Основное оборудование гэс реферат

Обновлено: 07.07.2024

Оборудованиегидроэлектростаций по функциональному назначению делится на несколько групп.

Гидросиловое оборудование – это гидротурбины и гидрогенераторы (на ГАЭС – обратимые гидромашины и двигатель-генераторы).

Вспомогательное оборудование необходимо для обеспечения работы гидросилового оборудования. К нему относятся системы технического водоснабжения, пневматического хозяйства, масляного хозяйства, осушения и т.п.

Механическое оборудование включает в себя затворы, сороудерживающие решетки, грузоподъемные механизмы, краны для обслуживания гидротурбин и гидрогенераторов.

Электротехническое оборудование – электрическая часть генераторов, повышающие трансформаторы, коммутационная аппаратура: шинные, воздушные и кабельные токопроводы, система релейной защиты, автоматики, телеуправления, связи.

Кроме этих главных видов оборудования для нормального функционирования ГЭС необходимо санитарно-техническое оборудование, обеспечивающее отопление, вентиляцию, пожаротушение, водоснабжение и канализацию.

Гидравлическая турбина (гидротурбина) – это двигатель, преобразующий энергию движущейся воды в механическую энергию вращения. Турбина служит приводом для электрического генератора (гидрогенератора). Роторы гидротурбины и гидрогенератора, как правило, посажены на единый вал, имеющий общую систему опор вращающихся частей. Такое объединение образует сложную машину, называемую гидроагрегатом.

В гидроэнергетике используется энергия воды, сконцентрированная при напорах от нескольких метров до 1500 – 2000 м. для работы в таком широком диапазоне напоров применяются различные системы турбин, отличающиеся формой рабочих органов. Эти системы входят в два класса, различающихся по использованию тех или иных компонентов гидравлической энергии: реактивные турбины используют энергию давления и скоростную энергию; активные – только скоростную энергию.

Названия системам реактивных турбин даны в соответствии с направлением потока по отношению к оси вращения рабочего колеса. Каждая турбина – это гидравлическое устройство с проточной частью, которая у реактивных турбин включает в себя подводящие органы (турбинную камеру, колонны статора, лопатки направляющего аппарата), рабочие органы (лопастную систему рабочего колеса) и отводящие органы (отсасывающую трубу). Турбина имеет невращающиеся и вращающиеся части. К невращающимся относятся закладные части (статор, облицовка камер) и часть рабочих механизмов (направляющий аппарат, крышка турбины, подшипник). Вращающиеся части – это рабочее колесо с валом (основной орган турбины).

Гидрогенератор – это электрическая машина, преобразующая механическую энергию вращения в электрическую.

На ГЭС применяются в качестве генераторов синхронные машины трехфазного переменного тока.

Вращающаяся часть простейшего генератора – ротор – представляет собой двухполюсный электромагнит, магнитное поле которого создается при протекании по обмотке возбуждения постоянного тока от независимого источника. Этот ток подается на ротор через неподвижные щетки, прижатые к вращающимся вместе с ротором контактным кольцам. На статоре размещена силовая обмотка, которая в простейшем случае состоит из одного витка.

Ротор, жестко связанный с валом турбины, вращается с постоянной частотой. За счет магнитного потока ротора в витке обмотки наводится переменная электродвижущая сила. Если к выводам обмотки статора подключить нагрузки, то по обмотке потечет ток, на выводах появится напряжение, которое также будет переменным, изменяющимся по синусоиде.

Основные конструктивные части гидрогенератора – ротор и статор. Обод ротора выполняется в виде металлического кольца с прикрепленными к нему полюсами. В гидрогенераторах полюсы расположены вплотную друг к другу и образуют сплошную наружную цилиндрическую поверхность.

Статор гидрогенератора состоит из сердечника и корпуса. Сердечник является магнитопроводом и представляет собой массивное стальное кольцо, собранное из тонких (до 0,5 мм) листов электротехнической стали. На внутренней поверхности кольца устроены пазы, в которых размещаются стержни силовой обмотки. Сердечник заключен в сварной металлический корпус, крепящийся к строительным конструкциям здания ГЭС. Для возможности перевозки статор крупных гидрогенераторов разделен на несколько (обычно шесть) сегментов, которые соединяются при монтаже.

Ротор – это самый крупный и тяжелый узел генератора, его диаметр может достигать 15 м, масса 1000 т и более. Ротор состоит из обода, полюсов, спиц и втулки. Обод представляет собой массивное кольцо, собранное из большого количества стальных сегментов толщиной 3 – 5 мм. На внешней поверхности обода устраиваются пазы, в которые вставляются и расклиниваются хвостовики металлических сердечников полюсов с надетыми на них катушками обмотки возбуждения. Внутренняя сторона обода соединяется сварными спицами с втулкой, представляющей собой крупную деталь, соединяющую ротор с валом.

Подпятник – наиболее сложный и ответственный узел механической части генератора. Он воспринимает и передает на конструкции здания ГЭС огромные усилия (достигающие нескольких тысяч тонн) от веса вращающихся частей гидроагрегата и давления воды на рабочее колесо турбины; при этом подпятник должен обеспечивать беспрепятственное вращение. Подпятник состоит из вращающегося стального диска (пяты), закрепленного на втулке ротора или вала и опирающегося на неподвижные сегменты. Между диском и сегментами происходит трение в условиях удельных нагрузок, достигающих 5 МПа. Сегменты шарнирно опираются на установочные винты, расположенные на дне масляной ванны, заполненной турбинным маслом. В процессе работы масло охлаждается холодной водой, протекающей через трубки маслоохладителей.

Подшипники передают на фундамент радиальные нагрузки от вала. Подшипник состоит из полированной стальной втулки и прижатых к ней сегментов, которые так же, как в подпятнике, залиты баббитом и помещены в охлаждаемую масляную ванну.

Тормоза необходимы для быстрой остановки гидроагрегата, вращающегося по инерции после отключения генератора и закрытия направляющего аппарата турбины. Система тормозов состоит из диска, укрепленного на роторе, и неподвижных тормозных цилиндров, работающих от сжатого до давления 0,8 МПа воздуха. При подаче воздуха в систему цилиндры прижимают к диску тормозные колодки.

При работе генератора происходит его нагревание, ограничивающее развитие мощности, поэтому для генератора предусматривается искусственное охлаждение. Существует два вида охлаждения: воздушное (вентиляция) и непосредственное водяное. При воздушном охлаждении на роторе устанавливаются лопатки вентилятора, которые при вращении создают воздушный поток, циркулирующий вокруг активных частей генератора.

На особо мощных генераторах применяется непосредственное водяное охлаждение, при котором стержни обмоток статора, а иногда и ротора делаются полыми и через них пропускается охлаждаемая в теплообменниках дистиллированная вода.

В зданиях ГЭС и водоприемниках затворы применяются для перекрытия водопропускных отверстий и регулирования пропускания расхода воды.

По функциональному назначению можно выделить несколько видов затворов.

Основные (рабочие) затворы предназначены для регулирования расходов. Они должны открываться и закрываться под напором, в потоке воды. Такие затворы устанавливаются на водосбросах зданий ГЭС совмещенного типа и водоприемниках головных узлов некоторых деривационных ГЭС.

Аварийные затворы применяются в случае аварии с основным затвором, при потере регулирования или повреждении турбины, разрыве водовода. Такие затворы закрываются в потоке под напором, открываются без напора, с предварительным выравниванием уровней перед затвором и за ним после устранения последствий аварии.

Ремонтные затворы устанавливают при выравненных уровнях воды перед затвором и за ним для перекрытия отверстий с последующим осушением водоводов при плановых ремонтах.

Для перекрытия высоких отверстий используют секционные затворы, состоящие из отдельных секций, соединяемых сцепами при опускании затвора.

Различают стационарные затворы, постоянно находящиеся на отверстии, и инвентарные, хранящиеся в затворохранилище. Каждый инвентарный затвор обслуживает несколько отверстий и устанавливается при необходимости в любое из них передвижным краном.

Гидроэлектрическая станция , гидроэлектростанции (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию

Напор ГЭС создаётся концентрацией падения реки на используемом участке (аб ) плотиной , либо деривацией , либо плотиной и деривацией совместно . Основное энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции - гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления - пульт оператора-диспетчера или автооператор гидроэлектростанции Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию ГЭС.

По установленной мощности (в Мвт ) различают ГЭС мощные (свыше 250), средние (до 25) и малые (до 5). Мощность ГЭС зависит от напора Нб (разности уровней верхнего и нижнего бьефа), расхода воды Q (м 3 /сек ), используемого в гидротурбинах, и кпд гидроагрегата hг . По ряду причин (вследствие, например, сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т.п.) напор и расход воды непрерывно меняются, а кроме того, меняется расход при регулировании мощности ГЭС. Различают годичный, недельный и суточный циклы режима работы ГЭС.

По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м ), средненапорные (от 25 до 60 м ) и низконапорные (от 3 до 25 м ). На равнинных реках напоры редко превышают 100 м , в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации - до 1500 м . Классификация по напору приблизительно соответствует типам применяемого энергетического оборудования: на высоконапорных ГЭС применяют ковшовые и радиально-осевые турбины с металлическими спиральными камерами; на средненапорных - поворотнолопастные и радиально-осевые турбины с железобетонными и металлическими спиральными камерами, на низконапорных - поворотнолопастные турбины в железобетонных спиральных камерах, иногда горизонтальные турбины в капсулах или в открытых камерах. Подразделение ГЭС по используемому напору имеет приблизительный, условный характер.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой - нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между соседними турбинными камерами производится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30-40 м ; к простейшим русловым ГЭС относятся также ранее строившиеся сельские ГЭС небольшой мощности. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках. Волжская ГЭС им. 22-го съезда КПСС - наиболее крупная среди станций руслового типа.

При более высоких напорах оказывается нецелесообразным передавать на здание ГЭС гидростатическое давление воды. В этом случае применяется тип приплотинной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за плотиной, примыкает к нижнему бьефу . В состав гидравлической трассы между верхним и нижним бьефом ГЭС такого типа входят глубинный водоприёмник с мусорозадерживающей решёткой, турбинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнительных сооружений в состав узла могут входить судоходные сооружения и рыбоходы, а также дополнительный водосброс. Примером подобного типа станций на многоводной реке служит Братская ГЭС на р. Ангара.

Другой вид компоновки приплотинных ГЭС, соответствующий горным условиям, при сравнительно малых расходах реки, характерен для Нурекской ГЭС на р. Вахш (Средняя Азия), проектной мощностью 2700 Мвт . Здание ГЭС открытого типа располагается ниже плотины, вода подводится к турбинам по одному или нескольким напорным туннелям . Иногда здание ГЭС размещают ближе к верхнему бьефу в подземной (подземная ГЭС) выемке. Такая компоновка целесообразна при наличии скальных оснований, особенно при земляных или набросных плотинах, имеющих значительную ширину. Сброс паводковых расходов производится через водосбросные туннели или через открытые береговые водосбросы.

В деривационных ГЭС концентрация падения реки создаётся посредством деривации; вода в начале используемого участка реки отводится из речного русла водоводом, с уклоном, значительно меньшим, чем средний уклон реки на этом участке и со спрямлением изгибов и поворотов русла. Конец деривации подводят к месту расположения здания ГЭС. Отработанная вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривация выгодна тогда, когда уклон реки велик. Деривационная схема концентрации напора в чистом виде (бесплотинный водозабор или с низкой водозаборной плотиной) на практике приводит к тому, что из реки забирается лишь небольшая часть её стока. В др. случаях в начале деривации на реке сооружается более высокая плотина и создаётся водохранилище: такая схема концентрации падения называется смешанной, т.к. используются оба принципа создания напора. Иногда, в зависимости от местных условий, здание ГЭС выгоднее располагать на некотором расстоянии от конца используемого участка реки вверх по течению; деривация разделяется по отношению к зданию ГЭС на подводящую и отводящую. В ряде случаев с помощью деривации производится переброска стока реки в соседнюю реку, имеющую более низкие отметки русла. Характерным примером является Ингурская ГЭС, где сток р. Ингури перебрасывается туннелем в соседнюю р. Эрисцкали (Кавказ).

Сооружения безнапорных деривационных ГЭС состоят из трёх основных групп: водозаборное сооружение, водоприёмная плотина и собственно деривация (канал, лоток, безнапорный туннель). Дополнительными сооружениями на ГЭС с безнапорной деривацией являются отстойники и бассейны суточного регулирования, напорные бассейны, холостые водосбросы и турбинные водоводы. Крупнейшая ГЭС с безнапорной подводящей деривацией - ГЭС Роберт-Мозес (США) мощностью 1950 Мвт , а с безнапорной отводящей деривацией - Ингурская ГЭС (СССР) мощностью 1300 Мвт .

На ГЭС с напорной деривацией водовод (туннель, металлическая, деревянная или железобетонная труба) прокладывается с несколькими большим продольным уклоном, чем при безнапорной деривации. Применение напорной подводящей деривации обусловливается изменяемостью горизонта воды в верхнем бьефе, из-за чего в процессе эксплуатации изменяется и внутренний напор деривации. В состав сооружений ГЭС этого типа входят: плотина, водозаборный узел, деривация с напорным водоводом, станционный узел ГЭС с уравнительным резервуаром и турбинными водоводами, отводящая деривация в виде канала или туннеля (при подземной ГЭС). Крупнейшая ГЭС с напорной подводящей деривацией - Нечако-Кемано (Канада) проектной мощностью 1792 Мвт .

ГЭС с напорной отводящей деривацией применяется в условиях значительных изменений уровня воды в реке в месте выхода отводящей деривации или по экономическим соображениям. В этом случае необходимо сооружение уравнительного резервуара (в начале отводящей деривации) для выравнивания неустановившегося потока воды в реке. Наиболее мощная ГЭС (350 Мвт ) этого типа - ГЭС Харспронгет (Швеция).

Особое место среди ГЭС занимают гидроаккумулирующие электростанции (ГАЭС) и приливные электростанции (ПЭС). Сооружение ГАЭС обусловлено ростом потребности в пиковой мощности в крупных энергетических системах, что и определяет генераторную мощность, требующуюся для покрытия пиковых нагрузок. Способность ГАЭС аккумулировать энергию основана на том, что свободная в энергосистеме в некоторый период времени (провала графика потребности) электрическая энергия используется агрегатами ГАЭС, которые, работая в режиме насоса, нагнетают воду из водохранилища в верхний аккумулирующий бассейн. В период пиков нагрузки аккумулированная т. о. энергия возвращается в энергосистему (вода из верхнего бассейна поступает в напорный трубопровод и вращает гидроагрегаты, работающие в режиме генератора тока). Мощность отдельных ГАЭС с такими обратимыми гидроагрегатами достигает 1620 Мвт (Корнуол, США).

ПЭС преобразуют энергию морских приливов в электрическую. Электроэнергия приливных ГЭС в силу некоторых особенностей, связанных с периодическим характером приливов и отливов, может быть использована в энергосистемах лишь совместно с энергией регулирующих электростанций, которые восполняют провалы мощности приливных электростанций в течение суток или месяцев. В 1967 во Франции было завершено строительство крупной ПЭС на р. Ранс (24 агрегата общей мощностью 240 Мвт ). В СССР в 1968 в Кислой Губе (Кольский полуостров) вступила в строй первая опытная ПЭС мощностью 0,4 Мвт , на которой ныне проводятся экспериментальные работы для будущего строительства ПЭС.

По характеру использования воды и условиям работы различают ГЭС на бытовом стоке без регулирования, с суточным, недельным, сезонным (годовым) и многолетним регулированием. Отдельные ГЭС или каскады ГЭС, как правило, работают в системе совместно с конденсационными электростанциями (КЭС), теплоэлектроцентралями (ТЭЦ), атомными электростанциями (АЭС), газотурбинными установками (ГТУ), причём в зависимости от характера участия в покрытии графика нагрузки энергосистемы ГЭС могут быть базисными, полупиковыми и пиковыми .

Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами - их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные удельные капиталовложения на 1 квт установленной мощности и продолжительные сроки строительства, придавалось и придаётся большое значение, особенно когда это связано с размещением электроёмких производств .

Одни из первых гидроэлектрических установок мощностью всего в несколько сотен вт были сооружены в 1876-81 в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние: как правило, места, наиболее удобные для сооружения ГЭС, удалены от основных потребителей электроэнергии. Протяжённость существовавших в то время линий электропередач не превышала 5-10 км ; самая длинная линия 57 км . Сооружение линии электропередачи (170 км ) от Лауфенской ГЭС до Франкфурта-на-Майне (Германия) для снабжения электроэнергией Международная электротехническая выставки (1891) открыла широкие возможности для развития ГЭС. В 1892 промышленный ток дала ГЭС, построенная на водопаде в Бюлахе (Швейцария), почти одновременно в 1893 были построены ГЭС в Гельшене (Швеция), на р. Изар (Германия) и в Калифорнии (США). В 1896 вступила в строй Ниагарская ГЭС (США) постоянного тока; в 1898 дала ток ГЭС Рейнфельд (Германия), а в 1901 стали под нагрузку гидрогенераторы ГЭС Жонат (Франция).

В России существовали, но так и не были реализованы детально разработанные проекты ГЭС русских учёных Ф. А. Пироцкого, И. А. Тиме, Г. О. Графтио, И. Г. Александрова и др., предусматривавших, в частности, использование порожистых участков рр. Днепр, Волхов, Западная Двина, Вуокса и др. Так, например, уже в 1892-95 русским инженером В. Ф. Добротворским были составлены проекты сооружения ГЭС мощностью 23,8 Мвт на р. Нарова и 36,8 Мвт на водопаде Б. Иматра. Реализации этих проектов препятствовали как косность царской бюрократии, так и интересы частных капиталистических групп, связанных с топливной промышленностью. Первая промышленная ГЭС в России мощностью около 0,3 Мвт (300 квт ) была построена в 1895-96 под руководством русских инженеров В. Н. Чиколева и Р. Э. Классона для электроснабжения Охтинского порохового завода в Петербурге. В 1909 закончилось строительство крупнейшей в дореволюционной России Гиндукушской ГЭС мощностью 1,35 Мвт (1350 квт ) на р. Мургаб (Туркмения). В период 1905-17 вступили в строй Саткинская, Алавердинская, Каракультукская, Тургусунская, Сестрорецкая и др. ГЭС небольшой мощности. Сооружались также частные фабрично-заводские гидроэлектрические установки с использованием оборудования иностранных фирм.

1-я мировая война 1914-18 и связанный с ней интенсивный рост промышленности некоторых западных стран повлекли за собой развитие действовавших и строительство новых энергопромышленных центров, в том числе на базе ГЭС. В результате мощность ГЭС во всём мире к 1920 достигла 17 тыс. Мвт , а мощность отдельных ГЭС, например Масл-Шолс (США), Иль-Малинь (Канада), превысила 400 Мвт (400 тыс. квт ).

Общая мощность ГЭС России к 1917 составляла всего около 16 Мвт ; самой крупной была Гиндукушская ГЭС. Строительство мощных ГЭС началось по существу только после Великой Октябрьской социалистической революции. В восстановительный период (20-е гг.) в соответствии с планом ГОЭЛРО были построены первые крупные ГЭС - Волховская (ныне Волховская ГЭС им. В. И. Ленина) и Земо-Авчальская ГЭС им. В. И. Ленина. В годы первых пятилеток (1929-40) вступили в строй ГЭС - Днепровская, Нижнесвирская, Рионская и др.

К началу Великой Отечественной войны 1941-45 было введено в эксплуатацию 37 ГЭС общей мощностью более 1500 Мвт . Во время войны было приостановлено начатое строительство ряда ГЭС общей мощностью около 1000 Мвт (1 млн. квт ). Значительная часть ГЭС общей мощностью около 1000 Мвт оказалась разрушенной или демонтированной. Началось сооружение новых ГЭС малой и средней мощности на Урале (Широковская, Верхотурская, Алапаевская, Белоярская и др.), в Средней Азии (Аккавакские, Фархадская, Саларская, Нижнебуэсуйские и др.), на Северном Кавказе (Майкопская, Орджоникидзевская, Краснополянская), в Азербайджане (Мингечаурская ГЭС), в Грузии (Читахевская ГЭС) и в Армении (Гюмушская ГЭС). К концу 1945 в Советском Союзе мощность всех ГЭС, вместе с восстановленными, достигла 1250 Мвт , а годовая выработка электроэнергии - 4,8 млрд. квт/ч .

В начале 50-х гг. развернулось строительство крупных гидроэлектростанций на р. Волге у гг. Горького, Куйбышева и Волгограда, Каховской и Кременчугской ГЭС на Днепре, а также Цимлянской ГЭС на Дону. Волжские ГЭС им. В. И. Ленина и им. 22-го съезда КПСС стали первыми из числа наиболее мощных ГЭС в СССР и в мире. Во 2-й половине 50-х гг. началось строительство Братской ГЭС на р. Ангаре и Красноярской ГЭС на р. Енисее. С 1946 по 1958 в СССР были построены и восстановлены 63 ГЭС общей мощностью 9600 Мвт . За семилетие 1959-65 было введено 11400 Мвт новых гидравлических мощностей и суммарная мощность ГЭС достигла 22200 Мвт (табл. 1). К 1970 в СССР продолжалось строительство 35 промышленных ГЭС (суммарной мощностью 32000 Мвм ), в том числе 11 ГЭС единичной мощностью свыше 1000 Мвт : Саяно-Шушенская, Красноярская, Усть-Илимская, Нурекская, Ингурская, Саратовская, Токтогульская, Нижнекамская, Зейская, Чиркейская, Чебоксарская.

КОМПОНОВОЧНО-ТЕХНОЛОГИЧЕСКАЯ СХЕМА ЗДАНИЯ ГЭС И ГАЭС


Здание ГЭС представляет собой гидротехническое сооружение, в котором с помощью комплекса гидросилового, электрического, механического и вспомогательного оборудования осуществляется преобразование механической энергии воды в электрическую энергию, передаваемую потребителям.
Здание ГАЭС выполняет более сложную функцию, а именно: осуществляет преобразование электрической энергии, забираемой из сети, в механическую энергию воды, накапливаемую (аккумулируемую) в верховом бассейне, и обратное преобразование механической энергии воды в электрическую, передаваемую потребителям.
Обобщенная компоновочно-технологическая схема здания ГЭС показана на рис. 10.1. Здесь Α1. Ап — агрегатные блоки, в каждом из которых размещены турбина, генератор и другое оборудование. Число агрегатных блоков может быть различным. Например, на Волжской ГЭС имени XXII съезда КПСС (см. рис. 3.2) n=22, на Красноярской ГЭС (см. рис. 3.7) п= 12, на Нурекской ГЭС (см. рис. 3.8) n=9, на Ингурской ГЭС (см. рис. 3.15) п=5. Как правило, минимальное число агрегатов п=2, но в исключительных случаях может быть установлен и один агрегат.
Каждый агрегатный блок имеет верховые сопрягающие устройства В1 . Вп и низовые сопрягающие устройства (H1 . Нп). В русловых зданиях ГЭС (см. рис. 3.2) верховые устройства В представляют собой водоприемные сооружения, входящие в состав здания, а низовые устройства H —крепление русла. Если предусматривается использование здания ГЭС и для пропуска паводков (здание ГЭС совмещенного типа), то в конструкцию здания включаются водосбросы с соответствующим оборудованием (затворы), а крепление нижнего бьефа делается более мощным с учетом необходимости гашения энергии сбросного расхода.
В зданиях ГЭС приплотинного типа (см. рис. 3.7) или отдельно стоящих (обособленных) автономного типа (см. рис. 3.8) верховые устройства В представляют собой вводы напорных водоводов, а низовые устройства Н— отводящий канал с соответствующим креплением. В подземных зданиях (см. рис. 3.15) низовыми устройствами Н являются сопряжения с низовым туннелем.
В здании ГЭС всегда предусматривается монтажная площадка МП, на которую обычно вводятся подъездные пути ПП (автомобильные, иногда железнодорожные) и на которую должен заходить кран (см. рис. 3.7). Монтажная площадка предназначена для монтажа и ремонта оборудования здания ГЭС.

Рис. 10.1. Обобщенная компоновочно-технологическая схема здания ГЭС

Здания ГЭС, расположенные на поверхности земли, должны иметь береговые сопрягающие сооружения БСС (рис. 10.1). Это раздельные стенки или устои, необходимые для сопряжения с грунтовыми или бетонными плотинами, подпорные стенки, служащие для сопряжения с низовым отводящим каналом, или разделительные стенки между зданием ГЭС и водосбросными пролетами плотины. Береговые сопрягающие сооружения зданий ГЭС видны на схемах рис. 11.5 и 1.6.
Электрическая энергия от ГЭС передается в энергосистему потребителям по воздушным линиям электропередачи (ВЛ) высокого напряжения, которые отходят от открытого распределительного устройства (ОРУ). На ОРУ располагаются электрические устройства, необходимые для распределения энергии между отводящими линиями электропередачи (шины, выключатели, разъединители, различные устройства защиты и контроля). ОРУ не входит в состав здания ГЭС, но так как непосредственно от агрегатных блоков энергия передается на ОРУ, чаще всего с помощью открытых или кабельных передач высокого напряжения, то ОРУ, как правило, размещается вблизи здания ГЭС. Это хорошо видно на рис. 3.7 (здесь два ОРУ 500 и 220 кВ на правом и левом берегах) и 3.8 (здесь также два ОРУ — 500 и 220 кВ).
Обобщенная компоновочно-технологическая схема зданий ГАЭС аналогична рис. 10.1. Главное отличие состоит лишь в том, что верховые В и низовые Н сопрягающие устройства должны рассчитываться на работу в две стороны — соответственно режиму разряда и режиму заряда (см. рис. 7.7).

Устройство и принцип работы гидроэлектростанции

С давних времен люди пользовались движущей силой воды. Мололи муку на мельницах, колеса которых приводились в движение потоками воды, сплавляли тяжелые стволы деревьев вниз по течению, в общем использовали гидроэнергию для решения самых разных задач, включая промышленные.

Плотина Гувера, дамба Гувера (Hoover Dam)

Машинное отделение гидроэлектростанции "Hoover Dam" (Аризона, США)

В конце 19 века, с началом электрификации городов, гидроэлектростанции начали очень резко завоевывать популярность в мире. В 1878 году в Англии появилась первая в мире гидроэлектростанция, которая питала тогда всего одну дуговую лампу в картинной галерее изобретателя Уильяма Армстронга… А к 1889 году только в Соединенных Штатах гидроэлектростанций насчитывалось уже 200 штук.

Одним из важнейших шагов в освоении гидроэнергетики стало сооружение в 1930-е годы в США Плотины Гувера. Что касается России, то здесь уже в 1892 году, в Рудном Алтае на реке Березовка, была построена первая четырехтурбинная гидроэлектростанция мощностью 200 кВт, призванная обеспечить электричеством шахтный водоотлив Зыряновского рудника. Так, с освоением человечеством электричества, гидроэлектростанции ознаменовали собой стремительный ход промышленного прогресса.

Знаменитые исторические ГЭС:

Принцип работы ГЭС

Сегодня современные гидроэлектростанции — это огромные сооружения на гигаватты установленной мощности. Однако принцип работы любой ГЭС остается в целом достаточно простым, и везде почти полностью одинаковым. Напор воды, направленный на лопасти гидротурбины, приводит ее во вращение, а гидротурбина в свою очередь, будучи соединена с генератором, вращает генератор. Генератор вырабатывает электроэнергию, которая и подается на трансформаторную станцию, а затем и на ЛЭП.

Генератор гидроэлектростанции

Так выглядит ротор гидрогенератора

В машинном зале гидроэлектростанции установлены гидроагрегаты, которые преобразуют энергию потока воды в энергию электрическую, а непосредственно в здании гидроэлектростанции располагаются все необходимые распределительные устройства, а также устройства управления и контроля работы ГЭС.

Принцип работы ГЭС

Мощность гидроэлектростанции зависит от количества и от напора воды, проходящей через турбины. Непосредственно напор получается благодаря направленному движению потока воды. Это может быть вода накопленная у плотины, когда в определенном месте на реке строится плотина, или же напор получается благодаря деривации потока, - это когда вода отводится от русла по специальному туннелю или каналу. Так, гидроэлектростанции бывают плотинными, деривационными и плотинно-деривационными.

Наиболее распространенные плотинные ГЭС имеют в своей основе плотину, перегораживающую русло реки. За плотиной вода поднимается, накапливается, создавая своего рода водяной столб, обеспечивающий давление и напор. Чем выше плотина — тем сильнее напор. Самая высокая в мире плотина имеет высоту 305 метров, это плотина на Цзиньпинской ГЭС мощностью 3,6 ГВт, что на реке Ялунцзян в западной части провинции Сычуань на Юго-Западне Китая.

Гидростанции, использующие энергию воды, бывают двух типов. Если река имеет небольшое падение, но относительно многоводна, то при помощи плотины, перегораживающей реку, создают достаточную разность уровней воды.

Над плотиной образуется водохранилище, обеспечивающее равномерную работу станции в течение года. У берега ниже плотины, в непосредственной близости к ней устанавливается водяная турбина, соединенная с электрическим генератором (приплотинная станция). Если река судоходна, то у противоположного берега делается шлюз для пропуска судов.

Если же река не очень многоводна, но имеет большое падение и бурное течение (например, горные реки), то часть воды отводится по специальному каналу, имеющему гораздо меньший уклон, чем река. Канал этот иногда имеет протяженность в несколько километров. Иногда условия местности вынуждают заменить канал тоннелем (для мощных станций). Таким образом создается значительная разность уровней между выходным отверстием канала и нижним течением реки.

У конца канала вода поступает в трубу с крутым наклоном, у нижнего конца которой располагается гидротурбина с генератором. Благодаря значительной разности уровней вода приобретает большую кинетическую энергию, достаточную для питания станции (деривационные станции).

Подобные станции могут иметь большую мощность и относиться к разряду районных электростанций (смотрите - Малые ГЭС). На самых малых станциях турбина иногда заменяется менее эффективным, по более дешевым водяным колесом.

Здание Жигулевской ГЭС с верхнего бьефа

Здание Жигулевской ГЭС с верхнего бьефа

Принципиальная схема электрических соединений Жигулёвской ГЭС

Принципиальная схема электрических соединений Жигулёвской ГЭС

Разрез по зданию Жигулёвской ГЭС

Разрез по зданию Жигулёвской ГЭС. 1 —выводы на открытое распределительное устройство 400 кВ; 2 —этаж кабелей 220 и 110 кВ; 3 — этаж электрооборудования, 4 — аппаратура охлаждения трансформаторов; 5 — шинопроводы соединяющие обмотки генераторного напряжения трансформаторов в "треугольники"; 6 — кран грузоподъемностью 2X125 т; 7 — кран грузоподъемностью 30 т; 8 — кран грузоподъемностью 2X125 т ; 9 — сороудерживающее сооружение; 10 — кран грузоподъемностью 2X125 т; 11 — металлический шпунт; 12 — кран грузоподъемностью 2X125 т.

Жигулёвская ГЭС — вторая по мощности гидроэлектростанция в Европе, в 1957—1960 годах была крупнейшей ГЭС в мире.

Первый агрегат станции мощностью 105 тыс. кет был введен в эксплуатацию в конце 1955 г., в течение 1956 г. было введено в эксплуатацию еще 11 агрегатов и за 10 мес. 1957 г. — остальные восемь агрегатов.

На ГЭС установлено и работает большое количество нового, в ряде случаев уникального, энергетического оборудования.

Виды ГЭС и их устройства

Плотина гидроэлектростанции

Кроме плотины гидроэлектростанция включает в себя здание и распределительное устройство. Основное оборудование ГЭС находится в здании, здесь установлены турбины и генераторы. Кроме плотины и здания, в ГЭС могут наличествовать шлюзы, водосбросные устройства, рыбоходы и судоподъемники.

Каждая ГЭС представляет собой уникальное сооружение, поэтому главная отличительная черта ГЭС от других типов промышленных электростанций — это их индивидуальность. Кстати, самое большое в мире водохранилище находится в Гане, это водохранилище Акосомбо на реке Вольта. Оно занимает 8500 квадратных километров, что составляет 3,6% площади всей страны.

Если по ходу русла реки имеется значительный уклон, то возводят деривационную ГЭС. Здесь нет необходимости в строительстве большого плотинного водохранилища, вместо этого вода только направляется через специально возводимые водоводные каналы или тоннели прямо к зданию электростанции.

Иногда на деривационных ГЭС устраивают небольшие бассейны суточного регулирования, позволяющие управлять напором, и таким образом влиять на количество вырабатываемой электроэнергии в зависимости от загруженности электросети.

Гидроаккумулирующая электростанция

Гидроаккумулирующие электростанции (ГАЭС) — особый вид гидроэлектростанций. Здесь сама станция предназначена для того, чтобы сгладить суточные перепады и пиковые нагрузки на энергосистему, и тем самым повысить надежность работы электросети.

Такая станция способна работать как в генераторном режиме, так и в накопительном, когда насосы закачивают воду в верхний бьеф из нижнего бьефа. Бьефом, в данном контексте, называется объект типа бассейна, являющийся частью водохранилища, и примыкающий к гидроэлектростанции. Верхний бьеф располагается по течению выше, нижний — ниже по течению.

Примером ГАЭС может служить водохранилище Таум Саук в Миссури, возведенное в 80 километрах от Миссисипи, вместимостью 5,55 млрд. литров, позволяющее энергосистеме обеспечить пиковую мощность в 440 МВт.

Читайте также: