения, а также ряд приспособлений к развитию зародыша в яйце на суше (вспомните особенности размножения земноводных, пресмыкающихся).

Птицы и млекопитающие заняли господствующее положение среди наземных животных. Постоянная температура тела позволила им выжить в условиях оледенения и проникнуть далеко в холодные страны. Успешному развитию этих групп способствовали и ароморфозы, и идиоадаптации, которые позволили млекопитающим освоить наземную, а птицам — воздушную среду.

Параллелизм. Конвергенция. Дивергенция. Гомология. Аналогия. Ароморфоз. Идиоадаптация. Дегенерация.

Под эволюцией подразумевается процесс длительных, постепенных, медленных изменений, которые в конечном итоге приводят к коренным и качественным изменениям, завершающиеся образованием новых систем, структур и видов. Представления об эволюции в естествознании имеют ключевое значение. В науке существует понятие парадигмы – особого способа организации научного знания, задающего характер вùдения мира, системы предварительных условий, ориентиров и предпосылок в процессе построения и обоснования различных теорий, т.е. системы, которая определяет в целом тенденции развития научных исследований. Парадигма современного естествознания – это эволюционно-синергетическая парадигма, в основе которой лежат представления о самоорганизации и эволюции материи на всех её структурных уровнях.

Эволюционная теория Ч. Дарвина – А.Р. Уоллеса

Представления об эволюции живого высказывались практически на протяжении всего периода развития естествознания. Тем не менее, основоположником эволюционной теории в биологии считается Ч. Дарвин.

Наблюдение 3: Во всех популяциях существует изменчивость

Схема 1. Теория Ч. Дарвина-А.Р. Уоллеса

Современная (синтетическая) теория эволюции

Теория Ч. Дарвина – А.Р. Уоллеса в 20-м веке была значительно расширена и разработана в свете современных данных генетики (которая во времена Ч. Дарвина ещё не существовала), палеонтологии, молекулярной биологии, экологии, этологии (науки о поведении животных) и получила название неодарвинизма или синтетической теории эволюции. Новая, синтетическая теория эволюции представляет собой синтез основных эволюционных идей Ч. Дарвина, прежде всего, его идей о роли естественного отбора, в сочетании с новыми результатами биологических исследований в области наследственности и изменчивости. Современная теория эволюции имеет следующие особенности: – она ясно выделяет элементарную структуру, с которой начинается эволюция – это популяция; – выделяет элементарное явление (процесс) эволюции – устойчивое изменение генотипа популяции; – шире и глубже истолковывает факторы и движущие силы эволюции; – четко разграничивает микроэволюцию и макроэволюцию (впервые эти термины были введены в 1927 г. Ю.А. Филипченко, а дальнейшее их уточнение и развитие получили в трудах выдающегося биолога-генетика Н.В. Тимофеева-Ресовского).

Микроэволюция – это совокупность эволюционных изменений, происходящих в генофондах популяций за сравнительно небольшой период времени и приводящих к образованию новых видов.

Основные законы эволюции

Многочисленные исследования, проведенные в рамках вышеупомянутых наук, позволили сформулировать следующие основные законы эволюции.

1. Скорость эволюции в разные периоды неодинакова и характеризуется тенденцией ускорения. В настоящее время она протекает быстро, и это отмечается появлением новых форм и вымиранием многих старых;

2. Эволюция различных организмов происходит с разной скоростью;

3. Новые виды образуются не из наиболее высокоразвитых и специализированных форм, а из относительно простых, неспециализированных форм;


Схема видообразования. Каждая веточка – популяция. А – уровень исходного единого вида. Б, В – образование двух новых видов

Творцом первой подлинно научной теории эволюции стал великий английский ученый Чарльз Роберт Дарвин (1809-1882). Главным трудом Ч.Дарвина является книга "Происхождение видов путем естественного отбора или сохранение благоприятствуемых пород в борьбе за жизнь" (1859), существенным дополнением к которой служат его книги "Изменение домашних животных и культурных растений" (1869) и "Происхождение человека и половой отбор" (1871).

Эволюционное учение Дарвина состоит из трех разделов, а именно: совокупность доводов в пользу того, что историческое развитие организмов действительно имеет место; положение о движущих силах эволюции; представления о путях эволюционных преобразований. Движущими силами эволюции Ч. Дарвин назвал наследственность, изменчивость и естественный отбор. Он считал, что наследственность и изменчивость позволяют фиксировать изменения и трансформировать их в поколениях.

Изменчивость вызывает разнообразие, а наследственность передает эти изменения потомству. Следовательно, для всех живых существ в результате изменений и скрещиваний характерна наследственная гетерогенность.

Поскольку все организмы очень склонны к интенсивному размножению, то в пределах каждого вида производится потомства больше, чем выживает. Излишнее потомство гибнет в результате борьбы за существование, формы которой очень разнообразны [6. С. 115].

По Ч. Дарвину борьба за существование происходит как между видами, так и внутри видов, причем внутривидовая борьба является более ожесточенной по сравнению с межвидовой, ибо особи обитают в одной местности, нуждаются в одинаковой пище, подвергаются одинаковым опасностям и т.д. В результате борьбы за существование выживают наиболее приспособленные, т.е. те организмы, которые обладают каким-либо признаком, обеспечивающим приспособление.

Следовательно, неизбежным следствием борьбы за существование является естественный отбор. "Сохранение благоприятных индивидуальных различий и изменений и уничтожение вредных я назвал естественным отбором или переживанием наиболее приспособленных (Ч. Дарвин). Ч. Дарвин считал, что естественный отбор является главным механизмом эволюции.

Заслуги Ч. Дарвина перед естествознанием имеют непреходящее значение. Он всесторонне обосновал исторический метод в применении к природе, создал теорию эволюции и изгнал из науки креационизм.

Учение Дарвина касалось эволюции крупных групп организмов, включая все таксоны, в большие отрезки времени, измеряемые геологическими масштабами и на обширных территориях. Следовательно, классический дарвинизм является учением о макроэволюции.

Однако оно оказалось недостаточно разработанным в генетическом плане. Дарвин имел в виду эволюцию особей, но ведь особи живут, как сейчас известно, в популяциях. Поэтому через 8 лет после выхода "Происхождения видов" англичанин Ф. Дженкин поставил такой вопрос: "Если отбор оставляет в живых те особи, которые лишь незначительно отличаются от других, то уже при последующем скрещивании наступает "поглощение" новых признаков, т.к. партнер по скрещиванию, вероятнее всего, не имеет этого нового свойства — произойдет растворение при-J знаков в потомстве".

Дарвин называл этот вопрос кошмаром Дженкина, т.к. никогда не мог дать удовлетворяющий ответ. Дарвинизму длительное время не хватало генетической основы, но генетика очень быстро сама подошла к эволюции. Используя методологию классического генетического анализа, генетики стали анализировать роль отдельных факторов эволюции путем вычленения элементарных единиц и протекающих в них процессов [6. С. 118].

Первый шаг на пути объединения дарвинизма и генетики заключался в законе Дж. Харди-В.Вайнберга, которые в 1908 г. показали, что в популяции при свободном скрещивании, отсутствии мутаций данного гена и отсутствии отбора по данному признаку соотношение генотипов АА, Аа и аа остается постоянным. Это позволило им сформулировать закон, содержание которого сводится к тому, что частоты генов в бесконечно большой панмиксической популяции без давления каких-либо внешних факторов стабилизируются уже после одной смены поколений. Однако таких популяций, как известно, в природе не существует. Поэтому значение закона заключается в том, что накопленные наследственные изменения в генофонде популяций бесследно не исчезают, т.е. частоты генов постоянны.

Исходя из закона Харди-Вайнберга и учитывая влияние отбора и возникновение новых мутаций, в 1926 г. С.С. Четвериков (1880-1959) показал, что в результате спонтанного мутационного процесса во всех популяциях создается генетическая гетерогенность. Другими словами, в популяциях всегда есть мутации, в большинстве случаев в малых количествах. Он показал также, что популяция насыщена мутациями, как губка, и что мутации служат основой (материалом) эволюционного процесса, идущего под действием естественного отбора.

Позднее Н.П. Дубинин и Д.Н. Ромашов (1932) показали, что когда популяции малы, в них происходят явления, получившие название генетико-автоматических процессов (по Н.П. Дубинину, 1931) или дрейфа генов (по С.Райту, 1932). В результате генетико-автоматических процессов изменяются частоты встречаемости генов, устраняются гетерозиготы и появляются гомозиготы. Изолированная популяция становится доминантной гомозиготной или рецессивной гомозиготной. Если дрейфует мутантный летальный ген, это ведет к вымиранию организмов [6. С. 122].

Таким образом, структура популяции зависит не только от появления новых мутаций, но и от простого изменения частоты встречаемости данного гена. Эти и другие генетические исследования связали эволюционную теорию с генетикой.

Современная концепция возникновения жизни на Земле является результатом широкого синтеза естественных наук, многих теорий и гипотез, выдвинутых исследователями различных специальностей.

Огромный интерес представляет решение проблем:

- Почему все белковые соединения в составе живого вещества имеют левую симметрию?

- Однократно или многократно возникала жизнь на Земле, было ли ее возникновение глобальным или локальным явлением?

- Почему жизнь на Земле не возникает из неживого в настоящее время?

- Почему у всех живых существ на Земле белки строятся только из 20 аминокислот из более чем 100 известных науке?

- Может ли возникнуть жизнь в других условиях, на принципиально иной химической основе?

Таким образом Эволюция живых организмов от простейших форм к разумным существам занимает, по-видимому, несколько миллиардов лет - на Земле 3,5 миллиарда лет. Движущей силой эволюции являются мутации и естественный отбор - процессы, носящие статистический характер и обусловленные плавными медленными изменениями условий существования организмов (составом, плотностью и температурой атмосферы и гидросферы, климатом, рельефом, магнитным полем планеты, спектральным составом и уровнем освещенности поверхности и т. д.), причинами которых являются незначительные изменения в действии космических факторов в сочетании с мелкими, периодическими и беспорядочными колебаниями ряда основных характеристик внешней среды, в основе которых, как правило, также лежит действие космических процессов и объектов [1. С. 155].

Перечисленные законы являются эмпирическими и предложенными в период развития экологии, когда она была большей частью наблюдательной наукой.

Содержание

Закон необратимости эволюционных процессов

Закон необратимости эволюционных процессов (Луи Долло) — эволюционные процессы необратимы. Организм не может вернуться хотя бы частично к предшествующему состоянию.

Закон ускорения темпов эволюции

Закон ускорения темпов эволюции — в течение геологического времени происходит ускорение биологической эволюции. Наблюдается закономерное сокращение протяжённости геологических эр (так, палеозойская эра длилась 340 млн лет, мезозойская эра — 170 млн лет, кайнозойская эра — 60 млн лет), что отражает ускорение темпов эволюции. Между началом и концом каждой эры наступали кардинальные изменения в составе фауны и флоры.

Закон неравномерности эволюционного развития

Закон увеличения разнообразия организмов

Закон увеличения разнообразия организмов — в ходе эволюции биосферы количество видов организмов возрастало по экспоненте и достигло современного значения, которое оценивается разными специалистами от 5 до 10 млн видов.

Закон скачкообразного характера эволюции

Закон скачкообразного характера эволюции — на фоне общей тенденции ускорения эволюции наблюдались отдельные эпохи повышенного видообразования. Промежутки между этими эпохами характеризовались затуханием видообразования и вымиранием организмов.

Закон цефализации

Закон цефализации — в ходе геологического времени происходит необратимое развития головного мозга. Цефализация особенно ярко наблюдается в ряду позвоночных животных — от рыб до человека.

Биохимические законы

Второй биохимический закон — эволюция видов, приводящая к созданию форм жизни, устойчивых в биосфере, должна идти в направлении, увеличивающем проявление биогенной миграции атомов в биосфере. Согласно этому закону, в биосфере право на жизнь получают только виды, необходимые самой биосфере для выполнения определённых функций и усиления тем самым биогенной миграции химических элементов.

По законам Вернадского, биосфера на определённой стадии своего развития преобразуется в сферу разума — ноосферу.

Примечания

  1. Вернадский В.И.Несколько слов о ноосфере//Успехи современной биологии. — 1944 г., № 18, стр. 113-120.

См. также

Ссылки

Источники информации

  1. Камишлов М. М. Эволюция биосферы. — М.:Наука, 1979
  2. Справочник школьника: 5-11 классы. — СПб.: Сова; М.:ЭКСМО-Пресс, 2001.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Законы эволюции" в других словарях:

Основные законы эволюции живого вещества в биосфере — Перечисленные законы являются эмпирическими и предложенными в период развития экологии, когда она была большей частью наблюдательной наукой. Содержание 1 Закон необратимости эволюционных процессов … Википедия

Законы истории — книга российского историка, социолога и экономиста Андрея Витальевича Коротаева, написанная им совместно с А.С.Малковым, Д.А.Халтуриной и Н.Л.Комаровой. Первое издание [1] опубликовано издательством КомКнига/URSS в Москве в 2005 г. Второе издание … Википедия

ЗАКОНЫ И ЗАКОНОМЕРНОСТИ РАЗВИТИЯ ТЕХНИКИ — – законы и закономерности, которые в зависимости от исторического времени смены моделей и поколений технических систем отражают и определяют для отдельных сходных технических систем объективно существующие, устойчивые, повторяющиеся связи и… … Философия науки и техники: тематический словарь

Законы развития языка — Законы развития языка понятие, нередко встречающееся в лингвистической литературе, однако не определённое достаточно чётко. Одна из причин отсутствие в языкознании достаточного разграничения понятий развитие и изменение. Часто изменение каких… … Лингвистический энциклопедический словарь

Фонетические законы — (звуковые законы) законы функционирования и развития звуковой материи языка, управляющие как устойчивым сохранением, так и регулярным изменением его звуковых единиц, их чередований и сочетаний. Законы функционирования звуковой материи языка… … Лингвистический энциклопедический словарь

Эволюционные законы — Такое название можно дать законам (в научном смысле слова), по которым происходит развитие какого либо существа или явления в отличие от законов каузальных, т. е. относящихся к связи причины с его следствием. Закономерность всего происходящего в… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

фонетические законы — (звуковые законы), законы функционирования и развития звуковой материи языка, управляющие как устойчивым сохранением, так и регулярным изменением звуковых единиц, их чередованием и сочетанием. Фонетические законы формируют исторически… … Энциклопедический словарь

Читайте также: