Осмометрия в медицине реферат

Обновлено: 07.07.2024

Последние десятилетия характеризуются бурным ростом исследований в области молекулярной биофизики, биотехнологии и мембранологии. Все эти процессы не могли не сказаться на развитии новых диагностических и лечебных технологий, практически используемых для решения медицинских задач.

Наиболее удобными методами исследования изменений, возникающих в биологических объектах в ответ на поглощение кванта света, являются оптические, позволяющие изучить способность веществ поглощать и трансформировать энергию света, что лежит в основе всякого фотобиологического процесса. Оптические методы (спектрофотометрия, люминесценция, нефелометрия, рефрактометрия) дают возможность исследовать процессы без дополнительного вмешательства, модификации живых структур в сложных биосистемах (целые клетки, ткани или организмы) и применяются для изучения состояния биообъекта, а также характера и степени изменения этого состояния в условиях различного микроокружения и под влиянием физико-химических воздействий.

Приведенные выше достоинства в сочетании с достаточно высокой чувствительностью, точностью, быстродействием объясняют широкое распространение оптических методов в медицине, медицинской экологии, биологии, биотехнологии и других областях знаний.

Перспективным наукоемким направлением в современной медицине является разработка и создание новых технологий фотодинамической терапии и диагностики рака. Фотодинамическая терапия (ФДТ) - метод лечения, основанный на применении светочувствительных веществ - фотосенсибилизаторов (ФС), накапливающихся в опухолях и других образованиях различных органов, активизирующихся под действием лазерного или иного светового облучения, обеспечивая, в конечном итоге, разрушение патологических образований. Диагностика злокачественных заболеваний остается во многом нерешенной проблемой. Выявление ранних форм опухолевого роста затруднено на доклиническом этапе отсутствием симптоматики и специфических тестов диагностики для большинства гистологических форм опухолей.

В этой связи представляют особый интерес данные о возможности применения флуорохромов для ранней диагностики и лечения онкологических заболеваний. Среди препаратов последнего поколения, предназначенных для выявления опухолей, новые надежды связаны с радахлорином. По данным ряда авторов радахлорин имеет отчетливую тропность к опухолевой ткани, высокую интенсивность вызванной флуоресценции, низкую токсичность.

Химия является основой всех биопроцессов и относится к наукам, которые составляют фундамент медицины. Химические методы исследования ежедневно применяются при диагностике заболеваний и профилактических обследованиях. А химический синтез и вовсе является основой для изготовления лекарственных средств. Различные новые материалы были созданные химией в последние годы. Они широко используются в медицинском оборудовании и при изготовлении искусственных органов.

Физико-химические методы исследования – это название огромного числа способов количественного и качественного определения веществ, которые предполагают, применение разнообразной измерительной техники. В основе физико-химических методов лежат законы физики и физической химии, а применение аппаратуры основано на достижениях оптики и электроники.

Постоянно открываются новые свойства веществ, которые могут привести к созданию новых методов. Поэтому существует необходимость знаний фундаментальных свойств и общих закономерностей, на которых основано развитие тех или иных методов, уметь выбрать метод, наиболее подходящий в данных обстоятельствах, дающий наибольшую и достоверную информацию. Стоит отметить, что нет универсального метода, который можо применить на все случаи жизни. С недавних пор развивается В совместное использование двух или более методов [1].

Цель: изучить некоторые методы применяемые в медицине и биологии, а именно эбулиометрия, криометрия, осмометрия, электрофорез, кондуктометрия, вискозиметрия.

2. ПРИМЕНЕНИЕ В МЕДИЦИНЕ ЭБУЛИОМЕТРИИ, КРИОСКОПИИ, ОСМОМЕТРИИ

2.1 Применение эбулиометрии, криоскопии

Измерение понижения температуры замерзания или кипения раствора позволяет решить целый ряд вопросов, которые касаются свойств этого раствора и вещества растворенного в нем. Метод исследования, основанный на измерении понижения температуры замерзания растворов, называется криоскопическим методом, а метод, основанный на измерении температуры повышения кипения растворов, получил название эбулиоскопического метода.

Определение повышения температуры кипения растворов водно-спиртовых растворов применяют для количественного определения спирта в этих смесях. В фармации методом эбулиоскопии определяют концетрацию биологически активных и лекарственных веществ, рассчитывают активность растворенного вещества, изотонический коэффициент, степень электролитической диссоциации слабого электролита [2,3].

Понижение температуры замерзания растворов имеет большое значение для живых организмов. Так, как клеточный сок рганизмов представляет собой в основном раствор органических веществ, его температура замерзания лежит ниже нуля, поэтому организмы не погибают при пониженных температурах. Методы измерения концентрации клеточного сока при температуре замерзания растворов в настоящее время широко используется в селекционной работе при выведении новых зимостойких сортов различных сельскохозяйственных культур [4].

Осмосомназывается процесс, при котором происходит спонтанное движение молекул растворителя из раствора с низкой концентрацией в раствор с высокой концентрацией через мембрану, проницаемую только для растворителя. Причем процесс этот продолжается до тех пор, пока не произойдет уравновешивание концентраций по обе стороны мембраны. Давление, с которым растворитель проникает ("засасывается") через мембрану,называется осмотическим.

Таким образом, раствор, находящийся во флаконе, осмотическим давлением не обладает. Оно возникает только в том случае, если имеется полупроницаемая мембрана и осмотический градиент по обе стороны ее. Поскольку по мере перемещения растворителя осмотический градиент уменьшается, осмотическое давление есть величина непостоянная.

Как и любое другое давление, осмотическое давление измеряется в атмосферах, миллиметрах ртутного либо сантиметрах водного столба. Например, на уровне капиллярной сети давление плазмы крови в норме составляет в среднем 6,62 атм (от 6,47 до 6,72 атм).

Осмос не следует путать с диффузией - пассивным перемещением молекул или ионов растворенного вещества через проницаемую для них мембрану из раствора с большей концентрацией в раствор с низкой концентрацией.

Коллоидно-осмотическое давление - часть осмотического давления плазмы, которая создается частицами с большим молекулярным весом (более 30000 Д), преимущественно белками, с трудом проникающими через стенку капилляров, которая играет в организме роль полупроницаемой мембраны. Поэтому коллоидно-осмотическое давление плазмы еще называют онкотическим.

Осмотическое и коллоидно-осмотическое давление часто путают с концентрационными показателями осмотического состояния - осмолярностью и осмоляльностью, которые отражают соотношение растворителя (т.е. плазмы или воды) и растворенных веществ (т.е. электролитов, белков, жиров, углеводов, микроэлементов, гормонов, энзимов и витаминов). Осмолярность представляет собой суммарную концентрацию осмотически активных частиц в единице объема растворителя, например, в 1 л (мосм/л), а осмоляльность - в единице массы растворителя, например, в 1 кг воды (мосм/кг Н2 О). Известно, что в биологических жидкостях (плазма, моча и др.) кроме воды обязательно имеются мелкодисперстные вещества. Причем, чем большую часть в литре плазмы занимают белки, липиды и им подобные вещества, тем меньше места останется для свободной воды. Поэтому, чтобы избежать влияния величины осадка (гиперлипидемия, гиперпротеинемия и т.п.) на показатель концентрации осмотически активных веществ, рекомендуется измерять не осмолярность, а осмоляльность. Поскольку среднее содержание воды в плазме крови обычно составляет примерно 92%, осмоляльность ее будет равна осмолярности, умноженной на 0,92.

Величина осмоляльности зависит только от количества частиц, растворенных в единице объема растворителя, а не от их природы, размера, массы и валентности. За единицу осмоляльности принята осмоляльность раствора, содержащего 1 моль растворенного вещества. Сделано это потому, что в 1 моле всегда находится одно и то же число молекул (число Авогадро - 6,02* 10 23 ). Другими словами, одномоляльный раствор содержит 6,02*10 23 частиц на каждый кг воды. Установлено, что внесение в раствор вещества в таком количестве снижает точку замерзания этого раствора на 1,86 о С. На данном явлении и основан принцип осмометрии. Электронное устройство, позволяющее измерять с высокой точностью температуру замерзания биологических жидкостей, называется криоскопом или осмометром. В связи с тем, что осмоляльность биологических жидкостей не очень велика, для удобства принято пользоваться тысячной долей моля (ммоль). Для того же, чтобы акцентировать внимание на том, что речь идет об осмотически активных частицах, к слову "ммоль" добавляют частицу "ос" (мосмоль/кг Н2 О). Следовательно, понятие "осмоляльность" тождественно понятию "моляльность", а 1 мосмоль, также как и 1 ммоль, соответствует содержанию 6,02*10 19 частиц в каждом кг растворителя. В системе СИ "мосмоль" как самостоятельная единица, отсутствует, поэтому иногда в научных трудах для отражения осмоляльности используют выражение ммоль/кг Н2 О.

Осмоляльность плазмы и ликвора в норме составляет 285+10, слюны - 100-200, желудочного сока - 160-340, желчи - 280-300, мочи - 600-1500 мосмоль/кг Н2 О.

Вклад различных веществ в осмоляльность неодинаков. Например, в плазме 98% ее обеспечивается электролитами, в том числе почти 50% - натрием. Из других имеющихся в крови физиологических частиц наибольшей осмотической активностью (кроме электролитов) обладают глюкоза и мочевина. Именно от них и от натрия главным образом и зависит величина осмоляльности плазмы, так как концентрация в крови ионов К + , РО4 2+ , SО4 2+ , Са 2+ , Мg 2+ , креатинина, мочевой кислоты и других веществ мала. Высокомолекулярные белки и липиды также имеют низкую моляльную концентрацию, поэтому на их долю приходится всего 1% (1,5-2,5 мосмоль/кг Н2 О) осмоляльности.

С учетом роли различных веществ в осмоляльности плазмы предложено большое количество формул для ее расчета. Наибольшее распространение из них получили формулы Дорварта и Мансбергера:

1,86*натрий + глюкоза + азот мочевины + 9

1,86*натрий + глюкоза + мочевина + 5,

где концентрация веществ представлена в ммоль/л.

В плазме хлорид натрия диссоциирован не полностью, а на 93%, поэтому осмотический коэффициент натрия с анионами меньше их концентрации. В связи с этим, если принять число анионов равным числу катионов, то концентрацию натрия надо умножать не на 2, а на 1,86. Цифры 9 и 5 - эмпирически найденный коэффициент, отражающий осмотическую концентрацию других осмотически активных частиц в норме. Вычитая значение осмоляльности, рассчитанной с помощью одной из этих формул, из результата, полученного при измерении прибором, можно определить так называемую дискриминанту осмоляльности. Она будет тем больше, чем существеннее роль так называемых "остаточных анионов" (молочной, пировиноградной, уксусной и других органических кислот, кетонов, этилового спирта, различных аминокислот, полипептидных продуктов протеолиза и пр.).

В процессе анаболизма между собой соединяется большое количество мелких частиц, что приводит к уменьшению осмоляльности. Обратный процесс (катаболизм), сопровождающийся распадом больших молекул на мелкие частицы, вызывает повышение осмоляльности. Следует, однако, учесть, что не все крупномолекулярные вещества при распаде образуют осмотически активные частицы. Например, катаболизм жиров и глицерина, за исключением СО2 , осмотически активных веществ не образует. Наоборот, при этом появляется "метаболическая вода", которая снижает осмоляльность.

В результате обменно-диффузионных процессов, постоянно идущих между сосудистым и интерстициальным пространствами, имеющиеся в крови натрий, глюкоза и мочевина равномерно распределяются по обе стороны капиллярной стенки. Вследствие этого они не играют существенной роли в создании осмотического давления плазмы, и поэтому по осмоляльности нельзя судить об осмосе и осмотическом давлении, возникающих на уровне стенки капилляров. В то же время натрий, являясь основным внеклеточным катионом, при обычных условиях обладает относительно низкой способностью проникать через клеточную мембрану. Миграция глюкозы и мочевины в клетку также затруднена, хотя и в меньшей степени, чем натрия. Все это дает основание по осмоляльности плазмы судить об осмоляльности интерстициальной жидкости и, соответственно, о степени осмотического воздействия, испытываемого клетками. Другими словами, чем больше осмоляльность плазмы, тем (при сохранении нормального функционирования калий-натриевого насоса) больше должна быть осмотическая нагрузка на клеточную мембрану. Однако лишь сопоставление осмотической концентрации по разные стороны гематоэнцефалического барьера (интерстициальная жидкость - ликвор) позволяет оценить направленность осмоса.

Поддержание осмоляльности на нормальном уровне осуществляет система осморегуляции с весьма сложными центральными и периферическими механизмами. Эта система включает афферентное звено в виде осморецепторов - чувствительных образований, обращенных во внутреннюю среду и реагирующих на изменение концентрации в ней растворенных частиц. Импульсы от осморецепторов передаются в гипоталамический центр осморегуляции (супраоптическое ядро гипоталамуса), а оттуда - к исполнительным органам (почки, потовые железы, желудочно-кишечный тракт).

Процесс осморегуляции состоит из двух этапов. Сначала происходит ряд изменений, направленных на восстановление осмоляльности внеклеточной жидкости: буферирование катионов и анионов белками крови и эритроцитами, миграция воды и ионов между плазмой и эритроцитами, ускорение обменно-диффузионных процессов между кровью и тканями. Однако они не ликвидируют полностью осмотический сдвиг, а перемещают его из сосудистого пространства в интерстициальное. Гиперосмия, возникающая в интерстиции, вызывает развитие приспособительных реакций, способных защитить клетки от небольшого осмотического воздействия. Это проявляется не только в демпфировании соединительной тканью самих клеточных структур, но и в способности организма уменьшить величину осмотического сдвига за счет мобилизации жидкости из других, менее важных областей, например, желудочно-кишечного тракта. И только тогда, когда интенсивность осмотического воздействия превышает возможности защиты, возникает угроза потери воды клетками и происходит включение осморегулирующего рефлекса (изменение реабсорбции воды и натрийуреза). Он играет ведущую роль в окончательном восстановлении осмотического равновесия и при развитии гипоосмии.

Следует акцентировать внимание на следующих механизмах поддержания осмобаланса. Первый заключается в изменении работы почек. Известно, что ими экскретируются не только натрий, но и вода, а также продукты распада белков и аминокислот (один из основных источников образования осмотически активных частиц). Первичная моча, образованная путем ультрафильтрации крови гломерулами нефрона, приблизительно изоосмотична плазме. Во время прохождения через нефрон состав первичной мочи меняется. При этом, в зависимости от ситуации, почки сохраняют либо удаляют воду и осмотически активные вещества. Считают, что выделение с мочой осмотически активных веществ достаточно точно отражает степень угнетения почечных функций. Если у человека массой 70 кг, получающего с пищей 2000 ккал, суточная осмотическая "продукция" (совокупное выделение почками осмотически активных веществ) составляет 800 мосмоль, то сразу после оперативного вмешательства величина ее значительно уменьшается. Отношение осмоляльности мочи к плазме (осмотический концентрационный индекс) признан многими авторами одним из наиболее надежных показателей нарушения функции почек. Снижение его ниже 1,0, особенно в сочетании с олигурией, некорригируемой гиперосмоляльностью, соответственно гипернатриемией и гиперазотемией свидетельствует о развитии почечной недостаточности и является прогностически неблагоприятным признаком.

Второй механизм заключается в изменении работы потовых желез. Образующийся в их проксимальных отделах первичный пот обычно гипотоничен по отношению к плазме. Усиление секреции пота приводит к увеличению потери свободной воды и сопровождается нарастанием осмоляльности.

Третий механизм состоит в изменении работы гормональной системы. Установлено, что гормоны оказывают свое действие посредством влияния на процессы анаболизма и катаболизма, сопровождающиеся активацией или уменьшением синтеза свободной воды и осмотически активных веществ. Естесственно, что такое влияние сказывается не сразу, а через какое-то время. Список гормонов, оказывающих то или иное влияние на осмоляльность, представлен в табл.1.

Методы исследования в медицине. Чувствительность и специфичность метода. Что такое скрининг-тест? Степень риска диагностической манипуляции. Обзор современных методов исследования и их диагностическая ценность. Диагностика по методу Фолля. Квантовая и биорезонансная диагностика.

Современная медицина располагает большими возможностями для детального изучения строения и функционирования органов и систем, быстрой и точной диагностики каких-либо отклонений от нормы или заболеваний. Методы лабораторной диагностики в большей степени отражают проблемы на клеточном и субклеточном уровне (глава 1.4), но в то же время позволяют судить о “поломках” в конкретном органе. Чтобы увидеть, что происходит в данном органе, используют, в частности, инструментальные методы диагностики.

Некоторые исследования применяют только для выявления тех или иных специфических заболеваний. Однако многие диагностические процедуры универсальны и используются врачами разных специальностей (глава 2.1). Для выявления заболеваний, симптомы которых еще не проявились или проявились слабо, проводят скрининг-тесты. Примером скрининг-теста является флюорография, позволяющая обнаружить болезни легких на ранних стадиях. Скрининг-тест должен быть точен, относительно недорог, а его проведение не должно вредить здоровью и сопровождаться сильными неприятными ощущениями для обследуемого. К скрининг-тестам можно отнести некоторые лабораторные методы диагностики – анализы крови и мочи. Самое распространенное исследование – клинический анализ крови, который является основным методом оценки форменных элементов крови. Кровь для исследования обычно получают из капилляров пальца. Кроме числа эритроцитов, лейкоцитов и тромбоцитов, определяют процентное содержание каждого вида лейкоцитов, содержание гемоглобина, размер и форму эритроцитов, число ретикулоцитов (незрелых эритроцитов, еще имеющих ядро). Клинический анализ крови (таблица 2.1.1) позволяет диагностировать большинство заболеваний крови (анемии, лейкозы и другие), а также оценить динамику воспалительного процесса, эффективность проводимого лечения, вовремя обнаружить развивающийся побочный эффект препарата.

Таблица 2.1.1. Клинический анализ крови

Биохимический анализ крови (таблица 2.1.2) позволяет оценить содержание в ней электролитов (ионов натрия, калия, хлоридов, бикарбонат-ионов и других), ферментов, характеризующих состояние того или иного органа (щелочная фосфатаза, аланинаминотрансфераза и другие). Во время исследования определяют количество белка, глюкозы и токсических продуктов обмена, которые в норме выводятся почками (креатинин, мочевина). Кровь для биохимического анализа получают из вены. Существует еще множество анализов крови, позволяющих контролировать состояние различных органов и систем, а также косвенно оценивать состояние организма в целом.

Читайте также: