Определение элементарных функций реферат

Обновлено: 30.06.2024

Стерликова М.И. Определение основных элементарных функций с помощью функциональных уравнений: выпускная квалификационная работа/ Стерликова Марина Игоревна; Тамбовский государственный университет имени Г.Р.Державина, институт математики физики и информатики, кафедра алгебры и геометрии.- Тамбов, 2015.- 40с.

Ключевые слова: функциональные уравнения, методы решения функциональных уравнений, элементарные функции, уравнения Коши.

Цель выпускной квалификационной работы: изучить функциональные уравнения и применение этих уравнений к определению элементарных функций: линейной, показательной, логарифмической, степенной и тригонометрических функций.

Методы: анализ, исследование

Аннотация: Данная работа выполнена на основе анализа учебно-практических пособий. В работе рассмотрены основные вопросы о функциональных уравнениях, методы решения функциональных уравнений. Приведенные примеры и задачи позволяют успешно овладеть знаниями по изучаемой дисциплине. Вопросы, рассмотренные в работе, не только расширяют кругозор, но и несут обучающую функцию, что только подчеркивает значимость выбранной темы.

Функциональными уравнениями занимаются с очень давних пор, этому курсу так и не нашлось достойного места в математических программах. А жаль. Ведь решение отдельных функциональных уравнений требует достаточно глубокого понимания предмета и прививает любовь к самостоятельной творческой работе.

Цель выпускной квалификационной работы: изучить функциональные уравнения и применение этих уравнений к определению элементарных функций: линейной, показательной, логарифмической, степенной и тригонометрических функций.

- изучить научно практическую литературу по теме выпускной квалификационной работы,

- рассмотреть функциональные уравнения,

- раскрыть методы решения функциональных уравнений,

- составить функциональные уравнения соответствующие элементарным функциям,

- развитие интереса к решению нестандартных математических задач и математики в целом.

При написании работы было изучено, проанализировано 4 источника.

Выпускная квалификационная работа состоит из двух глав.

В первой главе рассмотрим методы решения функциональных уравнений: метод сведения функционального уравнения к известному уравнению с помощью замены переменной и функции, метод подстановок, применение элементов математического анализа к решению функциональных уравнений; для каждого метода подобраны примеры по решению уравнений.

Во второй главе представим определение основных элементарных функций (,, , , ) с помощью функциональных уравнений, а так же рассмотрели некоторые их свойства.

Вопросы, рассмотренные в работе, не только расширяют кругозор, но и несут обучающую функцию, что только подчеркивает значимость выбранной темы.

История развития функциональных уравнений

Под функциональным уравнением в узком смысле слова понимают уравнение, неизвестная функция которого связана с известными функциями одной или нескольких переменных при помощи образования сложной функции (композиции).

Например : , где - неизвестная функция , и - независимые переменные.

Некоторые функциональные уравнения знакомы нам еще из школьного курса это , , , которые задают такие свойства функций, как чётность, нечётность, периодичность.

Решением функционального уравнения на множестве называется функция, при подстановке которой в функциональное уравнение оно превращается в верное равенство на множестве.

Например: Покажем, что функция является решением функционального уравнения .

Действительно, для всех x и y . Поэтому функция является решением функционального уравнения . Задача решения функциональных уравнений является одной из самых старых в математическом анализе. Они появились почти одновременно с зачатками теории функций. Первый настоящий расцвет этой дисциплины связан с проблемой параллелограмма сил. Еще в 1769 году Даламбер свел обоснование закона сложения сил к решению функционального уравнения

То же уравнение с той же целью было рассмотрено Пуассоном в 1804 году при некотором предположении аналитичности, между тем как в 1821 году Коши (1789 - 1857) нашел общие решения этого уравнения , , , предполагая только непрерывность .

Даже известная формула неевклидовой геометрии для угла параллельности была получена Н.И. Лобачевским (1792 - 1856) из функционального уравнения

(2) которое он решил методом, аналогичным методу Коши.

Ряд геометрических задач, приводящих к функциональным уравнениям, рассматривал английский математик Ч. Баббедж (1792 -1871). Он изучал периодические кривые второго порядка, определяемые следующим свойством для любой пары точек кривой: если абсцисса второй точки равна ординате первой, то ордината второй точки равна абсциссе первой. Пусть такая кривая является графиком функции - произвольная ее точка. Тогда, согласно условию, точка с абсциссой имеет ординату х . Следовательно,

Функциональному уравнению (3) удовлетворяют функции: ,

Одними из простейших функциональных уравнений являются уравнения Коши

Эти уравнения Коши подробно изучил в своем курсе анализа, изданном в 1821 году. Непрерывные решения этих четырех основных уравнений имеют соответственно вид .

В классе разрывных функций могут быть и другие решения. Уравнение (4) ранее рассматривалось Лежандром и Гауссом при выводе основной теоремы проективной геометрии и при исследовании гауссовского закона распределения вероятностей.

Функциональное уравнение (4) было опять применено Г. Дарбу к проблеме параллелограмма сил и к основной теореме проективной геометрии; его главное достижение - значительное ослабление предположений. Мы знаем, что функциональное уравнение Коши (4) характеризует в классе непрерывных функций линейную однородную функцию . Дарбу же показал, что всякое решение, непрерывное хотя бы в одной точке или же ограниченное сверху (или снизу) в произвольно малом интервале, также должно иметь вид . Дальнейшие результаты по ослаблению предположений следовали быстро один за другим (интегрируемость, измеримость на множестве положительной меры и даже мажорируемость измеримой функцией). Возникает вопрос: существует ли хоть одна какая-нибудь аддитивная функция (т. е. удовлетворяющая (4)), отличная от линейной однородной. Найти такую функцию действительно нелегко! В ходе работы мы покажем, что при рациональных x значения любой аддитивной функции должны совпадать со значениями некоторой линейной однородной функции, т. е. для . Казалось бы, что тогда для всех действительных . Если - непрерывна, то это действительно так, если же данное предположение отбросить - то нет. Первый пример отличного от разрывного решения функционального уравнения (4) построил в 1905 году немецкий математик Г. Гамель с помощью введённого им базиса действительных чисел.

Многие функциональные уравнения не определяют конкретную функцию, а задают широкий класс функций, т. е. выражают свойство, характеризующее тот или иной класс функций. Например, функциональное уравнение характеризует класс функций, имеющих период 1, а уравнение - класс функций, симметричных относительно прямой, и т. д.

Вообще, для функциональных уравнений, не сводящихся к дифференциальным или интегральным, известно мало общих методов решения. Отсюда возникает необходимость рассмотреть вопрос о методах решения функциональных уравнений.

Основными элементарными функциями являются: постоянная функция (константа), корень n-ой степени, степенная функция, показательная, логарифмическая функция, тригонометрические и обратные тригонометрические функции.

Файлы: 1 файл

Osnovnye_elementarnye_funktsii.doc

Основные элементарные функции, их свойства и графики.

Основными элементарными функциями являют ся: постоянная функция (константа), корень n-ой степени, степенная функция, показательная, логарифмическая функция, тригонометрические и обратные тригонометрические функции.

Постоянная функция.

Постоянная функция задается на множестве всех действительных чисел формулой , гдеC – некоторое действительное число. Постоянная функция ставит в соответствие каждому действительному значению независимой переменной x одно и то же значение зависимой переменной y – значение С. Постоянную функцию также называют константой.

Графиком постоянной функции является прямая, параллельная оси абсцисс и проходящая через точку с координатами (0,C). Для примера покажем графики постоянных функций y=5,y=-2 и , которым на рисунке, приведенном ниже, отвечают черная, красная и синяя прямые соответственно.

Свойства постоянной функции.

  • Область определения: все множество действительных чисел.
  • Постоянная функция является четной.
  • Область значений: множество, состоящее из единственного числа С.
  • Постоянная функция невозрастающая и неубывающая (на то она и постоянная).
  • Говорить о выпуклости и вогнутости постоянной не имеет смысла.
  • Асимптот нет.
  • Функция проходит через точку (0,C) координатной плоскости.

Корень n-ой степени.

Рассмотрим основную элементарную функцию, которая задается формулой , где n – натуральное число, большее единицы.

Корень n-ой степени, n - четное число.

Начнем с функции корень n-ой степени при четных значениях показателя корня n.

Для примера приведем рисунок с изображениями графиков функций и , им соответствуют черная, красная и синяя линии.

Аналогичный вид имеют графики функций корень четной степени при других значениях показателя.

Свойства функции корень n-ой степени при четных n.

  • Область определения: множество всех неотрицательных действительных чисел .
  • При x=0 функция принимает значение, равное нулю.
  • Эта функция общего вида (не является четной или нечетной).
  • Область значений функции: .
  • Функция при четных показателях корня возрастает на всей области определения.
  • Эта функция имеет выпуклость, направленную вверх, на всей области определения, точек перегиба нет.
  • Асимптот нет.
  • График функции корень n-ой степени при четных n проходит через точки (0,0) и(1,1).

Корень n-ой степени, n - нечетное число.

Функция корень n-ой степени с нечетным показателем корня n определена на всем множестве действительных чисел. Для примера приведем графики функций и , им соответствуют черная, красная и синяя кривые.

При других нечетных значениях показателя корня графики функции будут иметь схожий вид.

Свойства функции корень n-ой степени при нечетных n.

  • Область определения: множество всех действительных чисел.
  • Эта функция нечетная.
  • Область значений функции: множество всех действительных чисел.
  • Функция при нечетных показателях корня возрастает на всей области определения.
  • Эта функция вогнутая на промежутке и выпуклая на промежутке , точка с координатами (0,0) – точка перегиба.
  • Асимптот нет.
  • График функции корень n-ой степени при нечетных n проходит через точки (-1,-1),(0,0) и (1,1).

Степенная функция.

Степенная функция задается формулой вида .

Рассмотрим вид графиков степенной функции и свойства степенной функции в зависимости от значения показателя степени.

Начнем со степенной функции с целым показателем a. В этом случае вид графиков степенных функций и свойства функций зависят от четности или нечетности показателя степени, а также от его знака. Поэтому сначала рассмотрим степенные функции при нечетных положительных значениях показателя a, далее - при четных положительных, далее - при нечетных отрицательных показателях степени, и, наконец, при четных отрицательных a.

Свойства степенных функций с дробными и иррациональными показателями (как и вид графиков таких степенных функций) зависят от значения показателя a. Их будем рассматривать, во-первых, при a от нуля до единицы, во-вторых, при a больших единицы, в-третьих, при a от минус единицы до нуля, в-четвертых, при a меньших минус единицы.

В заключении этого пункта для полноты картины опишем степенную функцию с нулевым показателем.

Степенная функция с нечетным положительным показателем.

Рассмотрим степенную функцию при нечетном положительном показателе степени, то есть, при а=1,3,5,….

На рисунке ниже приведены графики степенных фнукций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=1 имеем линейную функцию y=x.

Свойства степенной функции с нечетным положительным показателем.

  • Область определения: .
  • Область значений: .
  • Функция нечетная, так как .
  • Функция возрастает при .
  • Функция выпуклая при и вогнутая при (кроме линейной функции).
  • Точка (0;0) является точкой перегиба (кроме линейной функции).
  • Асимптот нет.
  • Функция проходит через точки (-1;-1), (0;0), (1;1).

Степенная функция с четным положительным показателем.

Рассмотрим степенную функцию с четным положительным показателем степени, то есть, при а=2,4,6,….

В качестве примера приведем графики степенных функций – черная линия, – синяя линия, – красная линия. При а=2 имеем квадратичную функцию, графиком которой является квадратичная парабола.

Свойства степенной функции с четным положительным показателем.

  • Область определения: .
  • Область значений: .
  • Функция четная, так как .
  • Функция возрастает при , убывает при .
  • Функция вогнутая при .
  • Точек перегиба нет.
  • Асимптот нет.
  • Функция проходит через точки (-1;1), (0;0), (1;1).

Степенная функция с нечетным отрицательным показателем.

Посмотрите на графики степенной функции при нечетных отрицательных значениях показателя степени, то есть, при а=-1,-3,-5,….

На рисунке в качестве примеров показаны графики степенных функций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=-1имеем обратную пропорциональность, графиком которой является гипербола.

Свойства степенной функции с нечетным отрицательным показателем.

  • Область определения: .
    При x=0 имеем разрыв второго рода, так как приа=-1,-3,-5,…. Следовательно, прямая x=0 является вертикальной асимптотой.
  • Область значений: .
  • Функция нечетная, так как .
  • Функция убывает при .
  • Функция выпуклая при и вогнутая при .
  • Точек перегиба нет.
  • Горизонтальной асимптотой является прямая y = 0, так как

Степенная функция с четным отрицательным показателем.

Перейдем к степенной функции при а=-2,-4,-6,….

На рисунке изображены графики степенных функций – черная линия, – синяя линия, – красная линия.

Свойства степенной функции с четным отрицательным показателем.

  • Область определения: .
    При x=0 имеем разрыв второго рода, так как приа=-2,-4,-6,…. Следовательно, прямая x=0 является вертикальной асимптотой.
  • Область значений: .
  • Функция четная, так как .
  • Функция возрастает при , убывает при .
  • Функция вогнутая при .
  • Точек перегиба нет.
  • Горизонтальной асимптотой является прямая y=0, так как

Степенная функция с рациональным или иррациональным показателем, значение которого больше нуля и меньше единицы.

Обратите внимание! Если a - положительная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными положительными показателями степени множество . Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Рассмотрим степенную функцию с рациональным или иррациональным показателем a, причем .

Приведем графики степенных функций при а=11/12 (черная линия), а=5/7 (красная линия), (синяя линия), а=2/5 (зеленая линия).

При других значениях показателя степени a, графики функции будут иметь схожий вид.

Свойства степенной функции при .

  • Область определения: .
  • Область значений: .
  • Функция не является ни четной, ни нечетной, то есть она общего вида.
  • Функция возрастает при .
  • Функция выпуклая при .
  • Точек перегиба нет.
  • Асимптот нет.
  • Функция проходит через точки (0;0), (1;1).

Степенная функция с нецелым рациональным или иррациональным показателем, большим единицы.

Рассмотрим степенную функцию с нецелым рациональным или иррациональным показателем a, причем .

Приведем графики степенных функций, заданных формулами (черная, красная, синяя и зеленая линии соответственно).

При других значениях показателя степени a, графики функции будут иметь схожий вид.

Свойства степенной функции при .

  • Область определения: .
  • Область значений: .
  • Функция не является ни четной, ни нечетной, то есть она общего вида.
  • Функция возрастает при .
  • Функция вогнутая при , если ; при , если .
  • Точек перегиба нет.
  • Асимптот нет.
  • Функция проходит через точки (0;0), (1;1).

Степенная функция с действительным показателем, который больше минус единицы и меньше нуля.

Обратите внимание! Если a - отрицательная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными дробными отрицательными показателями степени множество соответственно. Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Переходим к степенной функции , кгода .

Чтобы хорошо представлять вид графиков степенных функций при , приведем примеры графиков функций (черная, красная, синяя и зеленая кривые соответственно).

Красноярский Государственный Педагогический Университет им. В.П. Астафьева.

Выполнила: Квашенко Д.В.

Проверил: Адольф В.А.

  • Определение элементарных функций…………….3
  • Функцияи еёсвойства……………………………………..3
  • Способы задания функции……………………………….4
  • Определение функции……………………………………..4
  • Исследование элементарных функций………. 6

а) Линейная функция……………………………. 7

б) Степенная функция…………………………………..8

в) Показательная функция……………………………9

г) Логарифмическая функция……………………..10

д) Тригонометрическая функция………………..11

  1. Y=sin x……………………………….…11
  2. Y=cos x…………………………………13
  3. Y=tg x…………………………………..14
  4. Y=ctg x…………………………………15

е) Обратно тригонометрическая функция..16

  1. Y=arcsin x…………………………….16
  2. Y=arccos x……………………………17
  3. Y=arctg x……………………………..18
  4. Y=arcctg x…………………………….19
  5. Список литературы………………………………………..20

Определение элементарных функций.

Функции С (постоянная), xⁿ, ах, 1оgа х, sin х, соs х, tg х, ctg x, аrcsin х, аrccos х, аrctg х называются простейшими элементарными функциями.

Применяя к этим функциям арифметические действия или операции функции от функции, мы будем получать новые более сложные функции, которые называются элементарными функциями.

Например, у = sin (xⁿ) элементарная функция.

Элементарные функции нам известны из школьной математики.

Функция, и её свойства:

Функция - зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.

●Переменная х - независимая переменная или аргумент.

●Переменная у - зависимая переменная.

●Значение функции - значение у, соответствующее заданному

значению х.

●Область определения функции - все значения, которые принимает независимая переменная.

●Область значений функции (множество значений)- все значения, которые принимает функция.

●Функция является четной - если для любого х из области определения функции выполняется равенство f(x)=f(-x).

●Функция является нечетной - если для любого х из области определения функции выполняется равенство f(-x)=-f(x).

●Возрастающая функция - если для любых х1 и х2, таких, что х1 f(х2).

Способы задания функции:

●Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у=f(x), где f(x) - заданная функция с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.

●На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента.

Определение функции.

Функция, прежде всего, это одно из основных понятий математического анализа, и чтобы далее рассматривать различные функции, следует дать определение функции.

Пусть даны две переменные x и y с областями изменения X и Y. Предположим, что переменной x может быть приписано произвольное значение из области X без каких-либо ограничений. Тогда переменная y называется функцией от переменной x в области её изменения X, если по некоторому правилу или закону каждому значению x из X ставится в соответствие одно определенное значение y из Y.

Независимая переменная x называется также аргументом функции.

В этом определении существенны два момента: во-первых, указание области X изменения аргумента x (её называют также областью определения функции) и, во-вторых, установление правила или закона соответствия между значениями x и y (Область Y изменения функции обычно не указывается, поскольку самый закон соответствия уже определяет множество принимаемых функцией значений).

Можно в определении понятия функции стать на более общую точку зрения, допуская, чтобы каждому значению x из X отвечало не одно, а несколько значений y (и даже бесконечное множество их). В подобных случаях функцию называют многозначной, в отличие от однозначной функции, определенной выше.

Для указания того факта, что y есть функция от x, пишут:

y=f (x), y=g (x), y=F (x) и т.п.

Буквы f, g, F, … характеризуют именно то правило, по которому получается значение x, отвечающее заданному y. Поэтому, если одновременно рассматриваются различные функции от одного и того же аргумента x, связанные с различными законами соответствия, их не следует обозначать одной и той же буквой.

Хотя именно буква f связана со словом “функция”, но для обозначения функциональной зависимости может применяться и любая другая буква; иногда даже повторяют одну и ту же букву y: y=y(x). В некоторых случаях пишут аргумент и в виде значка при функции, например, .

Если, рассматривая функцию y=f(x), мы хотим отметить её частное значение, которое отвечает выбранному частному значению x, равному , то для обозначения его употребляют символ f(). Например, если

F (x)=, g (t)=, то f(1) означает численное значение функции f(x) при x=1, т.е. попросту число , аналогично, g(5) означает число 2, и т. д.

Теперь обратимся к самому правилу, или закону соответствия между значениями переменных, которое составляет сущность понятия функциональной зависимости.

Наиболее просто осуществление этого правила с помощью формулы, которая представляет функцию в виде аналитического выражения, указывающего те аналитические операции или действия над постоянными числами и над значением x, которые надо произвести, чтобы получить соответствующее значение y. Этот аналитический способ задания функции является наиболее важным для математического анализа.

Однако будет ошибочным думать, что это единственный способ, которым может быть задана функция. В самой математике нередки случаи, когда функция определяется без помощи формулы. Такова, например, функция E(x) “целая часть числа x”. Например,

E (1)=1, E (2,5)=2, E ()=3, E (-)=-4 и. т.,

хотя никакой формулы, выражающей E(x), у нас нет.

Функция, все значения которой равны между собой, называется постоянной. Постоянную функцию обозначают C (f (x) = C).

Функция f (x) называется возрастающей (убывающей) на множестве X, если для любой пары чисел и этого множества из неравенства f ( )).

Функция f(x) называется четной, если область её определения X есть множество, симметричное относительно начала координат, и при любом x из X имеет место равенство f(-x)=f(x).

График четной функции симметричен относительно оси Oy.

Функция f(x) называется нечетной, если область её определения X есть множество, симметричное относительно начала координат, и если при любом x из X имеет место равенство f(-x)=-f(x).

График нечетной функции симметричен относительно начала координат.

Сумма и разность двух четных (нечетных) функций есть функция четная (нечетная).

Действительно, пусть y(x)=f(x) + g(x). Тогда, если f(x) и g(x) четные, то y (-x) = f(-x) + g(-x) = f (x) + g (x) = y (x). Если же f (x) и g (x) нечетные функции, то функция y (x) также будет нечетной, y (-x) = f (-x) + g (-x) = -f (x) g (x) = -[f (x) + g (x)] = -y (x). (Для разности доказательство аналогичное).

Определение. Функция, заданная формулой у=а х (где а>0, а≠1), называется показательной функцией с основанием а.

Сформулируем основные свойства показательной функции :

1. Область определения — множество (R) всех действительных чисел.

2. Область значений — множество (R+) всех положительных действительных чисел.

3. При а > 1 функция возрастает на всей числовой прямой; при 0 n , где n – число Î R, называется степенной функцией. Число n может принимать раличные значения: как целые, так и дробные, как четные, так и нечетные. В зависимости от этого, степенная функция будет иметь разный вид. Рассмотрим частные случаи, которые являются степенными функциями и отражают основные свойства данного вида кривых в следующем порядке: степенная функция у=х² (функция с четным показателем степени – парабола), степенная функция у=х³ (функция с нечетным показателем степени – кубическая парабола) и функция у=√х (х в степени ½) (функция с дробным показателем степени), функция с отрицательным целым показателем (гипербола).

Степенная функция у=х²

1. D(x)=R – функция определена на все числовой оси;

2. E(y)=[0;∞) - функция принимает положительные значения на всей области определения;

3. При х=0 у=0 - функция проходит через начало координат O(0;0).

4. Функция убывает на промежутке (-∞;0] и возрастает на промежутке [0;∞).

5. Функция является четной (симметрична относительно оси Оу).

В зависимости от числового множителя, стоящего перед х², функция может быть уже/шире и направлена вверх/вниз.

Степенная функция у=х³

1. График функции у=х³ называется кубической параболой. Степенная функция у=х³ обладает следующими свойствами:

2. D(x)=R – функция определена на все числовой оси;

3. E(y)=(-∞;∞) – функция принимает все значения на своей области определения;

4. При х=0 у=0 – функция проходит через начало координат O(0;0).

5. Функция возрастает на всей области определения.

6. Функция является нечетной (симметрична относительно начала координат).

В зависимости от числового множителя, стоящего перед х³, функция может быть крутой/пологой и возрастать/убывать.

Степенная функция с целым отрицательным показателем:

Если показатель степени n является нечетным, то график такой степенной функции называется гиперболой. Степенная функция с целым отрицательным показателем степени обладает следующими свойствами:

1. D(x)=(-∞;0)U(0;∞) для любого n;

2. E(y)=(-∞;0)U(0;∞), если n – нечетное число; E(y)=(0;∞), если n – четное число;

3. Функция убывает на всей области определения, если n – нечетное число; функция возрастает на промежутке (-∞;0) и убывает на промежутке (0;∞), если n – четное число.

4. Функция является нечетной (симметрична относительно начала координат), если n – нечетное число; функция является четной, если n – четное число.

5. Функция проходит через точки (1;1) и (-1;-1), если n – нечетное число и через точки (1;1) и (-1;1), если n – четное число.

Степенная функция с дробным показателем

Степенная функция с дробным показателем вида (картинка) имеет график функции, изображенный на рисунке. Степенная функция с дробным показателем степени обладает следующими свойствами: (картинка)

1. D(x) Î R, если n – нечетное число и D(x)=[0;∞), если n – четное число ;

2. E(y) Î (-∞;0)U(0;∞), если n – нечетное число; E(y)=[0;∞), если n – четное число;

3. Функция возрастает на всей области определения для любого числа n.

4. Функция проходит через начало координат в любом случае.

Логарифмическая функция у = loga x обладает следующими свойствами :

1. Область определения D(x) Î (0; + ∞).

2. Область значений E(y) Î ( - ∞; + ∞)

3. Функция ни четная, ни нечетная (общего вида).

4. Функция возрастает на промежутке (0; + ∞) при a > 1, убывает на (0; + ∞) при 0 х с помощью преобразования симметрии относительно прямой у = х. На рисунке 9 построен график логарифмической функции для а > 1, а на рисунке 10 - для 0

Читайте также: