Опосредованные и дистанционные эффекты облучения реферат

Обновлено: 04.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

ООО Учебный центр

Реферат по дисциплине:

Горелова Ирина Владимировна

Москва 2017 год

1. Ионизирующие излучения и его разновидности 4

2. Источники ионизирующего излучения 6

3. Способы радиационного воздействия на живые организмы 7

4. Меры измерения биологического действия ионизирующего

5. Действия ионизирующего излучения на живые организмы 10

Список литературы 13

Радиоактивное излучение определенных условиях может представлять опасность для человека. Важно понимать какое излучение и в какой степени опасно для человека и животных.

В больших дозах радиация вызывает сильное поражения тканей, а в малых дозах вызывает рак и провоцируют генетические дефекты, которые могут проявляться и последующих поколениях облученного человека.

Все живые организмы подвергаются воздействию ионизирующего излучения, обусловленного естественным радиоактивным фоном, от естественных и искусственных источников. В гораздо меньшей степени человек подвергается облучению связанному с атомной энергетикой. Так же большие дозы облучения мы получаем, например от использования рентгеновских лучей в медицине. Естественный фон радиации увеличивается при сжигание угля и использование воздушного транспорта. Длительное пребывание в закрытых помещениях, приводят к увеличению облучения за счет естественной радиации.

Цель этой работы: рассказать о различных видах излучений, как о естественных, так и о техногенных источников, показать воздействие на человека и окружающую среду, осветить основные свойства ионизирующего излучения.

1. Ионизирующие излучения и его разновидности

Ионизи́рующее излуче́ние — это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество, т.е. проходить через ткани и клетки живых организмов, сообщать им энергию, разрушать связи внутри молекул и вызывать изменения в их структуре ткани.

Естественные источники ионизирующего излучения: космическое излучение, естественные радиоактивные вещества в почве, воздухе и материалах. Одним из наиболее распространенных естественных источников радиации является радон - газ, не имеющий вкуса и запаха. Его концентрация в закрытых помещениях в 8 раз больше, чем в проветриваемых.

Искусственные источники: производства связанные с добычей, переработкой, хранением, транспортировкой, утилизацией и использованием радиоактивных изотопов: атомные станции, научно-исследовательские установки, военные объекты, медицинская аппаратура лучевой терапии,

Ионизирующие излучения делятся на фотонные и корпускулярные.

К фотонному относятся:

а) Y-излучение ( Гамма-излучение) это поток квантов с большой электромагнитной энергии, их длина волны значительно меньше межатомных расстояний, т.е. y

б) рентгеновское излучение - электромагнитные волн, энергия фотонов которых

Корпускулярное ионизирующее излучение состоит из потока заряженных частиц (альфа-,бета-частиц, протонов, электронов), их кинетическая энергия достаточна для ионизации атомов при столкновении.

а) нейтроны - незаряженные частицы, образуются при реакциях деления ядер атомов урана или плутония. Эти частицы нейтральны, и они глубоко проникают во всякое вещество, включая живые ткани. Нейтронное излучение превращает атомы стабильных элементов в атомы их радиоактивных изотопов. Проникающая способность нейтронов такая же как и у Y- излучением.

б) бета частицы - электроны, излучаемые при радиоактивном распаде с средней ионизирующей и проникающей способностью (пробег в воздухе до 10-20 м).

в) альфа частицы - положительно заряженные ядра атомов гелия. Они обладают малой проникающей способностью (пробег в воздухе - не более 10 см), бумага и неповрежденная кожа является для них непреодолимым препятствием. Но при попадании внутрь они наиболее опасны.

2. Источники ионизирующего излучения

Источники ионизирующего излучения:

Естественные источники ионизирующего излучения: космическое излучение, естественные радиоактивные вещества в почве, воздухе и материалах. Одним из наиболее распространенных естественных источников радиации является радон - газ, не имеющий вкуса и запаха. Его концентрация в закрытых помещениях в 8 раз больше, чем в проветриваемых.

2. Искусственные источники: производства связанные с добычей, переработкой, хранением, транспортировкой, утилизацией и использованием радиоактивных изотопов: атомные станции, научно-исследовательские установки, военные объекты, медицинская аппаратура лучевой терапии,

Главная причина опасности ионизирующего излучения - радиационная авария. Она может быть вызвана неисправностью оборудования, нарушением техники безопасности или ошибками персонала, стихийными бедствиями или другими причинами, из-за которых произошло облучение людей выше установленных норм или к радиоактивное загрязнение окружающей среды.

При авариях выбрасываются:

-части и осколки активной зоны реактора;

-топливо и отходы в виде пыли, в аэрозоли в смеси с воздухом при попадании в организм могут вызывать мучительный кашель;

-выбросы состоящие из двуокиси кремния. Дозы облучения огромны и даже недолгое облучение губительно для человека.

На предприятиях по разработке месторождений и обогащению урана. Из их отходов выделяется радиоактивный газ – радон , который вызывает облучение тканей лёгких. Так же отходы могут попасть в расположенные рядом водоемы.

Использование ядерного топлива приводит в возможным кражам радиоактивного вещества. Использование его в террористических целях. Для изготовления ядерных боеприпасов кустарным способом, а также угрозы вывода из строя ядерных объектов, с целью получения выкупа.

Так же испытания ядерного оружия дает свой вклад в ионизирующее излучение.

3. Способы радиационного воздействия на живые организмы

В зависимости от того где расположен ИИИ облучение может быть внутренне и внешнее.

При внешнем облучении источник находится вне человека.: космические лучи, радиоактивные излучатели в воздухе, в земле, в стенах

Внутреннее облучение, зависит от попадания радиоактивных веществ внутрь организма человека.

- через открытые раны и повреждения кожи;

- через пищеварительный тракт с пищей и водой.

- при вдыхании воздуха, Из дыхательной системы радиоактивные элементы попадают в кровь, лимфу разносятся по всему организму, оседая в различных органах.

Внутреннее облучение более опасно, а его последствия более тяжёлые, так как:

- увеличивается доза облучения, которая связана со временем нахождения радионуклида в организме;

- происходит непосредственное контактное облучение;

- в облучении участвуют альфа частицы, самые активные и самые опасные;

- радиоактивные вещества в разных количествах накапливаются в разных органах, усиливая местное облучение

- невозможно использовать какие-либо меры защиты: ОЗК, противогаз.

4. Меры измерения биологического действия ионизирующего

При определенных дозах ионизирующее излучение может представлять опасность для человеческого организма.

Чем больше получаемая человеком энергия и чем меньше его масса, тем к более серьезным нарушениям может привести облучение.

Энергия облучения, поглощенная веществом и рассчитанная на единицу массы – поглощенная доза излучения ( D ). Единица измерения в СИ - 1 Грей (Гр).

Поглощенная доза равна 1 Гр , если 1 кг вещества получил энергию в 1 Дж.

Если при облучении используются рентгеновские лучи или гамма-излучение, то поглощенную дозу измеряют в рентгенах (Р): 1 Гр= 100 Р

Для достоверности измерений надо учитывать, что различные виды излучениё вызывают разные биологические эффекты. Поэтому вводят коэффициент качества К, показывающий, во сколько раз опасность от воздействия данного излучения больше, чем от гамма-излучения, при той же поглощенной дозе. К равен 10 для нейтронного излучения, 20 - для альфа излучения.

Поэтому для оценки биологического эффекта введена эквивалентная доза (Н) она учитывает поглощенную дозу D и коэффициент качества К:

Н = D * В СИ единицей эквивалентной дозы является зиверт (Зв). Также применяют миллизиверт (мЗв) и микрозиверт (мкЗв).

Так же необходимо учитывать, что ионизирующее излучение при одной и той же эквивалентной дозе по разному действует на разные органы. Каждый орган имеет свой коэффициент радиационного риска: для легких – 0,12 для щитовидной железы – 0,03.

5. Действия ионизирующего излучения на живые организмы

Ионизирующее излучение способно проникать в биологические ткани и клетки, выбивая электроны из атомов клетки, вызывая ионизацию живой ткани. Ионизация нарушает жизнедеятельность клеток и отрицательно сказывается на здоровье человека.

Механизм такого воздействия заключается в поглощении энергии ионизации организмом и разрыве химических связей его молекул с образованием высокоактивных соединений, так называемых свободных радикалов.

Воздействие ионизирующего излучения изменениет структуры молекулы воды. Так же изменяется структура атомов, из которых состоит живая ткань. Происходит разрушение ядра и разрыв наружной мембраны. Утрачивается основная функция растущих клеток - способность к делению, и это приводит к гибели клеток. Либо для зрелых клеток ионизация вызывает разрушение функций клеток. Наступает гибель клеток, и она которая в отличие от фи з иологической гибели необратима.

Дополнительное поглощение энергии при ионизации в организме нарушает равновесие энергетических процессов, которые происходят в организме.

В работе представлены описание ионизирующего излучения, способы влияния на организм человека, рассказано о мерах измерения излучения.

Затронут вопрос о том, что малые дозы облучения не представляют серьезной опасности для человека.

Так же рассказано об источниках радиоактивного излучения. Хотелось бы отметить , что в обычной жизни человек получает достаточную дозу облучения не от АЭС, а от естественного фона излучения.

Житель промышленно развитой страны, имеющий всю индивидуальную дозу облучения от естественных и от техногенных источников радиации, имеет вероятность преждевременной смерти из-за курения (при выкуривании пачки сигарет в день) в 100 раз больше вероятности умереть от рака вследствие облучения.

Рассказано о естественной радиации которая вносит большой вклад в эквивалентную дозу каждого человека, так же обращается внимание на техногенные источники радиации.

Говорится о том ,что атомная энергетика является экологически чистой индустрией с большими перспективами. АЭС и ледоколы, кардиостимуляторы сердца, системы пожарной охраны и дефектоскопы – это далеко не свё, что может предложить наука.

Информация представленная в работе предоставляет информацию необходимую для оценки понимая риска, связанного с радиационным излучением для каждого человека.

Список литературы

1. Акимов В.А., Дурнев Р.А.,Миронов С.К., Защита от чрезвычайных ситуаций. 5-11 классы; Энциклопедический справочник. – М.; Дрофа, 2011

3. Навратил Д.Д., Хала И., Радиоактивность, ионизирующее излучение и ядерная энергетика, 2013.
4. Радиация. Дозы, эффекты, риск: Пер. с англ. - М.: Мир, 1990.-79 с, ил.

5. Нормы радиационной безопасности (НРБ-99): Гигиенические нормативы. - М.: Центр санитарно-эпидемиологического нормирования, гигиенической сертификации и экспертизы Минздрава России, 1999.- 116с.

Кафедра терапии, клинической диагностики и радиобиологии.

Студентка 4 курса

Ионизирующая радиация действует на организм как внешний или внутренний источник облучения. В последнем случае облучение происходит в результате попадания радиоактивных веществ в орга­низм с пищей, воздухом и через поврежденные кожные покровы. Инкорпорированные вещества могут быть источником α, β , или γ-излучений. Возможно комбинированное воздействие внешним и внутренним облучением. Организм может подвергаться смешанному облучению, т. е. одновременному действию различных видов внеш­ней ионизирующей радиации.

Особенности патогенетического действия различных видов лу­чистой энергии во многом зависят от их проникающей способности. Жесткие рентгеновские лучи, γ-излучение и нейтроны обладают очень большой проникающей способностью. Проникающие свой­ства мягких рентгеновских лучей, α и β -излучения ничтожны.

Ионизирующая радиация может либо вызвать преимуществен­ное поражение кожных покровов, либо привести к возникновению лучевой болезни. Это объясняется тем, что слабо проникающие в тка­ни рентгеновские лучи, α и β -частицы, действуя на организм в ка­честве внешних излучателей, преимущественно поражают покровы тела.

Внешнее облучение жесткими рентгеновскими, γ -лучами и ней­тронами, обладающими большой проникающей способностью, вызы­вает общее лучевое заболевание. Оно может быть вызвано также и внутренним облучением.

Действие инкорпорированных излучений определяется дозой попавшего в организм вещества, характером излучения, длитель­ностью периода полураспада и быстротой выведения. При прочих равных условиях более вредны те радиоактивные вещества, которые депонируются в организме, например в костях (стронции, плутоний, радий).

При косвенном действии ионизирующих излучений наиболее выражен процесс радиолиза (радиационного разрушения) воды, потому что вода составляет основу важнейших структур клетки (80-90%). Именно в воде растворены белки, нуклеиновые кислоты, ферменты, гормоны и другие жизненно важные вещества, являющиеся основными компонентами клетки, которым легко может быть передана энергия, первоначально поглощенная водой.

Процесс радиолиза воды совершается в три фазы: в физическую – длится 10 -13 …10 -16 с; в фазу первичных физико-химических превращений – 10 -6 …10 -9 с; в фазу химических реакций – 10 -5 …10 -6 с. Физическая фаза по существу – один из моментов прямого действия ионизирующего излучения на молекулярные и биологические структуры клетки.

При взаимодействии ионизирующих излучений (гамма-кванта, заряженной частицы) с электронной сферой атомов происходит воз­буждение и ионизация атомов или молекул вещества, через которые излучения проходят. При этом на один акт ионизации приходится от 10 до 100 возбужденных атомов, которые в процессе рекомбина­ции излучают избыток энергии в виде характеристического рентге­новского излучения.

Физико-химические свойства ионизированных и возбужденных молекул воды будут отличаться от молекул воды электрически ней­тральных. Продолжительность существования таких молекул очень короткая; они распадаются (диссоциируют), образуя высокореактивные свободные радикалы водорода и гидроксила (Н + и ОН - ); насту­пает вторая фаза радиолиза воды — фаза первичных физи­ко-химических реакций.

Гидроксильные радикалы (ОН') — сильные окислители, а ради­кал водорода (Н') — восстановитель. Образование свободных радикалов может идти и другим путем. Вырванный из молекулы воды под действием излучения электрон может присоединиться к положительно заряженному иону воды с образованием возбужденной мо­лекулы. Избыточная энергия этой молекулы расходуется на ее расщепле­ние с образованием свободных радикалов водорода и гидроксила.

Ионизированная молекула воды (Н2 О + ) может реагировать с дру­гой нейтральной молекулой воды (Н2 О), в результате чего образует­ся высокореактивный радикал гидроксила (ОН').

На этом заканчивается физико-химическая фаза и развивается третья фаза действия ионизирующего излучения — фаза хими­ческих реакций.

Обладая очень высокой химической активностью за счет нали­чия неспаренного электрона, свободные радикалы взаимодейству­ют друг с другом или с растворенными в воде веществами. Реакции могут идти следующими путями:

1. рекомбинация, восстановление воды

2. образование молекул водорода

3. образование молекул воды и выделение кислорода, который является сильным окислителем

4. образование пероксида водорода.

При наличии в среде растворенного кислорода О2 возможна ре­акция образования гидропероксидов. Эта реакция указывает на роль кислорода в повреждающем эф­фекте ионизирующего излучения.

Гидропероксиды могут взаимодействовать между собой, образуя пероксиды водорода и высшие пероксиды, которые обладают высокой токсичностью, но они очень быстро разлагаются в организме ферментом каталазой на воду и кислород.

Появление свободных радикалов и их взаимодействие составляют этап первичных химических реакций воды и растворенных в ней веществ, а в случаях облучения животных и растений — и биологи­ческих молекул.

Взаимодействие свободных радикалов с органическими и неор­ганическими веществами идет по типу окислительно-восстанови­тельных реакций и составляет эффект непрямого (косвенного) дей­ствия. Величина прямого и непрямого действия в первичных радио­биологических эффектах различных систем неодинаковая. В абсо­лютно чистых сухих веществах будет преобладать прямое, а в слаборастворенных — косвенное действие радиации. У животных, по дан­ным А. М. Кузина, примерно 45 % поглощенной энергии излучения действует непосредственно на молекулярные структуры — прямое действие, а остальные 55 % энергии вызывают непрямое действие.

О различии прямого и косвенного действия радиации на биоло­гические объекты и величине их влияния на развитие лучевого по­ражения, по мнению авторов теории, можно судить по двум фено­менам — эффекту разведения и кислородному эффекту.

Кислородный эффект. В развитии первичных реакций при облу­чении биообъектов большое значение имеет концентрация кисло­рода в среде. С повышением его концентрации в окружающей среде и объекте облучения усиливается эффект лучевого поражения, и, наоборот, при понижении концентрации кислорода наблюдается уменьшение степени лучевого поражения. Это явление было назва­но кислородным эффектом. Выраженность кислородного эффекта у разных видов излучений неодинаковая. Кислородный эффект проявляется во всех радиобиологи -ческих реакциях ослаблением или усилением биохимических изме­нений, мутаций у всех биологических объектов (растений и живот­ных) и на всех уровнях их организации — молекулярном, субклеточ­ном, клеточном, тканевом.

Кислородный эффект нередко применяется при лечении боль­ных со злокачественными новообразованиями. Для усиления луче­вого поражения клеток опухоли создают условия повышенного со­держания кислорода в ней и одновременно для уменьшения радиа­ционного повреждения здоровых клеток обеспечивают гипоксическое состояние окружающих тканей.

У млекопитающих максимальная радиочувствительность тканей отмечается при нормальном парциальном давлении кислорода (30. 45 гПа). Снижая насыщенность тканей кислородом, можно повысить радиорезистентность животного. Повышение содержания кислорода в окружающей среде и в объекте облучения после лучевого воздействия положительно влияет на процессы пострадиационного восстановления.

В присутствии кислорода происходит значительное усиление косвенного действия продуктов радиолиза воды и низкомолекуляр­ных органических соединений. Свободные радикалы, взаимодей­ствуя с кислородом, образуют гидропероксиды, пероксиды и выс­шие пероксиды, которые оказывают токсическое действие на орга­низм. Стабилизация радикалов ОН' в присутствии кислорода уве­личивает вероятность образования активных свободных радикалов органических веществ, которые присутствуют в облучаемой среде. Образовавшиеся свободные радикалы орга­нических веществ в присутствии кислорода будут реагировать с ним, образуя пероксидный радикал (КОО'), который, в свою очередь, реа­гируя с любым органическим веществом или молекулами воды, ини­циирует цепную реакцию образования активных свободных ради­калов и гидропероксидов, оказывающих токсическое действие на клетку. Наличие кислорода в облучаемой среде усиливает также прямое действие радиации. При попадании гамма-кванта в молекулу орга­нического вещества, так же как и в случае с водой, образуются ак­тивные радикалы в результате ионизации и возбуждения молекул. Эти радикалы, взаимодействуя с кислородом, образуют гидропе­роксиды и пероксиды, которые приводят к глубокому изменению молекул. Кроме того, липиды биомембран под действием ионизирующего излучения в присутствии кислорода образуют пероксиды и продук­ты их распада (малоновый альдегид и др.). Таким образом, в кисло­родной среде образуется больше токсических веществ; их концент­рация выше, чем объясняет кислородный эффект.

Существует целый ряд гипотез, отражающих преимущественно непрямое действие ионизирующих излучений, т. е. качественную сторону возникновения и развития послелучевых процессов в орга­низме.

Теория липидных радиотоксинов (первичных радиотоксинов и цеп­ных реакций).

Эта теория была предложена в 50-е годы Б. Н. Тарусовым, Ю. Б. Кудряшовым, Н. М. Эмануэлем. Они показали, что уже в первые часы после облучения в тканях животных образуются ве­щества, которые при последующем введении их интактным живот­ным вызывают гемолиз. Идентификация веществ установила их липидную природу, что дало основание назвать их липидными радио­токсинами (ЛРТ).

Липидные радиотоксины представляют собой лабильный комп­лекс продуктов окисления ненасыщенных кислот, гидропероксидов, альдегидов, эпоксидов и кетонов. Они вызывают не только гемолиз, но и другие реакции, характерные для лучевого поражения: тормо­жение клеточного деления, нарушение кроветворения, поврежде­ние хромосомного аппарата и др.

Для осуществления цепных реакций необходимы радикалы с большой энергией, достаточной для образования последующих ра­дикалов. В случаях, когда на один радикал образуются два или три, возникает самоускоряющийся процесс, который называют реакци­ей с разветвленными цепями. В организме животных в нормальных условиях низкий уровень окисления биолипидов обусловливают антиокислители — природные антиоксиданты. При лучевом воздей­ствии такое равновесие нарушается вследствие появления большо­го количества радикалов. Автокаталитический режим цепных реак­ций возникает в случаях, когда содержание естественных антиокис­лителей уменьшается на 10. 15 % (А. И. Журавлев). По мере умень­шения числа реакционноспособных молекул в субстрате реакция затухает; при этом снижается количество радикалов и пероксидов и увеличивается выход конечных продуктов .

По мнению авторов гипотезы, при облучении вначале поража­ются липиды клеточных мембран, что приводит к нарушению хи­мизма клетки, а затем образующиеся липидные радиотоксины вы­зывают окисление молекул других органических соединений живой ткани.

Авторэтой теории — русский ученый-радиобиолог А. М. Кузин, который сделал попытку создать единую универсальную теорию радиобиологического действия ионизирующего излучения на основе анализа собственных иссле­дований и накопленного за десятилетия научного материала других авторов, начиная от теории прямого действия на клеточном уровне и кончая высокоорганизованными многоклеточными организмами.

Таким образом, в структурно-метаболической теории к радиацион­ному поражению ядерных макромолекул как фактору прямого действия согласно теории мишени добавляются нарушение цитоплазматических структур и изменение нормального их функционирования.

А. М. Кузин ввел понятие о веществах, влияющих на геном клет­ки, и назвал их триггер-эффекторами. Под действием различных доз радиации триггер-эффекторы (семихиноны, хиноны, гормоны и др.) в зависимости от их концентрации могут оказывать депрессивное или репрессивное действие на геном клетки, а следовательно, и на биосинтетические процессы. Само ионизирующее излучение рас­сматривают как неспецифический триггер-эффектор. Признано, что ионизирующие излучения в числе других факторов внешней среды являются постоянными раздражителями биологических объектов, своеобразным стресс-фактором. Реакция организма зависит от силы раздражителя, т. е. от дозы ионизирующего излучения. Под влия­нием радиации в организме не возникает принципиально новых хи­мических соединений. Некоторые из токсических метаболитов всегда в небольших количествах содержатся в клетках здоровых тканей. Под действием радиации содержание их значительно увеличи­вается и дополнительно появляются новые токсические соединения. Первичные радиотоксины образуют большое количество вторичных радиотоксинов, которые играют существенную роль в патогенезе и исходе лучевых поражений.

В механизме биологического действия ионизирующих излучений на живые объекты условно можно выделить следующие этапы:

1) первичные физические явления — поглощение энергии излучения атомами и молекулами биологического объекта, в результате они могут претерпевать возбуждение, ионизацию или диссоциацию;

2) радиационно-химические процессы, при которых образуются свободные радикалы, взаимодействующие с органическими и неорганическими веществами по типу окислительных и восстановительных реакций;

3) биохимические реакции, обусловливающие изменения функций и структур органов и систем и реакций целостного организма.

Они определяют в конечном итоге механизм развития и специфику патологического процесса.

Структурно-метаболическая теория отличается большей аргументацией и дает более детальное представление о первичных механиз­мах действия радиации на организм, которое в дальнейшем усиливается нейроэндокринными и гуморальными реакциями, т. е. опо­средованно.

Опосредованное действие радиации.

Четко выделить непосред­ственные и опосредованные пути воздействия ионизирующего излучения на организм трудно.

Участие нервной системы в опосредованном действии ионизирующего излучения хорошо показано в трудах отечественных ученых И. Р. Тарханова, М. Н. Ливанова, А. В. Лебединского и др., которые отметили высокую чувствительность нервной системы к радиации и одновременно высокую пластичность и способность к компенсации.

Путем химической (анестезия) и хирургической (рассечение) денервации выяснено рефлекторное воздействие облучения на трофику тканей. При малых дозах происходит усиление биохимических процессов, а при больших дозах (500 Р и более) возникают глубокие трофические расстройства, приводящие к образованию язв. Опосредованное участие нервной системы в реакциях на облучение обнаружено при развитии изменений во всех тканях и системах организма. Один из механизмов этого участия — рефлекторный, при этом в процесс вовлекаются вегетативный отдел нервной системы, ретикулярная формация и, вероятно, кора и подкорка.

Вторым путем опосредованного влияния радиации на функции и структуры органов служит эндокринная система. Ряд исследова­телей, особенно зарубежных, определяют лучевое поражение как одну из форм стресс-реакции. Обоснованием для этого вывода по­служило то, что в первое время после лучевого воздействия наступа­ет гиперсекреция коры надпочечников, уменьшаются размеры тимуса и селезенки, развивается лимфопения. Облучение животных после удаления надпочечников не приводит к указанным измене­ниям в органах (П. Д. Горизонтов). В опосредованных реакциях на лучевое воздействие участвуют также гипофиз, щитовидная и дру­гие эндокринные железы.

Из приведенных материалов видно, что опосредованное действие радиации имеет большое значение в развитии основных синдромов лучевого поражения. Исследование механизмов непосредственно­го и опосредованного действий радиации на организм позволяет более дифференцированно использовать методы усиления или ос­лабления того или иного процесса лучевого повреждения, что имеет очень важное значение для лечения животного.

Эффекты, возникающие при действии ионизирующего излуче­ния на организм, делят на 3 группы:

1) соматические нестохастические (детерминированные) — эф­фекты, возникающие у облученного сразу после облучения большими дозами — острая и хроническая лучевая болезнь, локальные лу­чевые повреждения (катаракта), поражения кожи, нарушение реп­родуктивной функции и т. д. Вероятность появления такого эффек­та в целом практически равна нулю при малых дозах, но будет резко возрастать при превышении некоторого уровня (порога) доз. Таким образом, тяжесть эффекта определяется дозой;

2) соматические стохастические — эффекты, возникающие у об­лученного через длительное время после облучения, т. е. это отда­ленные последствия: понижение сопротивления инфекциям, сокра­щение продолжительности жизни, возникновение опухолей, лейко­зов. Предполагают, что вероятность их проявления и тяжесть явля­ются беспороговой функцией дозы;

3) генетические или наследственные — эффекты, проявляющи­еся в потомстве облученных людей и животных. Эти эффекты явля­ются также стохастическими. При этом могут возникать доминант­ные и рецессивные генные мутации, хромосомные аберрации.

1) Белов А.Д., Киршин В.А., Лысенко Н.П. и др. –М.: Колос, 1999. – 384 с.

2) Кузин А.М. Cnhernehyj-метаболистическая теория в радиобиологии. – М., 1986

3) Радиационная медицина. Сб. статей. Под редакцией А.И. Бурназяна. Атомиздат, 1968.

Четко выделить непосред​ственные и опосредованные пути воздействия ионизирующего из​лучения на организм трудно.

Участие нервной системы в опосредованном действии ионизи​рующего излучения хорошо показано в трудах отечественных уче​ных И. Р. Тарханова, М. Н. Ливанова, А.В. Лебединского и др., ко​торые отметили высокую чувствительность нервной системы к ра​диации и одновременно высокую пластичность и способность к ком​пенсации.

Путем химической (анестезия) и хирургической (рассечение) денервации выяснено рефлекторное воздействие облучения на трофи​ку тканей. При малых дозах происходит усиление биохимических процессов, а при больших дозах (500 Р и более) возникают глубокие трофические расстройства, приводящие к образованию язв.

Опосредованное участие нервной системы в реакциях на облуче​ние обнаружено при развитии изменений во всех тканях и системах организма. Один из механизмов этого участия – рефлекторный, при котором в процесс вовлекаются вегетативный отдел нервной систе​мы, ретикулярная формация и, вероятно, кора и подкорка (рис. 27).

Вторым путем опосредованного влияния радиации на функции и структуры органов служит эндокринная система. Ряд исследова​телей, особенно зарубежных, определяют лучевое поражение как одну из форм стресс-реакции. Обоснованием для этого вывода по​служило то, что в первое время после лучевого воздействия наступа​ет гиперсекреция коры надпочечников, уменьшаются размеры тимуса и селезенки, развивается лимфопения. Облучение животных после удаления надпочечников не приводит к указанным измене​ниям в органах (П. Д. Горизонтов). В опосредованных реакциях на лучевое воздействие участвуют также гипофиз, щитовидная и дру​гие эндокринные железы.

Опосредованное действие радиации имеет большое значение в развитии основных синдромов лучевого поражения. Исследование механизмов непосредственно​го и опосредованного действий радиации на организм позволяет более дифференцированно использовать методы усиления или ос​лабления того или иного процесса лучевого повреждения, что имеет очень важное значение для лечения.

Эффекты, возникающие при действии ионизирующего излуче​ния на организм, делят на 3 группы:

1) соматические нестохастические (детерминированные) – эф​фекты, возникающие у облученного сразу после облучения больши​ми дозами — острая и хроническая лучевая болезнь, локальные лу​чевые повреждения (катаракта), поражения кожи, нарушение реп​родуктивной функции и т. д. Вероятность появления такого эффек​та в целом практически равна нулю при малых дозах, но будет резко возрастать при превышении некоторого уровня (порога) доз. Таким образом, тяжесть эффекта определяется дозой;

2) соматические стохастические – эффекты, возникающие у об​лученного через длительное время после облучения, т. е. это отда​ленные последствия: понижение сопротивления инфекциям, сокра​щение продолжительности жизни, возникновение опухолей, лейко​зов. Предполагают, что вероятность их проявления и тяжесть явля​ются беспороговой функцией дозы;

3) генетические или наследственные – эффекты, проявляющи​еся в потомстве облученных людей и животных. Эти эффекты явля​ются также стохастическими. При этом могут возникать доминант​ные и рецессивные генные мутации, хромосомные аберрации.

В облучённом организме повреждения одних тканей и систем неизбежно приводят к реактивным или взаимосвязанным изменениям в других. В принципе далеко не всегда многочисленные нарушения можно отнести к той или иной категории непосредственных или опосредованных реакций в организме.

Дистанционные эффекты облучения в некритических системах организма.К числу таких нарушений относятся различные проявления изменений со стороны ЦНС и органов чувств, эндокринной, иммунной, сердечно- сосудистой и других клеточных систем, условно называемых некритическими, так как они не ответственны за непосредственный исход лучевого поражения. Хотя роль их значительна. Более того, во многих случаях такого рода нарушения приобретают решающее значение, в связи с чем понятие радиоустойчивости в отношении всех этих систем следует понимать достаточно условно.

Угнетения механизмов иммунитета.Изменениям, происходящим в иммунной системе, занимающей как бы промежуточное место между критическими и некритическими системами организма, принадлежит особая роль в патогенезе лучевой болезни.

Наиболее показательным проявлением нарушения иммунитета является повышение чувствительности к возбудителям инфекционных заболеваний, сопровождающееся количественными и качественными изменениями нормальной микрофлоры организма. Нарушение антимикробного иммунитета связанные с этим инфекционные осложнения можно рассматривать как следствие повышения проницаемости тканевых барьеров, нарушения фагоцитарной способности клеток ретикулоэндотелиальной системы и угнетения детоксицирующей способности тканей в сочетании с угнетением неспецифических бактерицидных систем организма- лизоцима, бактерицидных субстанций кожи и ряда тканей. Кроме того, облучение угнетает образование антител, хотя почти не влияет на их продукцию.

Большое значение имеют также развивающиеся аутоиммунные процессы. В качестве аутоантигенов в принципе могут быть как нормальные ткани при их попадании в русло крови, где они обычно не встречаются, так и патологически изменённые белки и связанные сними вещества. После облучения создаётся реальная возможность столкновения организма с аутоантигенами обоих видов вследствие быстро развивающейся тканевой деструкции, резкого повышения проницаемости тканевых барьеров и изменения антигенных свойств.

После облучения происходит утрата части нормальных антигенов и появление антигенных качеств, не свойственных норме. Потеря части нормальных антигенов, означающая утрату определённых структур, может быть причиной нарушения функций тканей и клеток. Циркуляция в крови тканевых антигенов приводит к иммунологической перестройке организма – сенсибилизация и образование антител двух родов – против денатурированных белков и против аутотканей. Считается, что аутоаллергия занимает ведущую роль в развитии лучевой болезни, которую можно считать как своеобразное аутоиммунное заболевание, характеризующееся выраженной направленностью реакций против распада собственных тканей в сторону сенсибилизации.

Нарушение основных биохимических процессов обмена веществ на разных этапах лучевого поражения. Говоря о биохимических процессах, в подвергнутом облучению организме, следует всегда иметь в виду их деление на две категории:

1. Биохимический этап в механизме первичного действия ИИ;

2. Биохимические изменения, происходящие в организме при формировании лучевой болезни и её отдалённых последствий.

Нарушения обмена веществ, происходящие на разных этапах формирования лучевой болезни, в свою очередь можно подразделить на ранние, регистрируемые в первые минуты и часы после окончания облучения, и последующие, возникающие через несколько суток, месяцев и лет. К числу ранних реакций организма следует отнести нарушения синтеза нуклеиновых кислот, белка и окислительного фосфорилирования. Наиболее радиочувствителен процесс биосинтеза ДНК. При этом угнетение некоторых этапов может быть вызвано непосредственным воздействием радиации или же ингибированием процессов образования субстратов, участвующих в превращениях нуклеотидов.

Ранние нарушения не обязательно являются непосредственными следствиями воздействия ИИ, и могут усиливаться в результате развития в ядре и цитоплазме уже в ранние сроки вторичных процессов.

Регуляция обменных процессов после облучения нарушается и на структурном уровне. Развиваясь и суммируясь, эти процессы вызывают различные типы поражения клеток в разных тканях. Это в свою очередь обуславливает возникновение межтканевых и межсистемных нарушений в организме, выражением которых и являются различные нарушения обмена веществ.

Отмечены и наиболее общие, типичные изменения обмена веществ, проявляющиеся особенно ярко в течение периода разгара лучевой болезни и непосредственного восстановления. Это прежде всего относится к нарушениям белкового обмена, анализ которых позволяет приписать им участие в формировании механизмов радиочувствительности организма. Значительные нарушения белкового обмена определяются прежде всего процессами массовой клеточной деструкции радиочувствительных систем, сопровождающейся уже на ранних стадиях повышенным содержанием азотсодержащих веществ в крови, а также выделением таурина и других аминокислот с мочой. Значительно более устойчив обмен углеводов, синтез которых если и нарушается, то только в поздние стадии лучевого поражения результате глубокого патологического изменения органа, в котором он осуществляется.

Большой интерес вызывают радиационные нарушения обмена липидов. Благодаря их лёгкой окисляемости, усиливающейся под вилянием облучения, образующиеся перекиси участвуют на самых ранних этапах биологического действия ИИ в виде органических радикалов. Под влиянием облучения наблюдается уменьшение антиокислительной активности липидов, интенсификация окислительных реакций и связанное с ним изменение состава липидов мембран.

Читайте также: