Оптичні прилади та їх застосування реферат

Обновлено: 05.07.2024

Оптичні прилади– технічні пристрої, дія яких основана на хвильових властивостях світла, що дозволяють отримувати відображення об’єктів за допомогою оптичних систем (лінз, призм, дзеркал і т. п.).

Основними частинами оптичних приладів є об’єктив і окуляр.

Об’єктивом називається оптична система, повернена в бік предмета, який розглядається, і призначена для побудови його зображення.

Окуляр – оптична система, яка служить для розглядання спостерігачем відображення, створеного об’єктивом.

До основних характеристик оптичних приладів відносяться: збільшення, поле зору, величина вхідної і вихідної зіниць, світлосила, світлопропускання, світлорозсіювання, роздільна здатність, пластичність, перископічність.

Збільшення – основна характеристика оптичних приладів, яка визначає дальність виявлення і розпізнавання об’єктів, точність наведення приладів, масштаб зображення.

Збільшення характеризується кратністю (наприклад, при двократному збільшенні зображення предмета в приладі - в двічі більше).

Поле зору– видима в приладі частина простору без його переміщення. Світлосила характеризує освітлюваність зображення об’єкта на сітчатці ока при спостереженні через прилад. Умовно світлосила позначається числом, що дорівнює, квадрату діаметра вихідної зіниці.

Дозволяюча здатність – найменший кут між двома віддаленими сусідніми точками спостережуваного предмета, зображення яких в зоровій трубі виходить окремим.

Перископічність характеризує можливість роботи оптичних приладів з-за сховищ і визначається відстанню по вертикалі між центрами вхідної і вихідної зіниць.

За основним призначенням оптичні прилади класифікуються на:

- прилади вимірювання дальності (далекомір);

- прилади вимірювання кутів, напрямків і перебільшення;

- приціли і прилади для наведення (коліматор, панорама);

- прилади оптичного зв’язку;

- фотографічні і спостережувально-фотографічні прилади.

Оптичні прилади спостереження бувають монокулярні, бінокулярні, перископічні і неперископічні.

Історична довідка: наукова розробка і застосування оптичних приладів розпочалися у XVII столітті. Через відсталість Росія закуповувала оптичні прилади за кордоном. Перша російська майстерня з виготовлення оптичних приладів була заснована у 1905 році при Обухівському сталеливарному заводі. У 1908 році майстерня розпочала випуск біноклів, малих стереотруб, гарматних панорам. У 1914 році був закладений новий оптико-механічний завод.

Сутність, особливості оптичних приладів. Основні частини фотоапарата, використання оптичних телескопічних систем. Характеристика мікроскопів. Застосування та специфіка камери-обскура. Опис монокля, перископа, проектора, бінокля, футляра, окуляра та лупи.

Рубрика Производство и технологии
Вид презентация
Язык украинский
Дата добавления 19.03.2019
Размер файла 1,7 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

Техніко-економічне обгрунтування автоматизації парового котла сушильної камери АВМ-300 на базі мікропроцесорного контролера ОВЕН ПЛК-110 та сенсорної панелі оператора ОВЕН СП-270. Опис приладів, які використовуються при автоматизації макаронної лінії.

курсовая работа [3,5 M], добавлен 09.02.2013

Продукція, що випускається фірмою ОВЕН. Прилади контролю та управління. Блоки живлення та прилади комутації. Функціональні можливості приладів. Елементи управління та індикація приладів. Суворий контроль за дотриманням технологічних процесів з боку фірми.

отчет по практике [596,1 K], добавлен 05.02.2014

Сутність та особливості методу термотрансферного друку. Його переваги та недоліки. Принципи технології та області застосування термотрансферного друку. Сфери застосування шовкографії. Процес одержання зображення на відбитку способом трафаретного друку.

реферат [35,1 K], добавлен 22.11.2011

Принцип дії та будова проводів і кабелів, особливості їх застосування. Обмотувальні дроти, їх види й маркіровка. Класифікація спеціальних кабелів. Монтаж і технічне обслуговування дротів і кабелів, основні несправності, методи їх визначення та ремонт.

контрольная работа [670,7 K], добавлен 18.05.2011

Рідинні засоби та деформаційні прилади для вимірювання тиску. Вимірювальні прилади із сильфоним та мембранним чутливим елементом. Установка, обслуговування деформаційних трубчасто-пружинних манометрів. Правила вимірювання трубчасто-пружинними манометрами.

реферат [514,7 K], добавлен 31.03.2009

Області застосування вогнетривів. Показники властивостей піношамотних виробів. Карбідкремнієві вогнетриви, особливості застосування. Класифікація теплоізоляційних матеріалів. Фізико-хімічні властивості перліту. Теплопровідність теплоізоляційної вати.

курсовая работа [126,0 K], добавлен 30.09.2014

Витратомір як прилад, що вимірює витрату речовини, що проходить через переріз трубопроводу в одиницю часу. Класифікація та різновиди даних приладів, їх відмінні особливості та функціонал. Порівняльна характеристика різних витратомірів. Вторинні прилади.

Оптические приборы помогают нам исследовать окружающий мир. Телескоп позволяет обнаружить и рассмотреть очертания и детали далеких космических тел, а микроскоп раскрывает тайны нашей планеты, такие как строение живых клеток.

Наши глаза, по сути, представляют собой оптические приборы. Когда мы смотрим на предмет, линзовая система, расположенная в передней части каждого глаза, формирует его изображение на сетчатке - слое глазного дна, содержащем примерно 125 млн. светочувствительных клеток. Падающий на сетчатку свет заставляет клетки посылать в мозг электрический нервный сигнал, позволяя нам визуально воспринимать предмет.

Кроме того, глаза обладают системой регулировки яркости. При ярком освещении зрачок инстинктивно сужается, понижая яркость изображения до приемлемого уровня. При слабом освещении зрачок расширяется, увеличивая яркость изображения.

Как действует линза

Линзовая система глаза состоит из выпуклой линзы хрусталика и расположенной перед ней заполненной жидкостью искривленной оболочки, которая называется роговицей. Роговица обеспечивает четыре пятых всего процесса фокусировки. Тонкая регулировка осуществляется хрусталиком, чья кривизна поверхности изменяется расположенным вокруг него мышечным кольцом (капсулой). Когда глаз не может принять необходимую форму, обычно из-за нарушений в данных мышцах, изображения видимых предметов становятся расплывчатыми.

Сильные выпуклые линзы часто используются в качестве увеличительных стекол. Первые увеличивающие устройства использовались примерно 2000 лет назад. В древнегреческих и древнеримских документах описывается, как для увеличения предметов можно использовать наполненный водой круглый стеклянный сосуд. Полностью сделанные из стекла линзы появились гораздо позже и, вероятно, впервые были использованы в XI веке монахами, трудившимися над рукописями. В конце XIII века увеличительные стекла с небольшим увеличением уже использовались в очках для коррекции дальнозоркости. Но техника изготовления вогнутых линз для коррекции близорукости была изобретена только в начале XV века.

Когда появились увеличительные стекла, люди, естественно, попытались использовать вместо одного два таких стекла, чтобы получить еще большее увеличение. Экспериментальным путем было обнаружено, что при определенном расстоянии между линзами отдаленный объект можно увидеть со значительным увеличением. Такое расположение линз послужило основой для создания первого телескопа, который в то время назывался зрительной трубой. Изобретение этого прибора иногда приписывают жившему в XIII веке английскому философу и естествоиспытателю Роджеру Бэкону. Но, возможно, пальма первенства принадлежит арабским ученым.

Рефрактор Галилея

Зрительная труба, созданная в 1608 году голландским оптиком Хансом Липперши, привлекла внимание итальянского ученого Галилея. В течение короткого времени ученый усовершенствовал конструкцию Липперши и создал несколько труб с улучшенными характеристиками. С их помощью он совершил ряд открытий, включая горы и долины на Луне, а также четыре спутника Юпитера.

Открытия Галилея показали важность телескопа, а используемый им тип прибора получил известность как телескоп Галилея. Выпуклая линза его объектива собирала свет от наблюдаемого объекта. А вогнутая линза окуляра отклоняла световые лучи таким образом, что они создавали увеличенное прямое изображение. Линзы устанавливались в трубах, одна из которых (меньшего диаметра) скользила внутри другой. Это позволяло регулировать расстояние между линзами, получая при этом четкое изображение.

Телескоп Галилея работает с использованием принципа преломления (отклонения) света и поэтому известен также как телескоп-рефрактор. Другой вид телескопа-рефрактора характеризуется выпуклостью обеих линз. Такая конструкция создает увеличенное, но перевернутое изображение и известна как астрономический телескоп.

Рефлектор Ньютона

При использовании ранних телескопов-рефракторов возникала одна существенная проблема, которая обусловлена дефектом линз, называемым хроматической аберрацией и приводящим к появлению вокруг изображений нежелательных цветных ореолов. Для устранения этого недостатка английский ученый Исаак Ньютон в 1660-е годы сконструировал телескоп-рефлектор. Для концентрации световых лучей и создания изображения в нем вместо линзы объектива используется вогнутое зеркало, не образующее цветных ореолов. Плоское зеркало отражает свет в выпуклую линзу окуляра, установленную на главной трубе сбоку. Прибор такого типа известен как телескоп Ньютона.

Увеличительное стекло иногда называют простым микроскопом, т. к. его используют при наблюдении мелких объектов.

Сложный микроскоп состоит из двух выпуклых линз. Линза объектива создает увеличенное изображение, которое затем снова увеличивается линзой окуляра. Как и в астрономическом телескопе, это изображение перевернуто. Многие сложные микроскопы имеют комплект объективных линз с различной степенью увеличения.

Оптические приборы — это устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется).

Содержание

Введение
1. Базовые оптические элементы
2. Световые фильтры
3. Виды фильтров
4. Оптическая система — микроскоп
5. Оптическая система телескоп
6. Разрешение телескопов
7. Искусственный глаз телескопа
Заключение
Список использованных источников

Введение

Оптические приборы — это устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете. При первичной оценке качества прибора рассматриваются лишь основные его характеристики: способность концентрировать излучение – светосила; способность различать соседние детали изображения – разрешающая сила; соотношение размеров предмета и его изображения – увеличение. Для многих приборов определяющей характеристикой оказывается поле зрения – угол, под которым из центра прибора видны крайние точки предмета.

При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик – светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

1. Базовые оптические элементы

  1. Линзы.
  2. Призмы.
  3. Зеркала.
  4. Световые фильтры.

Теперь рассмотрим каждый оптический элемент или как их еще называют, оптические детали, подробней.

Линзы

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Собирающие:
1 — двояковыпуклая
2 — плоско-выпуклая
3 — вогнуто-выпуклая (положительный(выпуклый) мениск)
Рассеивающие:
4 — двояковогнутая
5 — плоско-вогнутая
6 — выпукло-вогнутая (отрицательный(вогнутый) мениск)

. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих — линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например, пузырёк воздуха в воде — двояковыпуклая рассеивающая линза. Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием. Для построения оптических приборов с исправленной оптической аберрацией (прежде всего — хроматической, обусловленной дисперсией света, — ахроматы и апохроматы) важны и иные свойства линз и их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне. Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления.

Призмы

Призма — оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела — призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется. На сегодняшний день известно большое количество различных призм.

  1. Дисперсионные призмы, как правило, имеют три равных угла по 60°, их используют в спектральных приборах для пространственного разделения излучений различных длин волн. Вот некоторые из них:
  • Простая трехгранная призма
  • Призма Броунинга-Рузерфорда
  • Дисперсионная призма Аббе
  • Призма Амичи (призма прямого зрения)
  • Призма Литтрова
  • Призма Корню
  • Призма Пеллин-Брока

2. Отражательные призмы используют для изменения хода лучей, изменения направления оптической оси, изменения направления линии визирования, для уменьшения габаритных размеров приборов. Классифицируются отражательные призмы по нескольким признакам:

Также, особую нишу среди отражательных призм занимают составные призмы, — состоящие из нескольких частей, разделённых воздушными промежутками. Некоторые широко распространённые призмы получили собственные имена.

3. Поляризационные призмы, с их помощью получают линейно поляризованноеоптическое излучение. Обычно состоят из 2 или более трёхгранных призм, по меньшей мере одна из которых вырезается из оптически анизотропного кристалла. Призма Глана-Тейлора — одна из наиболее часто используемых в настоящее время призм, предназначена для преобразования излучения с произвольной поляризацией в линейно поляризованное. Конструкция была предложена Аркардом и Тейлором в 1948 году. Основные из поляризационных призм:

  • Призма Аренса
  • Призма Волластона
  • Призма Глазебрука
  • Призма Глана-Тейлора
  • Призма Глана-Томпсона
  • Призма Глана-Фуко
  • Призма Николя
  • Призма Номарски
  • Призма Рошона
  • Призма Сенармонта

Зеркала

Зеркало — гладкая поверхность, предназначенная для отражения света (или другого излучения). Наиболее известный пример — плоское зеркало. Зеркала широко используются в оптических приборах — спектрофотометрах, спектрометрах в других оптических приборах. Различают несколько видов зеркал:

2. Световые фильтры

Светофильтр в оптике, технике — оптическое устройство, которое служит для подавления (выделения) части спектра электромагнитного излучения. В мире существует огромное количество всевозможных световых фильтров и каждый предназначен для своих целей, например: защитный фильтр, предназначен для предохранения передней поверхности объектива от механических воздействий. Часто в этой роли используется ультрафиолетовый фильтр.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

3. Виды фильтров:

Нейтральный фильтр, служит для снижения эффективной светосилы объектива без изменения геометрической, а также для снижения эффективной светосилы объектива, не имеющего диафрагмы.

Солнечный фильтр — чрезвычайно плотный нейтральный фильтр, позволяющий без вреда для фотографа и фотоматериала снимать солнце, ядерный взрыв и другие явления, значительно превышающие по яркости обычные предметы.

Спектральные (цветные)

Светофильтры методов цветовоспроизведения

  • Аддитивные светофильтры — цветоделительные зональные светофильтры, выделяющие из исходного светового потока белого света трёх пространственно разделённых (с помощью других оптических элементов) потоков: синего, зелёного и красного.
  • Тепловой фильтр, теплофильтр — избирательно поглощает или отражает инфракрасное излучение и пропускает с малыми потерями диапазон видимого света. Применяются в осветительной аппаратуре, в проекторах для защиты плёнки, а также в микрофотографии для защиты биологических объектов от нагревания.
  • Абсорбционные, обладают спектральной избирательностью, обусловленной различным поглощением различных участков спектра электромагнитного излучения. Наиболее массовые фильтры. Производятся на основе окрашенных оптических стёкол или органических веществ (например, из желатины).
  • Интерференционный фильтр, отражает одну и пропускает другую часть спектра падающего излучения, благодаря явлению многолучевой интерференции в тонких диэлектрических плёнках. Также называется Дихроичный фильтр.
  • Отражательный фильтр. Действие отражательных фильтров основано на спектральной зависимости отражения непрозрачного материала. Преимуществом отражательного фильтра перед абсорбционными является единственность участвующей в оптической системе поверхности и отсутствии хроматических аберраций, вносимых преломляющими прозрачными средами.
  • Поляризационный фильтр. Простейший съёмочный поляризационный фильтр линейной поляризации, содержит один поляризатор, поворачивающийся в оправе. Его применение основывается на том, что часть света в окружающем нас мире поляризована. Частично поляризованы все лучи, неотвесно падающие отражённые от диэлектрических поверхностей. Частично поляризован свет, поступающий от неба. Поэтому, применяя поляризатор при съёмке, фотограф получает дополнительную возможность изменения яркости и контраста различных частей изображения. Например, результатом съёмки пейзажа в солнечный день с применением такого фильтра может получиться тёмное, густо-синее небо. При съёмке находящихся за стеклом объектов поляризатор позволяет избавиться от части отражений в стекле.
  • Дисперсные фильтры основаны на зависимости показателя преломления от длины волны. В сочетании с отражающими и/или интерференционными фильтрами, а также растром часто служат для создания расщепляющих оптических систем — дихроических призм. Находят применение в современных мультимедийных проекторах, где являются основным инструментом разделения светового потока мощной лампы накаливания на три спектральных диапазона. Применяются в качестве эффектных фильтров для получения радужных изображений.

4. Оптическая система — микроскоп

Изучение микроскопических объектов в медицине, биологии, химии, электронике нельзя представить без такого важного предмета, как микроскоп. Этот оптический прибор дает человеку возможность исследовать процессы и явления микромира. Современный лабораторный микроскоп – это высокотехнологичное, функциональное оборудование, предназначенное для комфортной ежедневной работы специалистов.

Микроскопы могут быть оптическими, электронными, цифровыми. В лабораториях находят широкое применение все модели. А какой именно прибор нужен в работе зависит от специфики исследований. Классическая модель – оптический микроскоп. Его конструкция состоит из окуляра и объектива, которые закреплены в подвижном тубусе. Под объективом размещается предметный столик для исследуемых образцов. Оптическая система с точным механизмом настройки и осветительный модуль позволяют получить четкое изображение высокого качества. Галогеновые, ксеноновые или светодиодные лампы дают бестеневое рабочее поле, не искажая цвета. В лабораторной работе широко распространены бинокулярные микроскопы. Они передают объемное увеличенное изображение. Стереомикроскопы применяются для препарирования микроскопических объектов. Благодаря тому, что изображение не инвертируется, можно легко манипулировать инструментами. Чтобы получить многократное увеличение применяется электронный микроскоп. Он дает изображение в тысячи раз крупнее, чем обычный оптический. Это возможно благодаря специальной технологии электростатических линз.

Для обработки данных на компьютере используется цифровой микроскоп. Оптическая система цифровых микроскопов совмещена с матрицей, трансформирующей световой поток в электрические сигналы. Это дает возможность передавать данные на компьютер для дальнейшей работы. Его конструкция позволяет присоединять камеру, изображение с которой можно анализировать на экране. Цифровой прибор обладает значительно расширенными возможностями по сравнению с другими моделями.

На сегодняшний день одним из самых мощных микроскопов является “Titan”. Созданный в рамках американско-европейского проекта TEAM , получил свои первые изображения с рекордным разрешением 0,04 нанометра. Это равно четверти поперечника атома углерода. Чтобы понять, какие новый инструмент открывает возможности по изучению материалов или биологических молекул, нужно добавить, что диаметр спирали ДНК составляет целых 2 нанометра. TEAM означает Transmission Electron Aberration-corrected Microscope, то есть трансмиссионный электронный микроскоп с коррекцией аберрации (аберрация — отклонение от нормы). Он появился в результате смешения двух технологий: электронного микроскопа сканирующего и трансмиссионного типов (так называемая технология S/TEM). Для повышения разрешения здесь был применён ряд новаций, в частности, сразу две оригинальные системы коррекции сферической аберрации. Конечно, по техническим характеристикам на сегодняшний день лучше этого микроскопа нет. Но один из американских физиков Дэрок Истэм, считает, что возможно достигнуть в 4 раза лучший результат — 0,01 нм. Планируемый электронный микроскоп настолько мал, что соответствует в размерах кончику пальца, и в четыре раза мощнее. В его проекте используется луч меньшей энергии, эмиттер электронов расположен всего в нескольких миллиметрах от изучаемого объекта. Вместо выделения электронов с вольфрамовой нити производится бомбардировка с одного атома крошечной золотой пирамиды высотой около 100 нм. Луч будет сосредоточен, поскольку он проходит через отверстие величиной 2 мкм, расположенное в кремниевом чипе, прежде чем достигнет цели. Луч электронов в новом микроскопе Истэма имеет длину всего 10 мкм. Длина в стандартном аппарате соответствует 600 мм. Луч, создаваемый прибором Истэма, имеет в 100 раз меньшую энергию, чем обычный сканирующий электронный микроскоп. Именно сокращение расхода энергии, по мнению Истэма, является главным направлением развития сканирующих электронных микроскопов. Меньшая мощность луча также позволяет изучать тонкие структуры, разрушаемые электронными микроскопами, например, необработанные белки и ДНК. Но многие эксперты консервативны в своих ожиданиях результатов работы нового микроскопа. Признавая верность сокращения длины луча, достижение разрешения в 0,01 нм расценивается как маловероятное. При этом существует эффект колебания энергии луча, что также ограничивает разрешающую способность, и, как ожидается, этот эффект имеет место и в разработке Истэма. При всей полезности сокращения энергопотребления, по мнению специалистов, этот микроскоп имеет недостаточную глубину проникновения для создания трехмерных изображений из-за конструкции отверстия.

Ко всему выше сказанному можно добавить только одно, что и по сей день основной задачей оптических приборов, используемых в лаборатории, является — оперативность в получении точных данных, необходимых для ежедневной работы. Микроскоп, помимо своего прямого назначения, должен отвечать таким требованиям, как надежность, функциональность и простота использования. Оснащение лабораторий качественными микроскопами обеспечивает эффективность ежедневного труда.

5. Оптическая система телескоп

Основное назначение телескопов — собрать как можно больше излучения от небесного тела. Это позволяет видеть неяркие объекты. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Разрешение мелких деталей – третье предназначение телескопов. Количество собираемого ими света и доступное разрешение деталей сильно зависит от площади главной детали телескопа — его объектива. Объективы бывают зеркальными и линзовыми.

Линзы, так или иначе, всегда используются в телескопе. Но в телескопах-рефракторах линзой является главная деталь телескопа – его объектив. Вспомним, что рефракция – это преломление. Линзовый объектив преломляет лучи света, и собирает их в точке, именуемой фокусом объектива. В этой точке строится изображение объекта изучения. Чтобы его рассмотреть используют вторую линзу – окуляр. Она размещается так, чтобы фокусы окуляра и объектива совпадали. Так как зрение у людей разное, то окуляр делают подвижным, чтобы было возможно добиться четкого изображения. Мы это называем настройкой резкости. Все телескопы обладают неприятными особенностями — аберрациями. Аберрации – это искажения, которые получаются при прохождении света через оптическую систему телескопа. Главные аберрации связаны с не идеальностью объектива. Чтобы уменьшить аберрации изготавливают сложные, вовсе не двухлинзовые системы. Дополнительные части вводятся для исправления аберраций объектива. На сегодняшний день первенство среди линзовых телескопов держит телескоп, Йеркской обсерватории с объективом 102 см в диаметре.

Что касается зеркальных объективов, то у простых зеркальных телескопов, телескопов-рефлекторов, объектив — это сферическое зеркало, которое собирает световые лучи и отражает их с помощью дополнительного зеркала в сторону окуляра — линзы, в фокусе которой строится изображение. Рефлекс – это отражение

Вы можете изучить и скачать доклад-презентацию на тему Оптика в медицине. Презентация на заданную тему содержит 12 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500

Оптика в медицине Выполнила: студентка 2 курса Медико-биологического факультета 1 группы Холова Алина Романовна

Использование простейших оптических систем – тонких линз, позволило многим людям с дефектами зрительной системы нормально видеть (очки, глазные линзы и т.д.). Использование простейших оптических систем – тонких линз, позволило многим людям с дефектами зрительной системы нормально видеть (очки, глазные линзы и т.д.).

Бинокуляры созданы по принципу увеличительной лупы или бинокля. Дополнительно в него встроена лампа, помогающая освещать рабочую область. Работа специалистов в таких приборах становится более эффективной, точной, аккуратной. Бинокуляры созданы по принципу увеличительной лупы или бинокля. Дополнительно в него встроена лампа, помогающая освещать рабочую область. Работа специалистов в таких приборах становится более эффективной, точной, аккуратной.

Волоконная оптика широко используется в медицинской эндоскопии. Различные эндоскопы (гастроскопы, трахеобронхоскоп, цистоскоп, лапароскоп и т.п.) дают возможность наблюдать внутренние органы в диагностических целях и делать фотографии внутренних органов. Один пучок волокон используется, чтобы освещать изучаемую область, а по другому пучку изображение передается к человеческому глазу или фотокамере. Волоконная оптика широко используется в медицинской эндоскопии. Различные эндоскопы (гастроскопы, трахеобронхоскоп, цистоскоп, лапароскоп и т.п.) дают возможность наблюдать внутренние органы в диагностических целях и делать фотографии внутренних органов. Один пучок волокон используется, чтобы освещать изучаемую область, а по другому пучку изображение передается к человеческому глазу или фотокамере.

Наиболее развиты методы оптической пульсоксиметрии, позволяющие измерять частоту пульса и содержание в артериальной крови фракций гемоглобина, насыщенных кислородом (сатурация). Наиболее развиты методы оптической пульсоксиметрии, позволяющие измерять частоту пульса и содержание в артериальной крови фракций гемоглобина, насыщенных кислородом (сатурация).

Использование призм для разложения белого света на спектры привело к созданию спектрографов и спектроскопов. Они позволяют наблюдать спектры поглощений и испусканий твердых тел и газов. Спектральный анализ позволяет узнать химический состав вещества. Использование призм для разложения белого света на спектры привело к созданию спектрографов и спектроскопов. Они позволяют наблюдать спектры поглощений и испусканий твердых тел и газов. Спектральный анализ позволяет узнать химический состав вещества.

Лабораторные исследования образцов крови и других биологических препаратов – это спектрометрия и оптическая микроскопия. В поляризационных и интерференционных микроскопах используют волновые свойства света для улучшения контраста рассматриваемых прозрачных структур. Лабораторные исследования образцов крови и других биологических препаратов – это спектрометрия и оптическая микроскопия. В поляризационных и интерференционных микроскопах используют волновые свойства света для улучшения контраста рассматриваемых прозрачных структур.

С появлением промышленных лазеров наступила новая эра в хирургии. При этом пригодился опыт специалистов по лазерной обработке металла. Приваривание лазером отслоившейся сетчатки глаза — это точечная контактная сварка; лазерный скальпель — автогенная резка; сваривание костей — стыковая сварка плавлением; соединение мышечной ткани — тоже контактная сварка. Самый популярный лазер в хирургии — углекислотный. Другие лазеры монохроматичны, то есть нагревают, разрушают или сваривают только некоторые биологические ткани с вполне определенной окраской. С появлением промышленных лазеров наступила новая эра в хирургии. При этом пригодился опыт специалистов по лазерной обработке металла. Приваривание лазером отслоившейся сетчатки глаза — это точечная контактная сварка; лазерный скальпель — автогенная резка; сваривание костей — стыковая сварка плавлением; соединение мышечной ткани — тоже контактная сварка. Самый популярный лазер в хирургии — углекислотный. Другие лазеры монохроматичны, то есть нагревают, разрушают или сваривают только некоторые биологические ткани с вполне определенной окраской.

В настоящее время обширная линия соприкосновения физики и медицины всё время расширяется и упрочняется. Нет ни одной области медицины, где бы не применялись физические знания и приборы.

Читайте также: