Основные представления о функции пирамидной системы реферат

Обновлено: 06.07.2024

Характеристика и функции, основные компоненты пирамидной системы: двигательные области коры больших полушарий, пирамидные пути. Симптомы центрального и периферического паралича. Базальные ганглии. Ретикулярная формация, ее зоны и ядра, основные функции.

Рубрика Медицина
Вид презентация
Язык русский
Дата добавления 08.01.2014
Размер файла 3,5 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

Общий план внешнего строения больших полушарий мозга. Основные тенденции в ходе эволюции мозга. Соотношение разных отделов коры больших полушарий. Классификация связей коры. Разновидности по филогенетическому возрасту. Послойная организация неокортекса.

презентация [4,8 M], добавлен 12.01.2014

Неспецифические интраламинарные ядра таламуса. Афферентные пути к базальным ганглиям. Отношение между полосатым телом и черным веществом. Функции бледного шара. Роль базальных ганглиев в регуляции двигательной активности. Экстрапирамидная система.

презентация [9,6 M], добавлен 26.01.2014

Ретикулярная формация ствола головного мозга, ее важнейшие функции и задачи. Нисходящее и восходящее влияние ретикулярной формации. Лимбическая система, область ее расположения, особенности строения и значение для нормальной жизнедеятельности организма.

презентация [2,5 M], добавлен 21.10.2017

Особенности строения ствола головного мозга, физиологическая роль ретикулярной формации мозга. Функции мозжечка и его влияние на состояние рецепторного аппарата. Строение вегетативной нервной системы человека. Методы изучения коры головного мозга.

реферат [1,7 M], добавлен 23.06.2010

Онтогенез нервной системы. Особенности головного и спинного мозга у новорожденного. Строение и функции продолговатого мозга. Ретикулярная формация. Строение и функции мозжечка, ножек мозга, четверохолмия. Функции больших полушарий головного мозга.

шпаргалка [72,7 K], добавлен 16.03.2010

Общая информация о коре больших полушарий, их строение. Строение области новой коры. Ассоциативные зоны и локализация полей. Филогенез и онтогенез коры, ее формирование в ходе внутриутробного развития ребенка. Первичные, вторичные и третичные поля коры.

реферат [586,2 K], добавлен 20.03.2011

Классификация видов коры в соответствии с филогенезом, ее функциональная организация. Слои коры больших полушарий. Функции лобных, теменных, височных, затылочных долей. Сенсорные входы в моторную кору. Связи моторной коры с глубокими структурами мозга.

Движение — одно из основных проявлений жизнедеятельности. Все
важнейшие функции организма (дыхание, кровообращение, глотание,
мочеиспускание, дефекация, перемещение тела в пространстве) реализуются в конечном счете движением, т. е. сокращением мышц. С его помощью мы осуществляем, как простые движения так и сложные, движения требующие минимум затрат силы, так и больших усилий от нас.

Прикрепленные файлы: 1 файл

1 анатомия.docx

Министерство здравоохранения Российской Федерации

Государственное бюджетное образовательное учреждение

высшего профессионального образования

ПЕРВЫЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ

УНИВЕРСИТЕТ имени И.М.СЕЧЕНОВА

Факультет высшего сестринского образования и психолого- педагогической работы

Кафедра анатомии человека


Реферативная работа по теме:

“ Пирамидная и экстрапирамидная системы, их проводящие пути ”


Студент(-ка) 06-06 группы

Москва 2013 год

Движение — одно из основных проявлений жизнедеятельности. Все
важнейшие функции организма (дыхание, кровообращение, глотание,
мочеиспускание, дефекация, перемещение тела в пространстве) реализуются в конечном счете движением, т. е. сокращением мышц. С его помощью мы осуществляем, как простые движения так и сложные, движения требующие минимум затрат силы, так и больших усилий от нас.

Все разнообразие движений осуществляет нервная система, в частности ее отделы ответственные за данную функцию, такие как - пирамидная система, экстрапирамидная и мозжечок с его связями с корой больших полушарий и спинным мозгом.

В условиях интенсивных изменений, происходящих в современном обществе, быстрого роста населения и ускорения темпа жизни более значимым в жизни человека становится движение.

являются особенности нарушений просодической стороны речи пациентов с дизартрией вследствие очаговых поражений головного мозга.

выступает процесс коррекционного воздействия направленный на восстановление просодической стороны речи у пациентов с дизартрией вследствие очаговых поражений головного мозга.

Глава 1. Пирамидная система

1.1 Строение пирамидной системе

Пирамидная система — (tractus pyramidales) система нервных структур. Поддерживает сложную и тонкую координацию движений одно из поздних приобретений эволюции. Низшие позвоночные пирамидальной системы не имеют, она появляется только у млекопитающих, и достигает наибольшего развития у обезьян и особенно у человека.

Пирамидная система — красный цвет.

Поперечный разрез спинного мозга. Пирамидная система — красный цвет.

Пирамидная система играет особую роль в прямохождении. Кора полушарий головного мозга в V слое содержит клетки Беца (или гигантские пирамидные клетки).В 1874 году ученый Владимир Алексеевич Бец обнаружил и описал гигантские пирамидальные клетки коры головного мозга (клетки Беца).

Проекционные (двигательные) зоны коры головного мозга.

Типы нервных волокон. Пирамидная система человека содержит около 1 млн нервных волокон. Различают следующие типы волокон:

Тип нервных волокон

обеспечивают быстрые фазные движения

отвечают за тоническое состояние мышц

Наибольшее количество пирамидных клеток (клеток Беца) иннервирует мелкие мышцы, отвечающие за тонкие дифференцированные движения кисти, мимику и речевой акт. Значительно меньшее их количество иннервирует мышцы туловища и нижних конечностей.

Различают два основных вида движений: непроизвольные и произвольные .

К непроизвольным относятся простые автоматические движения, осуществляемые за счет сегментарного аппарата спинного мозга и мозгового ствола по типу простого рефлекторного акта. Произвольные целенаправленные движения – акты двигательного поведения человека. Специальные произвольные движения (поведенческие, трудовые и др.) осуществляются при ведущем участии коры большого мозга, а также экстрапирамидной системы и сегментарного аппарата спинного мозга. У человека и высших животных осуществление произвольных движений связано с пирамидной системой. При этом проведение импульса из коры большого мозга к мышце происходит по цепи, состоящей из двух нейронов: центрального и периферического.

Периферический мотонейрон. Целостный двигательный акт является сложным рефлексом, формирующимся при участии многих систем, имеющих свои афферентные каналы, а также эфферентные средства доставки импульсов к исполнительному аппарату, непосредственно связанному с работающей мышцей, — к периферическому двигательному нейрону переднего рога спинного мозга и двигательных ядер черепных нервов.

Передний рог спинного мозга.


А. Распределение мотонейронов в передних рогах спинного мозга на уровне шейного и поясничного утолщений.
Б. Соматическая проекция в переднем роге спинного мозга в шейном (а) н поясничном Сб) утолщениях.

Двигательные клетки переднего рога располагаются группами, ответственными за сокращение мышц туловища или конечностей.
В каждой из групп клеток в переднем роге спинного мозга и в каждом двигательном ядре черепных нервов имеются три типа нейронов, выполняющих различную функцию.

Рис.29. Нервно-мышечное веретено.


1 — рецепторы кожи; 2 — задний корешок; 3 — тонкий пучок; 4 — передний корешок; 5 — волокно альфа - мотонейрона; 6 — концевые моторные пластинки альфа-мотонейрона; 7 — нервно-мышечное веретено; 8 — концевые моторные пластинки гамма-мотонейрона; 9 — экстрафузальные мышечные волокна; 10 - интрафузальные мышечные волокна; 11 — капсула веретена; 12, 1а и 11 — афференты нервно-мышечного веретена; 13 — интернейроны спинного мозга; 14 — альфа-мотонейрон; 15 — гамма-мотонейрон.

1— добавочное ядро глазодвигательного нерва; 2 — центральное хвостовое ядро глазодвигательного нерва; 3 — верхнее слюноотделительное ядро; 4 — нижнее слюноотделительное ядро; 5 — заднее ядро блуждающего нерва; 6 — ресничный узел; 7 — крылонебный узел; 8 — ушной узел; 9 — поднижнечелюстной узел; 10 — интрамуральные узлы внутренних органов; 11 — верхний шейный узел; 12 — шейно-грудной (звездчатый) узел; 13 — солнечное чревное сплетение; 14 — нижний брыжеечный узел.

Каждая клетка Беца отдает отросток, который в составе пирамидного пути доходит до соответствующего иннервируемого им сегмента спинного мозга, заканчиваясь синапсом с альфа-большим нейроном переднего рога спинного мозга или двигательных ядер черепных нервов.

Из нижней трети передней центральной извилины волокна, участвующие в иннервации мышц лица, глотки и гортани, языка, заканчиваются у мотонейронов двигательных ядер черепных нервов и поэтому объединяются под названием корково-ядерного пути. Волокна из верхних и передней центральной извилины, участвующие в иннервации мышц туловища и конечностей, заканчиваются на мотонейронах передних рогов спинного мозга и объединяются под названием корково-спинномозгового пути. В связи с тем что сегментарной зоной верхних конечностей является шейное утолщение, а сегментарной зоной нижних конечностей — поясничное, волокна от средней трети передней центральной извилины заканчиваются преимущественно в шейном утолщении, а от верхней трети — в поясничном.


В колене проходят волокна, иннервирующие мышцы лица, глотки, гортани (корково-ядерный путь), в передней трети заднего бедра — мышцы рук, в средней трети — мышцы туловища и ног (корково-спинномозговой путь). Продолжая оставаться компактным, центральный двигательный путь переходит в ствол мозга.

В среднем мозге его волокна проходят в основании ножек мозга, причем кнаружи располагаются волокна к мышцам ног, медиальнее — к мышцам рук и лица. В мосту центральный двигательный путь расчленяется, проходя узкими пучками между собственными ядрами моста и отдавая им коллатерали, а затем пирамидный путь вновь концентрируется в продолговатом мозге, образуя в его основании пирамиды. В стволе мозга корково-ядерный путь отдает волокна к двигательным ядрам черепных нервов ножек мозга, моста и продолговатого мозга, поэтому в пирамидах проходят волокна только корково-спинномозгового или пирамидного пути.
На границе продолговатого и спинного мозга большая часть волокон пирамидного пути образует перекрест (decussatio pyramidum) и идет в боковых канатиках спинного мозга. Меньшая, неперекрещенная часть волокон (пучок Тюрка) идет в передних канатиках спинного мозга. Перекрест осуществляется таким образом, что наружно расположенные в продолговатом мозге волокна, иннервирующие мышцы ног, после перекреста становятся медиальными, и, наоборот, волокна к мышцам рук, расположенные до перекреста медиально, становятся латеральными после перехода на другую сторону.

Рис. 30. Корково-спинномозговой и корково-ядерный путь.


I — Фронтальный срез головного мозга на уровне внутренней капсулы; II — средний мозг; III — мост; IV — продолговатый мозг; V — шейное утолщение спинного мозга; VI — поясничное утолщение спинного мозга
1 — корково-спинномозговой (пирамидный) путь; 2 — корково-ядерный путь; 3 — ядро глазодвигательного нерва; 4 — ядро отводящего нерва; 5 — двигательное ядро тройничного нерва; 6 — ядро лицевого нерва; 7 — ядро подъязычного нерва; 8 — двойное ядро; 9 — ядро добавочного нерва; 10 — мотонейроны переднего рога спинного мозга.

Таким образом, односторонний патологический процесс в области перекреста пирамиды может одновременно разрушить волокна к мышцам рук уже после их перекреста и волокна к мышцам ног до их перекреста.


В спинном мозге пирамидный путь (перекрещенный и неперекрещенный) отдает посегментарно волокна к альфа-большим нейронам переднего рога, осуществляющим непосредственную связь с работающей мышцей. Весь двигательный кортико-мускулярный путь двухнейронен: центральный нейрон — клетка Беца с длинным аксоном, образующим пирамидный корково-спинномозговой путь (а также корково-ядерный путь, заканчивающийся на альфа-больших нейронах двигательных ядер ствола мозга), и периферический нейрон — двигательная клетка переднего рога спинного мозга. Аксон периферического мотонейрона выходит из спинного мозга в составе переднего корешка, переходит в сплетения и периферические нервы, передавая нервный импульс мышечному волокну.

Поражение периферического мотонейрона в переднем роге, переднем корешке, сплетении или периферическом нерве приводит к полному прекращению притока нервных импульсов к мышце, поступающих из коры по пирамидному пути, а также по рефлекторной сегментарной дуге от проприоцепторов. В этом случае мышца бездействует: отсутствуют и произвольные, и простейшие рефлекторные движения, так как поражена эфферентная часть сегментарной рефлекторной дуги.

Полное отсутствие произвольных движений, обусловленное поражением кортико-мускулярного пути, называется параличом или плегией, ограничение объема движений и снижение силы — парезом.

Информация носит справочный характер. Не занимайтесь самодиагностикой и самолечением. Обращайтесь ко врачу.

Пирамидная система

Пирамидная система – это часть центральной нервной системы, состоящая из мотонейронов.

Их тела локализуются в кортексе конечного мозга, а заканчиваются в передних рогах спинного мозга и в ядрах двигательного характера черепно мозговых нервов.

Пирамидальный путь выполняет важные функции в организме.

Функции пирамидной системы

Осуществление и доставка импульсных волн от прецентральной извилины к скелетной мускулатуре – самые важные функции пирамидальной системы. Эти импульсы осознанны и подчиняются нашей воле. Благодаря этим функциям мы можем выполнять те или иные движения. Также с помощью пирамидальной системы дыхание подстраивается и человек может произносить слова.

Строение

Пирамидная система состоит из пирамидального пути, образованного кортико-нуклеарными и кортико-спинальными волокнами. Они представляют собой аксоны нейронов внутреннего коркового слоя конечного мозга. Они локализованы в предцентральном гребне (извилине) и в коре теменной и лобной долей. Первичное моторное поле расположено в предцентральном гребне вместе с пирамидными мотонейронами, которые способны управлять скелетной мускулатурой в целом (группы) или одиночно (1 мышца). Нервные клетки, осуществляющие возбуждение языковых, глоточных мышц и мышц головы, локализуются в нижних частях гребня. Выше, в среднем участке, располагается мышечный аппарат верхних конечностей и туловища. Самый верхний участок обеспечивает нервными волокнами мышечные группы нижних конечностей.

Начало пирамидального пути (Кора)

Пирамидная система это основа реализации произвольных движений, начинающаяся в 5 слое кортекса полушарий, в моторных клетках Беца.

Пирамидальный тракт образован миелиновыми волокнами, переходящими через белое вещество полушария мозга и направляющимися к внутренней капсуле. Колено капсулы образовано кортико-нуклеарными волокнами, а задняя ножка внутренней капсулы частично сформирована кортико-спинальными волокнами.

Пирамидный путь

Томография пирамидной системы

Волокна пирамидального тракта вначале идут в базисную часть мозга, а затем в мостовую область. Сначала проходят через переднюю часть. Затем, проходя через мозговой ствол, кортико-нуклеарные волокна совершают перекрещивание (переход на противоположную сторону) к эфферентным ядрам глазодвигательного (III пара), блокового (IV), тройничного (V), отводящего (VI), языкоглоточного (IX), блуждающего (X), добавочного (XI) и подъязычного (XII) нервов. Исключение составляет лицевой нерв (VII пара). Нервные волокна совершают переход на противоположную сторону на уровне ядра, в верхней трети. Частично волокна пирамидального пути из ствола мозга направляются в мозжечок.

Переход в спинной мозг

В области продолговатого мозга пирамидальный путь проходит через пирамидные клетки. В месте перехода пирамид в спинной мозг происходит перекрещивание нервных пучков. Этот перекрест разделяет волокна на 2 неравные части.

Разделение пути на кортико-нуклеарный и кортико-спинальный пирамидные пути

80% нервных волокон уходит на противоположную сторону, формируя в боковом канатике спинного мозга пирамидный латеральный кортико-спинальный тракт. Волокна, которые не перекрещиваются, в передний канатик спинного мозга, формируя в нем, передний кортико-спинальный тракт. В области белой спайки, волокна перекрещиваются. Многие нервные волокна пирамидального пути оканчиваются на вставочных нейронах передних рогов. Они дают начало развития эфферентным составляющим спинномозговых нервов.

Локализация (область сегментов) Число, оканчивающихся нервных волокон (шейные 50, %грудные 25%, поясничные 25%)

На уровне 3-5 грудных сегментов передний кортико-спинальный тракт заканчивается. За счет перекрещивания нервных пучков в пирамидальной системе левое полушарие головного мозга отвечает за иннервацию правой половины тела человека, а правое полушарие – за иннервацию левой половины тела человека.

Кортико-ядерный путь связан практически со всеми ядрами ЧМН. Исключением являются чисто чувствительные нервы обонятельный, зрительный и преддверно-улитковый нервы. Разделенные пучки волокон также проходят через внутреннюю капсулу в белом веществе. Дойдя до ЧМН импульс направляется с помощью отдельных пучков к скелетным мышцам. Кортико-нуклеарный тракт обеспечивает контроль за мимикой и глотательными мышцами, а кортико-спинальный – движения тела и ног.

Пирамидная система неразрывно связана с экстрапирамидной. Отличаются они друг от друга составом, выполняемыми функциями.

Главными отличиями экстрапирамидной системы являются:

  • в состав входят базальные ядра, черная субстанция, красное ядро и другие структуры.
  • выполнение сложных неосознанных двигательных актов: пережевывание пищи, занятия спортом (бег);
  • обеспечение мимических выражений лица;
  • артикуляция речи;
  • обеспечение мышечного тонуса и его перенаправление во время движений (позирование и смена поз).

Патологии, спровоцированные поражением пирамидного пути

В зависимости от расположения патологического процесса выявляют разные клинические состояния, вызванные нарушение работы пирамидального пути.

Пирамидальная недостаточность – нарушение проведения и передачи нервных сигналов на уровне продолговатого мозга в области, где расположены пирамиды.

Наиболее часто страдают дети в возрасте до 12 месяцев и взрослые, которые имеют патологии сердца и новообразования злокачественного характера.

Причинами развития у взрослых могут быть: иммуно-воспалительные процессы, гемодинамические нарушения в сосудах головного мозга, закрытые и открытые травмы черепа, переизбыток ликвора, провоцирующий развитие гидроцефалии и др.

Причинами поражения пирамидного пути в детском возрасте являются:

  • Аномалии развития головного и спинного мозга;
  • Родовые травмы у новорожденных;
  • Наследственные (врожденные) патологии центральной нервной системы; (при снижении атмосферного давления)
  • Черепно-мозговые травмы;
  • Инфекционно-воспалительные процессы (менингит, энцефалит);
  • Дефицит микро- и макроэлементов;
  • Травмы шейного отдела позвоночника.

К наследственным патологиям, вызванных мутацией генов, относят некоторые синдромы:

  1. с. Кобба (проявляется ослаблением движений рук и ног).
  2. с. Бонне- Дешанта-Блана (проявляется нарушением зрения, в виде выпячивания глаз, двоения предметов и ассиметрии глазных щелей).
  3. с.Штрумпеля (возникает ослабление тонуса нижних конечностей, судорожный синдром).

Клиническая картина у детей до 2 месяцев ничего не беспокоит. Причиной этого является врожденный высокий тонус мышечной ткани.

Дети старше 2 месяцев: беспокойны, постоянно плачут, не могут удерживать предметы, снижены умственные способности, не разговаривают (начиная с 3 месяцев, дети должны издавать звуки (агу и тп), в случае пирамидальной недостаточности они только мычат). К 6-8 месяцам дети должны ползать и приподниматься на ножки, но при данной патологии это не возможно. Они не способны правильно использовать пальчики (нарушен хватательный рефлекс). Во время сна можно заметить, как у детей дергаются руки, ноги и подбородок.

У детей старше года изменяется походка, они ходят на носочках, подгибают ножки, в результате развивается косолапость.

У взрослых пирамидальная недостаточность проявляется в виде повышения тонуса скелетной мускулатуры, стойкого повышения артериального давления. Иногда возникает судорожный и спастические синдромы. Из-за ограничения физической активности, т.к при гипертонусе выполнение каких-либо физических упражнений вызывает боль, появляется избыточная масса тела. При запущенности процесса может происходить снижение либидо.

Диагностика

Диагностика пирамидальной недостаточности основана на консультации невропатолога.

В детском возрасте врач выявляет отставании в развитии от своих сверстников, нарушение координации и ориентации в пространстве, повышенный тонус мышц голени, появление патологических рефлексов и др. Для подтверждения диагноза могут провести спинномозговую пункцию.

У взрослых диагностика таких состояний заключается в исследовании всех рефлексов (поверхностных и глубоких), измерении динамометром мышечной силы, измерении биопотенциалов и электропроводимости в мышцах.

К инструментальным методам исследования относят компьютерную томографию, магнитно-резонансную томографию, ультразвуковое исследование сосудов головного мозга. С их помощью можно точно определить уровень локализации патологического очага для подтверждения диагноза. После этого пациентам будет оказан должный уровень медикаментозной и/или хирургической терапии.

В детском возрасте необходимо пройти курсы физиотерапии. Детский массаж способствует снижению мышечного тонуса, препятствует развитию сколиоза за счет укрепления мышечного аппарата позвоночника.

Лечебная гимнастика, водные процедуры, закаливание – также помогают в борьбе с гипертонусом.

К физиотерапевтическим мероприятиям относят также электрофорез, мануальную терапию, грязевые ванны и другое.
Медикаментозное лечение базируется на применение препаратов, ускоряющих метаболические процессы в нейронах, улучшающих проведение импульсных сигналов и препаратов, стабилизующих тонус мышц.

К препаратам, осуществляющих полноценный метаболизм, относят актовегин, пирацетам, гамма-амино-масляная кислота.

Для стабильного прохождения импульсной волны необходим прозерин или дибазол.
Для снижения мышечного тонуса и укрепления мышечного аппарата используют витамины B группы, антиоксиданты – витамин Е, мидокалм, баклофен.

При прогрессировании пирамидальной недостаточности проводят хирургическое лечение.

Заключение

Кортико-ядерный тракт обеспечивает связь с моторными ядрами ЧМН, участвуя в иннервации органов грудной и брюшной полостей. А корково-спинальные пути осуществляют произвольные движения мышц тела, рук и ног. Блокирование проведения импульсов на уровне корково-нуклеарного пути приведет к дисфункциональным нарушениям структур, иннервируемых эфферентными ядрами черепно-мозговых нервов. Блок нервных импульсов на уровне корково-спинальных путей нарушит выполнение движений туловища и конечностей.

Пирамидная система — система эфферентных нейронов, тела которых располагаются в коре большого мозга, оканчиваются в двигательных ядрах черепных нервов и сером веществе спинного мозга. В составе пирамидного пути выделяют корково-ядерные волокна и корково-спинномозговые волокна. И те, и другие являются аксонами нервных клеток внутреннего, пирамидного, слоя коры большого мозга. Они располагаются в предцентральной извилине и прилегающих к ней полях лобной и теменной долей. В предцентральной извилине локализуется первичное двигательное поле, где располагаются пирамидные нейроны, управляющие отдельными мышцами и группами мышц.

Вложенные файлы: 1 файл

Пирамидная система,экстрапирамидная, лимбическая системы.docx

Пирамидная система — система эфферентных нейронов, тела которых располагаются в коре большого мозга, оканчиваются в двигательных ядрах черепных нервов и сером веществе спинного мозга. В составе пирамидного пути выделяют корково-ядерные волокна и корково-спинномозговые волокна. И те, и другие являются аксонами нервных клеток внутреннего, пирамидного, слоя коры большого мозга. Они располагаются в предцентральной извилине и прилегающих к ней полях лобной и теменной долей. В предцентральной извилине локализуется первичное двигательное поле, где располагаются пирамидные нейроны, управляющие отдельными мышцами и группами мышц. В этой извилине существует соматотопическое представительство мускулатуры. Нейроны, управляющие мышцами глотки, языка и головы, занимают нижнюю часть извилины; выше располагаются участки, связанные с мышцами верхней конечности и туловища; проекция мускулатуры нижней конечности находится в верхней части предцентральной извилины и переходит на медиальную поверхность полушария.
Пирамидный путь образуют преимущественно тонкие нервные волокна, которые проходят в белом веществе полушария и конвергируют к внутренней капсуле. Корково-ядерные волокна формируют колено, а корково-спинномозговые волокна — передние 2/3 задней ножки внутренней капсулы. Отсюда пирамидный путь продолжается в основание ножки мозга и далее в переднюю часть моста. На протяжении ствола мозга корково-ядерные волокна переходят на противоположную сторону к дорсолатеральным участкам ретикулярной формации, где они переключаются на двигательные ядра III, IV, V, VI, VII, IX, X, XI, XII черепных нервов; только к верхней трети ядра лицевого нерва идут неперекрещенные волокна. Часть волокон пирамидного пути проходит из ствола головного мозга в мозжечок.
В продолговатом мозге пирамидный путь располагается в пирамидах, которые на границе со спинным мозгом образуют перекрест. Выше перекреста пирамидный путь содержит от 700 000 до 1 300 000 нервных волокон с одной стороны. В результате перекреста 80% волокон переходит на противоположную сторону и образует в боковом канатике спинного мозга латеральный корково-спинномозговой (пирамидный) путь. Неперекрещенные волокна из продолговатого мозга продолжаются в передний канатик спинного мозга в виде переднего корково-спинномозгового (пирамидного) пути. Волокна этого пути переходят на противоположную сторону на протяжении спинного мозга в его белой спайке (посегментно). Большинство корково-спинномозговых волокон оканчивается в промежуточном сером веществе спинного мозга на его вставочных нейронах, лишь часть их образует синапсы непосредственно с двигательными нейронами передних рогов, которые дают начало двигательным волокнам спинномозговых нервов. В шейных сегментах спинного мозга оканчивается около 55% корково-спинномозговых волокон, в грудных сегментах 20% и в поясничных сегментах 25%. Передний корково-спинномозговой путь продолжается только до средних грудных сегментов. Благодаря перекресту волокон в пирамидной системы левое полушарие головного мозга управляет движениями правой половины тела, а правое полушарие — движениями левой половины тела, однако мышцы туловища и верхней трети лица получают волокна пирамидного пути из обоих полушарий. Функция пирамидной системы состоит в восприятии программы произвольного движения и проведении импульсов этой программы до сегментарного аппарата ствола головного и спинного мозга.

Экстрапирамидная система — совокупность структур (образований) головного мозга, участвующих в управлении движениями, поддержании мышечного тонуса и позы, минуя кортикоспинальную (пирамидную) систему. Структура расположена в больших полушариях и стволе головного мозга. Экстрапирамидные проводящие пути образованы нисходящими проекционными нервными волокнами, по происхождению неотносящимися к гигантским пирамидным клеткам (клеткам Беца) коры больших полушарий мозга. Эти нервные волокна обеспечивают связи мотонейронов подкорковых структур (мозжечок, базальные ядра, ствол мозга) головного мозга со всеми отделами нервной системы, расположенными дистальнее.

Экстрапирамидная система состоит из следующих структур головного мозга: базальные ганглии, красное ядро, интерстициальное ядро, тектум, чёрная субстанция (см. Средний мозг), ретикулярная формация моста и продолговатого мозга, ядра вестибулярного комплекса, мозжечок [ , премоторная область коры [2] , полосатое тело

Экстрапирамидная система — эволюционно более древняя система моторного контроля [1] по сравнению с пирамидной системой. Имеет особое значение в построении и контроле движений, не требующих активации внимания. [2] Является функционально более простым регулятором по сравнению с регуляторами пирамидной системы. [3]

Экстрапирамидная система осуществляет непроизвольную регуляции и координацию движений, регуляцию мышечного тонуса, поддержание позы, организацию двигательных проявлений эмоций (смех, плач) [1] . Обеспечивает плавность движений, устанавливает исходную позу для их выполнения. [4]

При поражении экстрапирамидной системы нарушаются двигательные функции (например, могут возникнуть гиперкинезы, паркинсонизм), снижается мышечный тонус. [1]

Экстрапирамидная система (systema extrapyramidale) объединяет двигательные центры коры головного мозга, его ядра и проводящие пути, которые не проходят через пирамиды продолговатого мозга; осуществляет регуляцию непроизвольных компонентов моторики (мышечного тонуса, координации движений, позы).

От пирамидной системы экстрапирамидная система отличается локализацией ядер в подкорковой области полушарий и стволе головного мозга и многозвенностью проводящих путей. Первичными центрами системы являются хвостатое и чечевицеобразное ядра полосатого тела, субталамическое ядро, красное ядро и черное вещество среднего мозга. Кроме того, в экстрапирамидная система входят в качестве интеграционных центры коры большого мозга, ядра таламуса, мозжечок, преддверные и оливные ядра, ретикулярная формация. Частью экстрапирамидной системы является стриопаллидарная система, которая объединяет ядра полосатого тела и их афферентные и эфферентные пути. В стриопаллидарной системе выделяют филогенетически новую часть — стриатум, к которой относятся хвостатое ядро и скорлупа чечевицеобразного ядра, и филогенетически старую часть — паллидум (бледный шар). Стриатум и паллидум различаются по своей нейроархитектонике, связям и функциям. Стриатум получает волокна из коры большого мозга, центрального ядра таламуса и черного вещества. Эфферентные волокна из стриатума направляются в паллидум, а также в черное вещество. Из паллидума волокна идут в таламус, гипоталамус, к субталамическому ядру и в ствол головного мозга. Последние образуют чечевицеобразную петлю и частично оканчиваются в ретикулярной формации, частично идут к красному ядру преддверным и оливным ядрам. Следующее звени экстрапирамидных путей составляют ретикулярно-спинномозговой, красноядерно-спинномозговой, преддверно-спинномозговой и оливоспинномозговой пути, оканчивающиеся в передних столбах и промежуточном сером веществе спинного мозга. Мозжечок включается в экстрапирамидная систему посредством путей, соединяющих его с таламусом, красным ядром и оливными ядрами.

Функционально экстрапирамидная система неотделима от пирамидной системы. Она обеспечивает упорядоченный ход произвольных движений, регулируемых пирамидной системой; регулирует врожденные и приобретенные автоматические двигательные акты, обеспечивает установку мышечного тонуса и поддержание равновесия тела; регулирует сопутствующие движения (например движения рук при ходьбе) и выразительные движения (мимика).

Лимбическая система — совокупность ряда структур головного мозга. Участвует в регуляции функций внутренних органов, обоняния, инстинктивного поведения, эмоций, памяти, сна , бодрствования и др. Термин лимбическая система впервые введён в научный оборот в 1952 году американским исследователем Паулем Мак-Лином. [1]

Включает в себя:

  • обонятельную луковицу (Bulbus olfactorius)
  • обонятельный тракт (Tractus olfactorius)
  • обонятельный треугольник
  • переднее продырявленное вещество (Substantia perforata)
  • поясная извилина (Gyrus Cinguli) (англ. Cingulate gyrus): автономные функции регуляции частоты сердцебиений и кровяного давления;
  • парагиппокампальная извилина (Gyrus parahippocampalis)
  • зубчатая извилина (Gyrus dentatus)
  • гиппокамп (Hippocampus): требуемый для формирования долговременной памяти
  • миндалевидное тело (Corpus amygdaloideum) (англ. Amygdala): агрессия и осторожность, страх
  • гипоталамус (Hypothalamus): регулирует автономную нервную систему через гормоны, регулирует кровяное давление исердцебиение, голод, жажду, половое влечение, цикл сна и пробуждения
  • сосцевидное тело (Corpus Mamillare) (англ. Mammilary body): важен для формирования памяти
  • ретикулярную формацию среднего мозга

Функции лимбической системы

Получая информацию о внешней и внутренней средах организма, лимбическая система запускает вегетативные и сомат ические реакции, обеспечивающие адекватное приспособление организма к внешней среде и сохранение гомеостаза. Частные функции лимбической системы:

  • регуляция функции внутренних органов (через гипоталамус);
  • формирование мотиваций, эмоций, поведенческих реакций;
  • играет важную роль в обучении;
  • обонятельная функция.

Ретикулярная формация представляет собой совокупность клеток, клеточных скоплений и нервных волокон, расположенных на всем протяжении ствола мозга (продолговатый мозг, мост, средний и промежуточный мозг) и в центральных отделах спинного мозга . Ретикулярная формация получает информацию от всех органов чувств , внутренних и других органов , оценивает ее, фильтрует и передает в лимбическую систему и кору большого мозга. Она регулирует уровень возбудимости и тонуса различных отделов центральной нервной системы, включая кору большого мозга, играет важную роль в сознании, мышлении, памяти, восприятии, эмоциях, сне, бодрствовании, вегетативных функциях, целенаправленных движениях, а также в механизмах формирования целостных реакций организма. Ретикулярная формация прежде всего выполняет функцию фильтра, который позволяет важным для организма сенсорным сигналам активировать кору мозга, но не пропускает привычные для него или повторяющиеся сигналы. Ретикулярная формация представляет собой важный пункт на пути восходящей неспецифической соматосенсорной системы . Соматовисцеральные афференты идут в составе спиноретикулярного тракта ( переднебоковой канатик ), а также, возможно, в составе проприоспинальных (полисинаптических) путей и соответствующих путей отядра спинального тройничного тракта . К ретикулярной формации приходят также пути от всех других афферентных черепномозговых нервов , т.е. практически от всех органов чувств. Дополнительная афферентация поступает от многих других отделовголовного мозга - от моторных областей коры и сенсорных областей коры , отталамуса и гипоталамуса . Имеется также множество эфферентных связей - нисходящие к спинному мозгу и восходящие через неспецифические таламические ядра к коре головного мозга , гипоталамусу и лимбиче ской системе . Большинство нейронов образует синапсы с двумя - тремя афферентами разного происхождения, такая полисенсорная конвергенция характерна для нейронов ретикулярной формации. Другими их свойствами являются большие рецептивные поля поверхности тела, часто билатеральные, длительный латентный период ответа на периферическую стимуляцию (вследствие мультисинаптического проведения), слабая воспроизводимость реакции (стохастические колебания числа потенциалов действияпри повторной стимуляции). Все эти свойства противоположны свойствамлемнисковых нейронов в специфических ядрах соматосенсорной системы.

Читайте также: