Окрестность точки особые точки построение графиков по особым точкам реферат

Обновлено: 04.07.2024

В предыдущей главе мы обсудили, как устроены особые точки линейных систем на плоскости. Но что мы будем делать, если нам встретится нелинейное уравнение?

11.1 Линеаризация особой точки

Пусть точка z ∗ = ( x ∗ , y ∗ ) является положением равновесия, то есть особой точкой нашей системы. В этом случае f ( x ∗ , y ∗ ) = 0 и g ( x ∗ , y ∗ ) = 0 . Чтобы не писать каждый раз две переменные, введём векторные обозначения: z = ( x , y ) и F ( z ) = ( f ( z ) , g ( z ) ) . Система принимает вид

Мы предполагаем, что функции f и g по крайней мере C 1 -гладкие (то есть имеют непрерывные частные производные) и значит отображение F является дифференцируемым. Из определения производной для функции нескольких переменных следует, что

Здесь ∂ F ∂ z — матрица Якоби для отображения F , то есть матрица, составленная из частных производных функций f и g . Обозначим эту матрицу через A :

Сделаем замену переменных: w = ( u , v ) = z − z ∗ = ( x − x ∗ , y − y ∗ ) . Таким образом мы перенесли особую точку в начало координат. Соотношение (11.3) принимает вид

Как связаны решения нелинейной системы с решениями её линеаризации в окрестности особой точки? Отброшенное при переходе к линеаризации слагаемое является очень маленьким, и чем ближе мы к особой точке, тем оно меньше. Можем ли мы им пренебречь, если нас интересует поведение системы вблизи особой точки, по крайней мере, на каком-то качественном уровне? Оказывается, ответ зависит от типа получившейся линейной особой точки.

11.2 Свойства нелинейных особых точек

Говорят, что нелинейная особая точка является, например, центром по линейным членам, если её линеаризация является центром. Аналогично с другими типами особых точек.

11.2.1 Невырожденный узел

Фазовые портреты линейных узлов выглядят по-разному в зависимости от типа узла. Если узел невырожденный, то есть собственные значения различны и существуют два разных собственных вектора, то почти все траектории стремятся к особой точке (в прямом или обратном времени), касаясь того собственного вектора, чьё собственное значение меньше по модулю. Фазовые кривые похожи на ветви парабол. Исключение составляют траектории с начальными условиями, лежащими на том собственном векторе, у которого собственное значение больше по модулю.

Например, у системы

собственные векторы — ( 1 , 0 ) с собственным значением 1 и ( 0 , 1 ) с собственным значением 2. Решением является вектор-функция, задаваемая компонентами x ( t ) = x 0 e t , y ( t ) = y 0 e 2 t . При x 0 ≠ 0 траектория лежит на параболе

и стремится к началу координат в обратном времени (при t → − ∞ ), касаясь горизонтального направления (то есть направления собственного вектора с меньшим по модулю собственным значением). Исключением являются траектории с x 0 = 0 : они стремятся к нулю вдоль вертикального направления (то есть вдоль собственного вектора с большим собственным значением).

Теорема 1. Вблизи нелинейной особой точки, являющейся невырожденным узлом по линейным членам, почти все фазовые кривые стремятся к особой точке, касаясь собственного вектора с меньшим по модулю собственным значением. Исключением является сама особая точка и ещё две специальные траектории, касающиеся другого собственного вектора.

Эту и следующие теоремы можно было бы вывести из так называемой теории нормальных форм, но это выходит за рамки нашего курса. Поэтому мы ограничимся примерами.

вблизи особой точки ( 0 , 0 ) . Её линеаризация в этой точке имеет матрицу из примера 1 предыдущей главы.

Собственные значения 1 и 5 , собственные векторы ( − 3 , 1 ) и ( 1 , 1 ) . На рис. 11.1 видно, что почти все отмеченные траектории касаются вектора ( − 3 , 1 ) .

Рис. 11.1: Фазовые портреты нелинейного узла (слева) и его линеаризации (справа) в малой окрестности особой точки ( 0 , 0 ) .

Заметим, что фазовые портреты похожи только в небольшой окрестности особой точки. Если мы удаляемся от особой точки, то нелинейные слагаемые начинают играть всё большую роль, и фазовые портреты сильно различаются, см. рис. 11.2 .

Рис. 11.2: Фазовые портреты нелинейной системы (справа) и её линеаризации (слева) в большой окрестности начала координат

11.2.2 Дикритический узел: скалярная матрица

Если собственные значения совпадают и матрица линеаризации является скалярной (то есть тождественной умноженной на число), то все фазовые траектории (кроме особой точки) — лучи прямых, каждая стремится к особой точке под собственным углом. Для соответствующей нелинейной системы траектории не обязаны быть лучами прямых, но характеристическое свойство — стремиться к особой точке под своим собственным углом — у них сохраняется.

Теорема 2. Вблизи нелинейной особой точки, являющейся дикритическим узлом по линейным членам, все траектории (кроме самой особой точки) стремятся к особой точке, каждая под своим собственным углом. Для всякого ненулевого вектора, приложенного к началу координат, существует единственная траектория, касающееся этого вектора при t → + ∞ или t → − ∞ .

11.2.3 Вырожденный узел: жорданова клетка

Если собственные значения совпадают, но матрица не является скалярной, то она в некотором базисе является жордановой клеткой. У неё есть единственный собственный вектор и все траектории такой системы, кроме особой точки, стремятся к особой точке, касаясь этого собственного вектора.

Теорема 3. Вблизи нелинейной особой точки, являющейся вырожденным узлом по линейным членам, все траектории (кроме самой особой точки) стремятся к особой точке, касаясь единственного собственного вектора матрицы линеаризации.

Рис. 11.4: Нелинейный вырожденный узел (слева) и его линеаризация (справа) в малой окрестности особой точки.

11.2.4 Фокус

В отличие от узлов, траектории фокусов стремятся к особой точке, не касаясь какого-то направления, а совершая бесконечное число оборотов вокруг особой точки. Аналогичное утверждение справедливо и для соответствующих нелинейных систем.

Теорема 4. Вблизи нелинейной особой точки, являющейся фокусом по линейным членам, все траектории (кроме самой особой точки) являются спиралями, совершающими бесконечное число оборотов при при t → + ∞ или t → − ∞ .

11.2.5 Седло

У сёдел есть два вещественных собственных значения разных знаков и, соответственно, два собственных вектора. Их фазовые кривые — ветви гипербол, кроме самой особой точки и четырёх прямолинейных лучей, называющихся сепаратрисами. Две сепаратрисы стремятся к седлу при t → + ∞ вдоль собственного вектора с отрицательным собственным значениям (такие сепаратрисы называются входящими), две другие сепаратрисы стремятся к седлу при t → − ∞ вдоль собственного вектора с положительным собственным значением (это исходящие сепаратрисы).

Например, для простейшего случая

входящие сепаратрисы — лучи x = 0 , y > 0 и x = 0 , y 0 , а исходящие — лучи x > 0 , y = 0 и x 0 , y = 0 .

У соответствующей нелинейной особой точки также существуют сепаратрисы. Они не обязаны быть прямыми, но обязаны касаться собственных векторов.

Теорема 5. Вблизи нелинейной особой точки, являющейся седлом по линейным членам, существуют две траектории, стремящиеся к особой точке при t → + ∞ , касаясь собственного вектора с отрицательным собственным значением, и ещё две траектории, стремящиеся к особой точке при t → − ∞ , касаясь собственного вектора с положительным собственным значением. Эти траектории называются сепаратрисами нелинейного седла.

Это — знаменитая теорема Адамара — Перрона, первый результат так называемой гиперболической динамики.

Рис. 11.5: Фазовый портрет нелинейного седла (слева) и его линеаризации (справа). Зелёным выделены входящие сепаратрисы, красным исходящие.

11.2.6 Центр

Чтобы построить фазовый портрет системы, перейдём в полярные координаты. Нам будет проще работать не с полярным радиусом, а с его квадратом: ρ = x 2 + y 2 . Вычислим производную функции ρ вдоль векторного поля, заданного системой (11.7) :

˙ ρ = 2 x ˙ x + 2 y ˙ y = 2 x ( y − ( x 2 + y 2 ) x ) + 2 y ( − x − ( x 2 − y 2 ) y ) = − ( x 2 + y 2 ) 2 = ρ 2 .

Решение этого уравнения можно найти явно, но нам достаточно того факта, что правая часть всегда отрицательна (кроме точки ρ = 0 ) и следовательно ρ будет монотонно убывать. То есть траектория будет приближаться к началу координат.

Можно также найти уравнение на полярный угол θ = arctan ( y / x ) . Напоминим, что ( arctan z ) ′ = 1 / ( 1 + z 2 ) . Значит по теореме о производной сложной функции: ˙ θ = ˙ y x − ˙ x y x 2 ⋅ 1 1 + y 2 x 2 = = ( − x − ( x 2 + y 2 ) y ) x − ( y − ( x 2 + y 2 ) x ) y x 2 + y 2 = − x 2 − y 2 x 2 + y 2 = − 1 Уравнение на θ имеет вид

Таким образом, двигаясь по траектории, точка приближается к началу координат, при этом её полярный угол равномерно уменьшается. Значит, эта траектория — спираль, наматывающаяся на особую точку, см. рис. 11.6 .

Такая особая точка похожа на фокус, хотя её линеаризация является центром. Она называется медленным фокусом.

11.3 Пример исследования нелинейной особой точки

Из первого уравнения мгновенно следует, что x = ± 2 . Подставляя эти значения для x во второе уравнение находим y и видим, что у системы есть две особые точки: ( 2 , − 3 ) и ( − 2 , 1 ) . Матрица Якоби имеет вид:

Эта матрица нижнетреугольная и значит её собственные значения стоят на диагонали. Они равны 1 / 3 и 1 . Следовательно соответствующая особая точка является неустойчивым узлом.

Собственные векторы равны ( − 2 , 3 ) и ( 0 , 1 ) . Первый из них имеет меньшее собственное значение, поэтому почти все траектории будут его касаться, стремясь к особой точке в обратном времени.

Неверный ответ. А вот и нет

Неверный ответ. Нет, не фокус

Неверный ответ. Нет.

Верный ответ. Да! Собственные значения − 1 / 3 и 1 . А фазовый портрет в целом выглядит вот так.

Замечание 1. Представленный способ анализа нелинейных особых точек работает только в том случае, когда линаризация имеет невырожденную матрицу. Особые точки, матрица линеаризации которых вырождена, то есть имеет нулевые собственные значения, могут иметь более сложные фазовые портреты. Существуют математические методы, которые позволяют исследовать и их тоже, но обсуждение этих методов выходит за рамки нашего курса.

Пример 3. В качестве примера приведём фазовые портреты двух систем с нулевой линеаризацией, см. рис. 11.8 . ˙ x = x 2 − y 2 , ˙ y = − 2 x y ; ˙ x = x 2 − y 2 , ˙ y = 2 x y . (11.11) (11.12)

Упражнение 1. Вы можете найти уравнения фазовых кривых для этих систем с помощью перехода к неавтономному уравнению (как обсуждалось в разделе 4.4 ) и замены z = y / x .

Замечание 2. С помощью линеаризации можно понять, как выглядит фазовый портрет вблизи каждой из особых точек, но получить надежную информацию о том, что происходит между ними, как ведут себя траектории, выходя из этих окрестностей, и как выглядит глобальная картинка мы не можем. В общем случае точное построение фазового портрета нелинейной системы является исследовательской задачей, не имеющей универсального решения. Однако на практике можно получить приближенные решения и слелать какие-то выводы с помощью численных методов.

11.4 Выводы

Фазовые портреты нелинейных систем на плоскости можно исследовать, переходя к линеаризации. Для этого надо вычислить матрицу Якоби правой части системы в особой точке — она и будет матрицей линеаризованной системы. Если линеаризация имеет особую точку типа узел, фокус или седло, фазовый портрет исходной (нелинейной) системы в окрестности особой точки похож на фазовый портрет линеаризации. Для центров это неверно: центры по линейным членам могут выглядеть как фокусы. К особым точкам с вырожденной матрицей линеаризации этот метод неприменим.

Дифференциальные уравнения на плоскости изучены относительно неплохо: хотя нахождение точных решенений конкретного уравнения может составлять сложную (или даже нерешенную) проблему, в целом человечество понимает, какие эффекты в этом мире встречаются и чего от таких уравнений можно ждать. Переход к пространствам больших размерностей принципиально усложняет динамику: мы далеки от полного понимания нелинейных уравнений уже с трёхмерным фазовым пространством. Однако линейные системы в любой размерности анализируются сравнительно несложно. Ими мы и займёмся в следующей главе.

Рассмотрим некоторую поверхность [плоскую кривую определяемую в заданной декартовой прямоугольной системе координат уравнением Относительно функции предположим, что она имеет непрерывные частные производные первого порядка по всем аргументам всюду в некоторой окрестности любой точки поверхности [кривой Будем называть данную точку поверхности [кривой ] особой, если в этой точке обращаются в нуль все частные производные первого порядка функции ]. В окрестности особой точки нельзя применить к уравнению теорему 13.1, т. е. нельзя утверждать, что это уравнение разрешимо хотя бы относительно, одной из переменных Таким образом, участок поверхности [кривой ], прилегающей к особой точке, может не допускать однозначного проектирования ни на одну из координатных плоскостей [ни на одну из осей координат]. Структура поверхности [кривой в окрестности особой точки

может быть сложной и требует дополнительного исследования.

Точки поверхности [кривой ], не являющиеся особыми, принято называть обыкновенными. В окрестности обыкновенной точки действует теорема 13.1, так что прилегающий к обыкновенной точке участок поверхности [кривой ] допускает однозначное проектирование хотя бы на одну из координатных плоскостей [хотя бы на одну из осей координат], что существенно облегчает - исследование этого участка.

Примеры. 1) Найти особые точки кругового конуса

Единственной особой точкой является начало координат. Хорошо известно, что в окрестности этой точки поверхность конуса не может быть однозначно спроектирована ни на одну из координатных плоскостей (рис. 13.3).

2) Найдем особые точки плоской кривой Так как то обе частные обращаются в нуль в двух точках (0,0) и Из этих двух точек только первая принадлежит рассматриваемой кривой, т. е. является особой. Построив кривую в окрестности точки (0, 0), мы убедимся в том, что эта точка является точкой самопересечения графика (рис. 13.4). Ясно, что в окрестности этой точки кривую нельзя однозначно спроектировать ни на ось ни на ось


Если буквально следовать определению, то для построения графика некоторой функции нужно найти в с е пары соответствующих значений аргумента и функции и построить все точки с этими координатами. В большинстве случаев это сделать практически невозможно, так как таких точек бесконечно много. Поэтому обычно исследуют функцию, что даёт возможность найти область определения и область изменения функции, области её убывания или возрастания, асимптоты, интервалы знакопостоянства и т. д.; находят несколько точек, принадлежащих графику, и соединяют их плавной кривой. Однако при построении графиков многих функций часто можно избежать проведение подобного исследования, используя ряд методов, упрощающих аналитическое выражение функции и облегчающих построение графика. Изложению именно таких методов и посвящается эта статья, которая может служить практическим руководством при построении графиков многих функций.

1.1. Перенос (сдвиг) вдоль оси ординат

Пусть требуется построить график функции y=f(x)+b. Нетрудно заметить, что ординаты этого графика для всех значений аргумента на b единиц больше соответствующих ординат графика y=f(x) при b>0 и на b единиц меньше при b 0 или вниз при b 0 и на b единиц вверх, если b 0 или вправо на a единиц при a 0 или на a единиц влево при a 0 исходная функция имеет вид y=. График функции y= в области отрицательных значений x получаем отражением относительно оси ординат (рис.11).

Для нечётной функции y=f(x) в области всех значений аргумента справедливо равенство f(-x)= — f(x). Таким образом, в области отрицательных значений аргумента ординаты графика нечётной функции равны по величине, но противоположны по знаку ординатам графика той же функции при соответствующих положительных значениях x. График нечётной функции симметричен относительно начала координат.

Для построения графика нечётной функции y=f(x) следует строить ветвь графика этой функции только в области положительных значений аргумента (x).

График функции y=f(x) в области отрицательных значений аргумента симметричен построенной ветви относительно начала координат и может быть получен отражением этой ветви относительно оси ординат с последующим отражением в области отрицательных значений x относительно оси абсцисс.

Пример 9. Построить график функции y=x.

Р е ш е н и е: Исходная функция является нечётной, поэтому строим её в области положительных значений аргумента (x), где она имеет вид y=x2. График функции y=x в области отрицательных значений аргумента получаем отражением построенной ветви относительно начала координат (рис.12).

Пример 10. Построить график функции y= .

Р е ш е н и е: Данная функция является нечётной, поэтому строим её график лишь в области x>0 (точка x=0 не входит в область определения функции), где она имеет вид y=1. Ветвь графика данной функции при x 0. Нетрудно заметить, что при равных значениях аргумента ординаты графика этой функции будут в A раз больше ординат графика функции y=f(x) при A>1 или в раз меньше ординат графика функции y=f(x) при A 1 (произвести растяжение графика вдоль оси ординат) или уменьшить его ординаты в раз при A 0. Рассмотрим функцию y=f(x), которая в произвольной точке x=x1 принимает значение y1=f(x1).

Очевидно, что функция y=f(wx) принимает такое же значение в точке x=x2, координата

которой определяется равенством x1=wx2, или x2=, причём это равенство справедливо для совокупности всех значений x из области определения функции. Следовательно, график функции y=f(wx) оказывается сжатым (при w>1) или растянутым (при w 1 (произвести сжатие графика вдоль оси абсцисс) или увеличить его абсциссы в раз при w

Построение графиков функций

Функции и их графики — одна из самых увлекательных тем в школьной математике. Жаль только, что проходит она. мимо уроков и мимо учеников. На нее вечно не хватает времени в старших классах. А те функции, которые проходят в 7-м классе, — линейная функция и парабола — слишком просты и незамысловаты, чтобы показать все разнообразие интересных задач.

Темы для повторения:

1. Построим график функции

Знакомая задача! Такие встречались в вариантах ОГЭ по математике. Там они считались сложными. Но сложного ничего здесь нет.

Упростим формулу функции:

График функции — прямая с выколотой точкой


2. Построим график функции

Выделим в формуле функции целую часть:

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции


Выделение целой части — полезный прием, применяемый в решении неравенств, построении графиков и оценке целых величин в задачах на числа и их свойства. Он встретится вам также на первом курсе, когда придется брать интегралы.

3. Построим график функции

Он получается из графика функции растяжением в 2 раза, отражением по вертикали и сдвигом на 1 вверх по вертикали


4. Построим график функции

Главное — правильная последовательность действий. Запишем формулу функции в более удобном виде:

Действуем по порядку:

1) График функции y=sinx сдвинем на влево;

2) сожмем в 2 раза по горизонтали,

3) растянем в 3 раза по вертикали,

4) сдвинем на 1 вверх


5. Построим график функции

Область определения функции:

Промежутки знакопостоянства функции определим с помощью метода интервалов.


Есть ли другие асимптоты у нашей функции? Чтобы выяснить это, посмотрим, как ведет себя функция, когда x стремится к бесконечности.

Раскроем скобки в формуле функции:

Если x стремится к бесконечности, то стремится к нулю. Прямая является наклонной асимптотой к графику функции.


6. Построим график функции

Это дробно-рациональная функция.

Область определения функции

Нули функции: точки — 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Если x стремится к бесконечности, то у стремится к 1. Значит, — горизонтальная асимптота.

Вот эскиз графика:


Еще один интересный прием — сложение графиков.

7. Построим график функции

Если x стремится к бесконечности, то и график функции будет бесконечно близко подходить к наклонной асимптоте

Если x стремится к нулю, то функция ведет себя как Это мы и видим на графике:


Вот мы и построили график суммы функций. Теперь график произведения!

8. Построим график функции

Область определения этой функции — положительные числа, поскольку только для положительных x определен

Значения функции равны нулю при (когда логарифм равен нулю), а также в точках, где то есть при

При значение cos x равно единице. Значение функции в этих точках будет равно при


9. Построим график функции

Функция определена при Она четная, поскольку является произведением двух нечетных функций и График симметричен относительно оси ординат.

Нули функции — в точках, где то есть при при

Если x стремится к бесконечности, стремится к нулю. Но что же будет, если x стремится к нулю? Ведь и x, и sin x будут становиться меньше и меньше. Как же будет вести себя частное ?


А как же производная? Да, наконец-то мы до нее добрались. Производная помогает более точно строить графики функций. Находить точки максимума и минимума, а также значения функции в этих точках.

10. Построим график функции

Область определения функции — все действительные числа, поскольку

Функция нечетна. Ее график симметричен относительно начала координат.

При x=0 значение функции равно нулю. При значения функции положительны, при отрицательны.

Если x стремится к бесконечности, то стремится к нулю.

Найдем производную функции
По формуле производной частного,

Найдем значения функции при x=2 и при x=-2.


Графики функций удобно строить по определенному алгоритму, или схеме. Помните, вы изучали ее в школе?

Общая схема построения графика функции:

1. Область определения функции

2. Область значений функции

3. Четность — нечетность (если есть)

4. Периодичность (если есть)

5. Нули функции (точки, в которых график пересекает оси координат)

6. Промежутки знакопостоянства функции (то есть промежутки, на которых она строго положительна или строго отрицательна).

7. Асимптоты (если есть).

8. Поведение функции в бесконечности

9. Производная функции

10. Промежутки возрастания и убывания. Точки максимума и минимума и значения в этих точках.

1. Построение графиков функций

Теория:

Построение графиков любых функций выполняется по точкам. Однако не всегда заранее мы знаем как выглядит график. В этих случаях выделяют особо значимые точки графика, которые и задают его вид.

К особо значимым точкам графика функции y = f ( x ) относят:

— стационарные и критические точки;

— точки пересечения графика с осью \(x\) (нули функции) и с осью \(y\);

— точки разрыва функции.

Таким образом, для построения сложной функции сначала нужно исследовать свойства этой функции, найти важные её точки и уже потом по этим точкам строить график.

Существует чёткий план исследования свойств функции, позволяющий определить поведение функции на области определения и построить её график.

1) Когда функция y = f ( x ) непрерывна на всей числовой прямой, тогда определяют точки пересечения графика с осями координат, стационарные и критические точки, точки экстремума, промежутки монотонности и несколько контрольных точек, если это необходимо.

2) Когда функция y = f ( x ) определена не на всей числовой прямой, тогда в первую очередь находят область определения функции и точки разрыва.

3) Проверяют функцию на чётность, т. к. график чётной функции симметричен относительно оси \(y\) и график нечётной функций симметричен относительно начала координат. Значит, можно построить только ветвь графика при \(x>0\), а затем симметрично её отобразить.

4) Если lim x → ∞ f ( x ) = b , то, прямая \(y=b\) является горизонтальной асимптотой графика функции y = f ( x ) .

5) Прямая \(x=a\) является вертикальной асимптотой графика функции y = f ( x ) , если y → ∞ при x → a .

построить график функции y = x 2 + 4 x 2 − 4 .

Решение 1. Обозначим: f ( x ) = x 2 + 4 x 2 − 4 . Область определения этой функции: D ( f ) = ( − ∞ ; − 2 ) ∪ ( − 2 ; 2 ) ∪ ( 2 ; + ∞ ) , так как x ≠ 2, x ≠ − 2 .

2. Проведём исследование функции на чётность/нечётность:

f ( − x ) = − x 2 + 4 − x 2 − 4 = x 2 + 4 x 2 − 4 = f ( x ) .

Функция чётная. Следовательно, можно построить ветви графика функции для x ≥ 0 и отобразить их симметрично относительно оси ординат.

3. Определим асимптоты. Вертикальная асимптота: прямая \(x=1\), т. к. при \(x=1\) знаменатель дроби равен нулю, а числитель при этом не равен нулю. Для определения горизонтальной асимптоты вычисляем lim x → ∞ f ( x ) :

lim x → ∞ x 2 + 4 x 2 − 4 = lim x → ∞ x 2 x 2 + 4 x 2 x 2 x 2 − 4 x 2 = lim x → ∞ 1 + 4 x 2 1 − 4 x 2 = 1 .

Следовательно, \(y=1\) — горизонтальная асимптота.

4. Определим стационарные и критические точки, точки экстремума и промежутки монотонности функции:

y ′ = x 2 + 4 x 2 − 4 ′ = ( x 2 + 4 ) ′ ⋅ ( x 2 − 4 ) − ( x 2 + 4 ) ⋅ ( x 2 − 4 ) ′ x 2 − 4 2 = 2 x ⋅ ( x 2 − 4 ) − ( x 2 + 4 ) ⋅ 2 x x 2 − 4 2 = 2 x 3 − 8 x − 2 x 3 − 8 x x 2 − 4 2 = = − 16x x 2 − 4 2 .

Производная существует на всей области определения функции, следовательно, критических точек у функции нет.

Стационарные точки определим из уравнения y ′ = 0 . Получаем: \(-16x=0\) — откуда получаем, что \(x=0\). При \(x y ′ > 0 ; при \(x>0\) имеем: y ′ 0 . Таким образом, в точке \(x=0\) функция имеет максимум, причём y max = f ( 0 ) = 0 2 + 4 0 2 − 4 = − 1 .

При \(x>0\) имеем: y ′ 0 . Учитывая точку разрыва \(x=2\), делаем вывод: функция убывает на промежутках 0 ; 2 ) и ( 2 ; + ∞ ) .

5. Найдём несколько точек, принадлежащих графику функции f ( x ) = x 2 + 4 x 2 − 4 при x ≥ 0 :

Напомним определение. Точка называется особой точкой аналитической функции , если в ней аналитичность ее нарушается.

Определение 2. Точка называется изолированной особой точкой функции , если существует окрестность этой точки с исключенной точкой , в которой аналитична, кроме самой точки .

Существует три типа изолированных особых точек. Приведем их определения.

Определение 3. Точка называется устранимой особой точкой , если разложение ее в ряд Лорана в окрестности этой точки не содержит главной части.

Определение 4. Точка называется полюсом кратности N функции, если в разложении ее в ряд Лорана в окрестности точки главная часть содержит конечное число членов, причем младшим отличным от нуля коэффициентом является .

Определение 5. Точка называется существенно особой точкой функции , если главная часть ее разложения в ряд Лорана в окрестности этой точки содержит бесконечное число членов.

Приведем критерии типа изолированных особых точек.

1) для того, чтобы точка была устранимой особой точкой функции , необходимо и достаточно, чтобы .

2) для того, чтобы точка была полюсом кратности N функции, необходимо и достаточно, чтобы , .

3) для того, чтобы точка была существенно особой точкой функции , необходимо и достаточно, чтобы .

Полезна следующая теорема. Для того, чтобы точка была полюсом порядка N функции, нужно, чтобы она была нулем N - го порядка функции (связь между нулями и полюсами).

Пример 1. Для функции особой точкой является . Имеем - есть устранимая особая точка.

Пример 2. Для функции является особой точкой. Так как - это полюс. Так как для функции т. является нулем пятого порядка, то - полюс пятого порядка функции .

Пример 3. Для функции является особой точкой. Разложение в ряд Лорана: в главной части содержит бесконечное число членов: это существенно особая точка.

Пример 4. Найти все особые точки функции и определить их характер.

Решение. Особыми точками являются точка и точки, в которых знаменатель обращается в нуль. Имеем , откуда , причем эти точки являются нулями первого порядка. Следовательно, в точках , функция имеет простые полюса. Точка не является изолированной особой точкой, так как она является пределом полюсов: : это означает, что любая окрестность точки содержит бесконечное число особых точек .

Задачи для самостоятельного решения

У нижеследующих функций найти нули и определить их порядки:

132. . 133. . 134. . 135. . 136. .

Найти порядок нуля для следующих функций:

138. . 139. . 140. .

Определить характер особой точки для следующих функций:

142. . 143. . 144. .

Найти особые точки и определить их характер у следующих функций:

145. . 146. . 147. . 148. . 149. .

Читайте также: