Окислительно восстановительные процессы в организме реферат

Обновлено: 05.07.2024

Горение

Если мы замерзли, или хотим приготовить еду, то зажигаем огонь. Реакция горения это тоже окислительно – восстановительная реакция.

А знаете, что можно согреться и без огня, с помощью химических грелок. Например такой: совершенно сухую смесь железной (Fe) или алюминиевой (Al) стружки с солями меди (например, CuCl2) можно хранить довольно долго, а при добавлении воды температура сразу же повышается почти до 100 о С за счет реакции:

При этом грелка, в которой хлорид меди CuCl2 превращается в хлорид железа FeCl2, сохраняет тепло около десяти часов.

Дыхание

Дыхание характерно для большинства живых организмов, оно просто неотделимо от жизни. Дыхание — это сложный непрерывный процесс поддержания на оптимальном уровне окислительно-восстановительных процессов в организме человека. В процессе дыхания принято различать три звена: легочное дыхание, транспорт газов кровью, тканевое дыхание.

При атмосферном давлении, равном 760 мм рт. ст. процесс дыхания протекает нормально. При понижении атмосферного давления, то есть при подъеме на высокие горы, во время полета в самолете происходит уменьшение содержания кислорода в составе воздуха. В результате недостатка в организме кислорода (гипоксии), у человека появляются признаки горной болезни: дыхание и пульс учащаются, появляются головная боль, мерцание в глазах, тошнота. Если при этом человек не получит кислород в необходимом количестве, он может потерять сознание. Поэтому во время полета в самолете в воздух дополнительно подается кислород.

Жители горных местностей приспособлены к жизни в таких условиях. Содержание эритроцитов в их крови увеличивается, что способствует усвоению кислорода воздуха в большом количестве. Лица, живущие в условиях нормального атмосферного давления, при необходимости подняться в высокие горы должны совершать подъем на высоту не сразу, а постепенно, давая возможность организму приспосабливаться.

Легочное дыхание — это газообмен между организмом и окружающим его атмосферным воздухом. Оно делится на два этапа: газообмен между атмосферным и альвеолярным воздухом, газообмен между альвеолярным воздухом и кровью.

Тканевое дыхание тоже разделено на два этапа. Первый этап — это обмен газов между кровью и тканями, второй связан с потреблением кислорода клетками и выделением ими углекислого газа. Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Обычно вдох короче выдоха. Оптимальное соотношение вдох/выдох = 1/2.

Суммарно процесс дыхания можно выразить следующим уравнением:

Гниение

Благодаря процессам гниения осуществляется круговороты веществ в природе. Гнилостные бактерии, переводя органическое вещество в неорганическое, как бы начинают круговорот жизни. Но в то же время гниение – это процесс разрушения органических азотсодержащих соединений, главным образом белковых веществ, под действием микробных ферментов; составляет один из важных этапов в круговороте веществ в природе. В результате гниения из сложных органических соединений образуются простейшие вещества — Аммиак, углекислота, вода, сероводород, фосфорная, азотная, азотистая и серная кислоты, которые в живой природе служат исходными веществами для нового синтеза (неогенеза) сложных органических соединений. При гниении мяса и рыбы образуются птомаины (кадаверин, нейрин, холин и др.), обладающие токсическими свойствами. В организме человека процесс гниения происходит в основном в толстой кишке, где существуют оптимальные условия для жизнедеятельности гнилостных бактерий. Токсические соединения, образовавшиеся при гнилостном распаде белка в кишечнике, с кровью попадают в Печень, где происходит их обезвреживание. Интенсивность процессов гниения в кишечнике человека невелика, однако при ряде патологических состояний, сопровождающихся выделением в просвет кишечника крови, различных экссудатов или при кишечной непроходимости она возрастает, что может привести к эндогенной интоксикации. Опасно развитие гнилостной инфекции в ранах.

Медицина и окислительно-восстановительные реакции

Окислительно-восстановительные реакции активно происходят как на стадиях разложения организмов, так и на стадии заживления ран, излечивания от болезней. Одну из простейших окислительно-восстановительных реакций вы могли не только наблюдать, но и хотя бы раз в жизни провести!

Перекисью водорода называется хорошо известное в народе вещество, которое широко используют как в медицине, так и для бытовых целей. В частности, перекись водорода рекомендуют как дезинфицирующее средство. Действие перекиси связано с тем, что при контакте с живой тканью она начинает быстро разлагаться. При этом выделяется молекулярный кислород, который способствует окислению органических компонентов разных клеток. При разложении перекиси кислород выделяется настолько энергично, что раствор вспенивается. Получившаяся при контакте с тканью пена помогает в механическом очищении повреждений и ран. Вместе с пеной из ран удаляется мусор, микроорганизмы, омертвевшие частицы тканей, гнойные выделения и так далее. Раствор перекиси водорода способен за счет пенообразования способствовать тромбообразованию и оказывать кровоостанавливающее действие при небольшом кровотечении.

Для целей отбеливания и дезинфекции пользуются окислительными свойствами таких наиболее известных средств, как пероксид водорода, хлор и хлорная, или белильная, известь.

Если требуется окислить с поверхности изделия какое-либо легко разрушающееся вещество, применяют пероксид водорода. Он служит для отбеливания шелка, перьев, меха. С его помощью также реставрируют старинные картины. Ввиду безвредности для организма пероксид водорода применяют в пищевой отрасли промышленности для отбеливания шоколада, рубцов и оболочек в производстве сосисок.

Хлор как сильный окислитель используют для стерилизации чистой воды и обеззараживания сточных вод. Хлор разрушает многие краски, на чем основано его применение при белении бумаги и тканей. Хлорная, или белильная, известь – это один из самых распространенных окислителей как в быту, так и в производственных масштабах.

Коррозия

Коррозия металлов – физико-химическое или химическое взаимодействие между металлом (сплавом) и средой, приводящее к ухудшению функциональных свойств металла (сплава), среды или включающей их технической системы.

Коррозия вызывается химической реакцией металла с веществами окружающей среды, протекающей на границе металла и среды. Чаще всего это окисление металла, например, кислородом воздуха или кислотами, содержащимися в растворах, с которыми контактирует металл. Особенно подвержены этому металлы, расположенные в ряду напряжений (ряду активности) левее водорода, в том числе железо.

Многие металлы, в том числе и довольно активные (например, алюминий) при коррозии покрываются плотной, хорошо скрепленной с металлами оксидной пленкой, которая не позволяет окислителям проникнуть в более глубокие слои и потому предохраняет металл от коррозии. При удалении этой пленки металл начинает взаимодействовать с влагой и кислородом воздуха.

Алюминий в обычных условиях устойчив к воздействию воздуха и воды, даже кипящей, однако если на поверхность алюминия нанести ртуть, то образующаяся амальгама разрушает оксидную пленку:

Коррозии подвергаются и некоторые довольно мало активные металлы. Во влажном воздухе поверхность меди покрывается зеленоватым налетом (патиной) в результате образования смеси основных солей.

К коррозии металлов можно отнести также их растворение в жидких расплавленных металлах (натрий, свинец, висмут), которые используются, в частности, в качестве теплоносителей в ядерных реакторах.

Наиболее распространена коррозия в средах электролитов. В некоторых технологических процессах металлы контактируют с расплавами электролитов. Однако чаще всего коррозия протекает в растворах электролитов. Металл не обязательно должен быть полностью погружен в жидкость. Растворы электролитов могут находиться в виде тонкой пленки на поверхности металла. Они нередко пропитывают окружающую металл среду (почву, бетон и др.).

Использование солей (обычно хлорида натрия или кальция) для удаления снега и льда с дорог и тротуаров также приводит к ускоренному разрушению металлов. Сильно страдают транспортные средства и подземные коммуникации. Подсчитано, что только в США применение солей для борьбы со снегопадами и гололедом приводит к потерям на сумму около 2 млрд. долл. в год в связи с коррозией двигателей и 0,5 млрд. долл. на дополнительный ремонт дорог, подземных магистралей и мостов.

В средах электролитов коррозия обусловлена не только действием кислорода, воды или кислот на металлы, но и электрохимическими процессами.

Электрохимическая коррозия приводит к быстрому разрушению более активных металлов, которые в различных механизмах и устройствах контактируют с менее активными металлами, расположенными в электрохимическом ряду напряжений правее. Использование медных или латунных деталей в железных или алюминиевых конструкциях, которые работают в морской воде, существенно усиливает коррозию. Известны случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками.

По отдельности алюминий и титан устойчивы к действию морской воды, но если они контактируют в одном изделии, например в боксе для подводной фототехники, алюминий очень быстро разрушается, и бокс протекает.

Одной из причин возникновения электрохимической коррозии являются блуждающие токи, которые появляются вследствие утечки части тока из электрических цепей в почву или водные растворы, где они попадают на металлические конструкции. В местах выхода тока из этих конструкций вновь в почву или воду начинается растворение металла. Такие зоны разрушения металлов под действием блуждающих токов особенно часто наблюдаются в районах наземного электрического транспорта (трамвайные линии, железнодорожный транспорт на электрической тяге). Эти токи могут достигать несколько ампер, что приводит к большим коррозионным разрушениям. Например, прохождение тока силой в 1 А в течение одного года вызовет растворение 9,1 кг железа, 10,7 кг цинка, 33,4 кг свинца.

Полностью предотвратить коррозию можно только в инертной среде, например в атмосфере аргона, однако реально создать такую среду при эксплуатации конструкций и механизмов в подавляющем большинстве случаев невозможно. На практике для снижения коррозионной активности среды из нее стараются удалить наиболее реакционноспособные компоненты, например, снижают кислотность водных растворов и почв, с которыми могут контактировать металлы. Одним из методов борьбы с коррозией железа и его сплавов, меди, латуни, цинка, свинца является удаление из водных растворов кислорода и диоксида углерода. В энергетике и некоторых отраслях техники воду освобождают также от хлоридов, которые стимулируют локальную коррозию. Для снижения кислотности почвы проводят известкование.

Агрессивность атмосферы сильно зависит от влажности. Для любого металла есть некоторая критическая относительная влажность, ниже которой он не подвергается атмосферной коррозии.

Один из способов защиты от коррозии основывается на разработке новых материалов, обладающих более высокой коррозионной стойкостью. Часто применяют поверхностное легирование недорогих железных сплавов цинком, алюминием, хромом.

Для замедления коррозии на поверхность металла наносят лаки и краски, минеральные масла и смазку. Подземные конструкции покрывают толстым слоем битума или полиэтилена.

Одним из наиболее эффективных методов борьбы с коррозией является электрохимическая защита. Для защиты буровых платформ, сварных металлических оснований, подземных трубопроводов их подключают в качестве катода к внешнему источнику тока. В качестве анода используются вспомогательные инертные электроды.

Защита одного металла другим, более активным металлом, расположенным в ряду напряжений левее, эффективна и без наложения разности потенциалов. Более активный металл (например, цинк на поверхности железа) защищает от разрушения менее активный металл.

О вредном действии коррозии знают все, но нельзя и недооценивать ее значение. С глубокой древности известен способ превращения железа в сталь, через ржавление. Суммарно процесс ржавления можно выразить уравнением:

Черкесы на Кавказе закапывали полосовое железо в землю, а, откопав его через 10-15 лет, выковывали из него свои сабли, которые могли перерубить даже ружейный ствол, щит врага. После выкапывания ржавое железо вместе с органическими веществами нагревали в горнах, ковали, а затем охлаждали водой – закаливали.

Электролиз

Золочение предметов известно с давних пор, так как позолоченные изделия очень красивы. Прежде, когда электролиз и гальванотехника не были изобретены, изделия из металлов золотили так: на них наносили тестообразную амальгаму золота (сплав его с ртутью); затем накаливали докрасна; при этом ртуть испарялась, а золото оставалось. Но пары ртути очень ядовиты, так, например, при золочении куполов Исаакиевского собора в Петербурге от отравления ртутью погибло 60 рабочих.

Пиротехника

Окислительно-восстановительные реакции находят применение и в военных целях. Их применяются для изготовления оружия, снарядов, сигнальных ракет и зажигательных смесей, изготовление огнеупорных материалов, техники и т.д. Но окислительно-восстановительные реакции с точки зрения пиротехники выполняют не только разрушающую миссию, но и несут светлое и красивое в нашу жизнь. В данном случае имеются в виду фейерверки.

Эталон единицы силы электрического тока: Эталон – это средство измерения, обеспечивающее воспроизведение и хранение.

Основные направления социальной политики: В Конституции Российской Федерации (ст. 7) характеризуется как.

Основные идеи славянофильства: Славянофилы в своей трактовке русской истории исходили из православия как начала.

Важными процессами в организмах являются реакции ферментативного окисления веществ-субстратов: углеводов, жиров, аминокислот. В результате этих процессов организмы получают большое количество энергии. Приблизительно 90 % всей потребности взрослого мужчины в энергии покрывается за счет энергии, вырабатываемой в тканях при окислении углеводов и жиров. Остальную часть энергии ~10 % дает окислительное расщепление аминокислот.

Все биохимические ОВП, скорость и глубина которых контролируется организмом, протекают под действием ферментов – оксидоредуктаз, которые делятся на кофакторы и коферменты и могут быть и окислителями и восстановителями [1]. Системы с более низким окислительно-восстановительным потенциалом отдают электроны, с высоким – их принимают. Электроны переносятся по дыхательной цепи ферментов постепенно с нарастанием редокс-потенциала. В качестве переносчиков электронов в дыхательную цепь митохондрий входят различные белки, содержащие разнообразные функциональные группы, которые предназначены для переноса электронов. По мере продвижения по цепи от одного интермедиата к другому электроны теряют свободную энергию. На каждую пару электронов, переданных по дыхательной цепи кислороду, синтезируется три молекулы АТФ. Свободная энергия, высвобождающаяся при переносе двух электронов на кислород, составляет 220 кДж/моль.

В течение жизни человек подвергается воздействию различных вредных внешних факторов – плохая экология, неправильное и зачастую некачественное питание, употребление некачественной питьевой воды, стрессовые ситуации, курение, злоупотребление алкоголем, употребление лекарственных препаратов, болезни и многое другое. Все эти факторы способствуют разрушению окислительно-восстановительной системы регуляции организма, в результате чего процессы окисления начинают преобладать над процессами восстановления, защитные силы организма и функции жизненно важных органов человека начинают ослабевать и уже не в состоянии самостоятельно противостоять различного рода заболеваниям. Замедлить преобладание окислительных процессов над восстановительными процессами возможно с помощью антиокислителей (антиоксидантов). Нормализовать баланс окислительно-восстановительной системы регуляции (с тем, чтобы укрепить защитные силы организма и функции жизненно важных органов человека и позволить организму самостоятельно противостоять различного рода заболеваниям) возможно с помощью антиоксидантов. Чем сильнее антиоксидант, тем более ощутим его противоокислительный эффект. Многочисленные исследования показали, что аскорбиновая кислота является эффективным антиоксидантом, выступая в качестве донора электронов в таких процессах, как гидроксилирование коллагена, биосинтез карнитина и норадреналина, метаболизм тирозина и аминирование гормонов.

Окислительно-восстановительные процессы (ОВП) играют важную роль в жизнедеятельности организма, поскольку именно в процессах окисления происходит выделение и запас энергии, а восстановительные процессы связаны с биосинтезом белков, нуклеиновых кислот, полисахаридов в организме. Окислительно-восстановительные реакции – это реакции, идущие с переносом электронов и изменением степени окисления элементов.

ОВП состоят из двух одновременно протекающих и противоположно направленных процессов - окисления и восстановления. Окисление – это процесс отдачи электронов, в ходе которого происходит увеличение степени окисления элементов. Восстановление - это процесс присоединения электронов, в ходе которого происходит уменьшение степени окисления элементов. Окислитель – это вещество, атом которого принимает электроны, тем самым уменьшая степень окисления. Восстановитель – это вещество, атом которого отдает электроны, тем самым увеличивая степень окисления. ОВП подразделяются на три типа.

1. Межмолекулярные, в которых окислитель и восстановитель находятся в разных молекулах, например:

2. Внутримолекулярные, в которых окислитель и восстановитель находятся в одной молекуле, но являются разными элементами, например:

2KCl +5 O3 -2 = 2KCl -1 + 3O4 0

окислитель - Cl +5 , восстановитель - O -2 .

3. Диспропорционирования (самоокисления - самовосстановления), в которых окислителем является один и тот же элемент в одной и той же степени окисления, например:

3Cl2 0 + 6KOH = 5КСl -1 + KCl +5 O3 + 3H2O

окислитель - Cl 0 , восстановитель - Cl 0 .

В ходе окислительно-восстановительных процессов между частями системы происходит перераспределение зарядов. Возникающая разность зарядов между частями системы носит название потенциал. Существует несколько видов потенциалов, связанных с прохождением различных процессов.

Одним из них является электродный потенциал, который возникает в том случае, когда пластинку металла погружают в раствор его соли (например, пластинку цинка в раствор сульфата цинка). При этом возможно прохождение двух процессов, которые определяются активностью металла и концентраций его катиона в растворе (рис.1).

Ме n+ + _ + Ме n+ _ + _

рис. 1 Виды электродных процессов

В случае низкой активности металла и высокой концентрации его катиона процесс может идти в другом направлении (см. рис. 2). Катионы металла могут перейти на пластинку, достраивая кристаллическую решетку металла и придавая ей положительный заряд; анионы соли остаются в растворе, заряжая его отрицательно. В обоих процессах между пластинкой металла и раствором его соли возникает разность зарядов, называемая электродным потенциалом Е. Независимо от механизма возникновения электродного потенциала, он определяется окислительно-восстановительным процессом, а его величина - уравнением Нернста:

где: Е - потенциал системы,

Е 0 - стандартный потенциал системы, т.е. потенциал, определенный в стандартных условиях (Т=292 К, р=1 атм, [Red] = [Ох] = 1 моль/л)

Т - абсолютная температура,

n - число электронов, участвующих в процессе,

R = 8,31 Дж/моль * К,

F = 96500 Кл/моль

[Ме п+ ] - равновесная концентрация соли данного металла.

Подставляя постоянные при 25 0 С, получим:

По величине стандартного электродного потенциала все металлы выстраиваются в электрохимический ряд напряжений.

Одним из основных является окислительно-восстановительный потенциал. Его возникновение связано с обратимостью окислительно-восстановительных процессов. Одно и то же вещество в зависимости от условий может находиться либо в окисленной (Oх), либо восстановленной (Red) форме. Между этими двумя формами идут процессы взаимного перехода, сопровождающиеся изменением заряда системы. Процесс взаимного перехода идет до тех пор, пока между двумя формами не установится равновесие:

После установления равновесия в системе возникает избыточный заряд, называемый окислительно-восстановительным или редокс-потенциалом. Его величина определяется уравнением Нернста:

где: Е - потенциал системы,

Е 0 - стандартный потенциал системы, т.е. потенциал, определенный в стандартных условиях (Т=292 К, р=1 атм, [Red] = [Ох] = 1 моль/л)

[Red], [Ох] - равновесные концентрации восстановленной и окисленной форм.

Любой окислительно-восстановительный процесс можно представить как взаимодействие двух редокс-систем - системы окислителя и системы восстановителя. Направление ОВП будет определяться величинами редокспотенциалов систем.

При этом можно выделить следующие закономерности:

1. Одна и та же редокс-система может являться как окислителем, так и восстановителем - это зависит от соотношения величин потенциалов;

2. Системы с более отрицательным потенциалом будут восстанавливать системы с более положительным потенциалом;

3. После прохождения ОВП потенциалы редокс-систем выравниваются.

Возникновение разности зарядов между частями системы может быть и не связано с прохождением ОВП. Так, в ходе процесса диффузии между частями раствора, вследствие различной подвижности ионов, возникает разность зарядов, называемая диффузным потенциалом. Диффузный потенциал существует недолго и исчезает по окончании процесса диффузии.

Если два раствора разделить полупроницаемой мембраной, то на сторонах мембраны возникает разность зарядов, называемая мембранным потенциалом. Возникновение мембранного потенциала связано с тем, что вследствие различного размера ионов они могут проходить или не проходить через мембрану.

В живых организмах, вследствие наличия многочисленных мембран, направленного транспорта веществ и прохождения различных ОВП между его частями, возникает разность зарядов, называемая биопотенциалами. По своей природе биопотенциалы могут быть диффузными, мембранными и редокспотенциалами. Биопотенциалы играют важнейшую роль в направленном транспорте веществ, работе мембранных систем, процессах биосинтеза, выделение и запасание энергии. Выделение и запасание организмом энергии тесно связано с процессами окисления и восстановления.

Актуальность: распространение окислительно- восстановительных реакций во всех сферах жизни человека, в природе, внутри организмов.

Объект: окислительно- восстановительные реакции.

Предмет: превращения веществ с точки зрения окисления- восстановления.

Цель:1)понять принцип превращения веществ;2)изучить роль окислительно- восстановительных реакций в природе, промышленности, жизни человека.

Задачи:1) исследовать теоретический материал по окислительно- восстановительным реакциям;2)применить полученные знания на практике.

Материалы и методы: реферативно-аналитический, научно- практический.

Новизна: раскрыть дальнейшие перспективы роли окислительно- восстановительных реакций.

Практическое применение: все сферы жизни человека.

Классификация химических реакций

Химические реакции- процессы, в результате которых из одних веществ образуются другие, отличающиеся от них по составу и строению. Классификация химических реакций многопланова (схема), в ее основу могут быть положены различные признаки.

По изменению степеней окисления химических элементов, образующих вещества, различеют окислительно- восстановительные реакции, и реакции, протекающие без изменения степеней окисления химических элементов.

Реакции, идущие с изменением степеней окисления элементов- окислительно- восстановительные реакции.

К ним относится множество реакций, в том числе все реакции замещения, а также те реакции разложения, в которых участвует хотя бы одно простое вещество. [8]

Пример ОВР в неорганической химии:

2Cl -1 +2e - → Cl2 0 5 (окисление)

В органической химии ярким примером окислительно- восстановительных реакций может служить восстановление альдегидов в соответствующие спирты:

С +1 +2e - → C -1 1 (восстановление)

H20 – 2e - → 2H +1 1 (окисление)

К реакциям, идущим без изменения степеней окисления химических элементов относятся все реакции ионного обмена, а также многие реакции соединения, например:

Многие реакции разложения:

Классификация окислительно- восстановительных реакций

1 Окислительно-восстановительные реакции, при которых изменяют степень окисления атомы элементов, входящих в состав разных веществ.

Примером является горение спиртовки, применяемой в большинстве лабораторных работ:

C -1 – 5e - → C +4 (окисление)

С -3 -7e - → C +4 (восстановление)

Это типичная реакция горения органических веществ(рис.1)

2 Окислительно-восстановительные реакции, при которых степень окисления изменяют атомы разных элементов одного и того же вещества.

Примерами могут служить многие процессы термической диссоциации. Так, в ходе термической диссоциации водяного пара:

2H + +2e - → H2 0 (восстановление)

2O -2 -4e - → O2 0 (окисление)

Другим примером может служить реакция разложения нитрита аммония, применяемая в лабораторной практике для получения чистого азота:

2N -3 – 6e - → N2 0 (окисление)

2N +3 + 6e - → N2 0 (восстановление)

Так, при взаимодействии хлора с водой получается смесь соляной(HCl) и хлорноватистой(HClO) кислот:

Здесь и окисление, и восстановление претерпевает хлор:

Сl2 + H2O = 2HClO + 2H + + 2e - (окисление)

Сl2 +2e - = 2Cl - (восстановление)

Окислительно-восстановительные реакции в неорганической химии

Дихромат аммония (NH4)2Cr2O7 содержит атомы азота в низшей степени окисления (III) и хрома- в высшей степени окисления (+VI). Между этими атомами при поджигании происходит внутримолекулярный обмен электронами:

2N -3 -6e - →N2 0 1 (окисление)

2Cr +6 + 6e - →2Cr +3 1 (восстановление)

Вот так идет взаимодействие перманганата калия с различными веществами:

2Fe +2 – 2e - → 2Fe +3 (окисление) 5

Mn +3 +5e - → Mn +4 (восстановление) 2

2O -1 - 2e - → O2 0 (окисление) 5

S +4 -2e - → S +6 (окисление) 1

В ходе перечисленных реакций наблюдается обесцвечивание перманганата калия KMnO4 (рис.5).

В качестве примеров реакций, в которых пероксид водорода H2O2 служит окислителем, можно привести окисление иодида калия KI:

2I - -2e - → I2 o (окисление) 1

2O -1 +2e - → 2O -2 (восстановление) 1

В результате реакции выделяется йод (рис.6)

Хроматы- соли не существующей в свободном состоянии хромовой кислоты H2CrO4, получаемой лишь в виде водных растворов с концентрацией не свыше 75%.

Соединения хрома меняют окраску в зависимости от среды.

Например, в кислой среде наблюдается изменение цвета из желтого в зеленый.[10]

2Cr +6 +6e - → 2Cr +3 (восстановление) 1

S +4 -2e - → S +6 (окисление) 3

2Cr +3 - 6e - → 2Cr +6 (окисление) 1

2O -1 +2e - → 2O -2 (восстановление) 3

Наблюдается переход цвета из зеленого в желтый (рис.7).

Если в голубой раствор сульфата меди(II) CuSO4 опустить железный гвоздь, предварительно очищенный наждачной бумагой, то вскоре он покроется красноватым слоем металлической меди. Раствор (теперь уже сульфата железа(II)) приобретет бледно- зеленую окраску.[2]

Сu+2 +2e- → Cu0 (восстановление) 1

Fe0 -2e- → Fe0 (окисление) 1

С кислотами реагируют почти все металлы. Водород служит эталоном для сравнения способности металлов взаимодействовать с кислотами-неокислителями. Это могут делать металлы, расположенные левее водорода в ряду напряжений: от K до свинца Pb.[7] Например:

Al 0 -3e - → Al +3 (окисление)

2H + +2e - → H2 0 (восстановление)

Концентрированная серная H2SO4 и азотная HNO3 кислоты реагируют с металлами по-разному, в зависимости от положения металла в ряде напряжений и концентрации кислоты (схема1 ).

химия альдегид диссоциация окислительный восстановительный

Окислительно-восстановительные реакции в органической химии

При добавлении к глюкозе раствора перманганата калия, подкисленного серной кислотой, происходит окисление глюкозы и обесцвечивание перманганата калия:

6C 0 – 24e - → 6C +4 (окисление) 5

12C 0 -48e - → 12C +4 (окисление) 1

2Cr +6 + 6e - →2Cr +3 (восстановление) 8

С -1 -4e - → C +3 (окисление) 5

При прокаливании медной проволоки (она чернеет) и опускании ее в раствор спирта, происходит окисление спирта до альдегида, и выделяется чистая медь(рис.8)

2С -1 -2e - → 2C +1 (окисление) 1

Сu +2 – 2e - → Cu 0 (восстановление) 1

В организме человека, употребляющего алкогольные напитки, также происходит окисление спирта до альдегида, что наносит вред здоровью. Этаналь вызывает разрушение клеток мозга, человек ощущает головную боль.

В организме животных и человека запасается жир, при окислении которого выделяется энергия, необходимая для осуществления жизненно важных процессов:


При пропускании аммиачного раствора оксида серебра через альдегид, на поверхности пробирки выделяется чистое серебро (рис.9):

Ag2O + 4 NH4OH => 2 [Ag(NH3)2]OH + Н2O

R-CH=O + 2 [Ag(NH3)2]OH => RCOONH4 + 2 Ag +3 NH3 + H2O

Эта реакция используется при изготовлении игрушек, посуды, украшений.

Окислительно-восстановительные реакции в органической химии сложны, интересны и играют огромную роль в промышленности, фармакологии, природе, жизни организмов и человека.

Химические источники электрической энергии

В конце XVIII в. Итальянский физиолог Луиджи Гальвани впервые заметил появление кратковременного электрического тока в мышцах лягушки, лапка которой находилась в соприкосновении с двумя различными металлами(медной проволочкой и железной сеткой).[6]

Широко известный медно цинковый гальванический элемент был создан в 1836 г. Английским исследователем Джоном-Фредериком Даниелем. Усовершенствовал его русский ученый Борис Семенович Якоби.[5]

Гальванический элемент- устройство, которое применяют для непосредственного преобразования энергии химической реакции в электрическую энергию.(рис.1, 2).

Действие любого гальванического элемента основано на протекании в нем окислительно-восстановительной реакции. В простейшем случае гальванический элемент состоит из двух пластин или стержней, изготовленных из различных металлов и погруженных в раствор электролита. Такая система делает возможным пространственное разделение окислительно- восстановительной реакции: окисление протекает на одном металле, а

восстановление- на другом. Таким образом, электроны передаются от восстановителя к окислителю по внешней цепи.

Например, медно- цинковый гальванический элемент(элемент Якоби- Даниеля) состоит из медной пластины, погруженной в раствор сульфата меди (медный электрод), и цинковой пластины, погруженной в раствор сульфата цинка(цинковый электрод). Оба раствора соприкасаются друг с другом, но для предупреждения смешения они разделены перегородкой, изготовленной из пористого материала.

При работе элемента, т.е. при замкнутой цепи, цинк окисляется: на поверхности его соприкосновения с раствором атомы цинка превращаются в ионы и, гидратируясь, переходят в раствор. Высвобождающиеся при этом электроны движутся по внешней цепи к медному электроду.

На медном электроде протекает восстановление ионов меди. Электроны, приходящие сюда от цинкового электрода, соединяются с выходящими из раствора дегидратирующимися ионами меди; образуются атомы меди, выделяющиеся в виде металла.

Cu 2+ + 2e - = Cu 0

Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление, называется катодом. В медно- цинковом элементе цинковый электрод является анодом, а медный- катодом.

На основе гальванического элемента протекает процесс электролиза. Электролиз- окислительно-восстановительная реакция, происходящая пр прохождении постоянного электрического тока через электромагнитную систему, состоящую из двух электродов и расплава или раствора электролита.

Схема электролиза раствора хлорида меди(II) c инертным анодом:

Катод ← Сu 2+ 2Cl - → Анод

Cu 2+ +2e - = Cu 2Сl - = 2Cl + 2e -

Схема электролиза раствора сульфата калия с инертным анодом:

Катод ← 4K + 2SO4 2- → Анод

4H2O + 4e - = 4K + + 4OH - + 4H + 2H2O = 2SO4 2- + 4H + + 2O 2- +4e -

Схема электролиза сульфата никеля с никелевым анодом:

Катод ← Ni 2+ SO4 2- → Анод

Ni 2+ + 2e - = Ni 0 Ni 0 = Ni 2+ + SO4 2- + 2e -

Важнейшее применение электролиз находит в металлургической и химической промышленности, и в гальванотехнике. [4]

Окислительно- восстановительные реакции в природе, промышленности и жизни человека

Все процессы в живой природе сопровождаются превращением энергии и ее переходами из одной формы в другую. В течение одного дня взрослый человек потребляет примерно 10 млн. Дж энергии. Главный источник энергии - химические реакции: окисление жиров и углеводов, поступающих в человеческий организм с пищей. [9]

Синтез жиров и углеводов, которые есть в пище, тоже требует затрат энергии. Основной источник земной энергии – солнечный свет. Свет представляет собой один из мощных факторов воздействия на химические процессы. Достаточно вспомнить, что жизнь на Земле поддерживается

благодаря растениям, а растения осуществляют синтез органических веществ, используя энергию излучения Солнца. Фотосинтез(рис.10) - самый крупный из химических процессов на Земле. Энергия солнечного света при участии хлорофилла запасается в продуктах фотосинтеза именно в углеводах:

Синтез углеводов протекает согласно циклу Кальвина (рис.11) и распадается с выделением энергии по циклу Кребса (рис.12)- это наиболее важные окислительно-восстановительные реакции в организмах, поддерживающие жизнь на нашей планете.

AlCl3 + 3Na(Hg) = Al + 3NaCl3 + Hg

Продукты реакции он обработал водой для растворения хлорида натрия NaCl ,а из остатка, содержащего амальгаму алюминия, удалил нагреванием ртуть. Так в 1825 г. Впервые был получен алюминий.

В 1827 г. Немецкому химику Вёлеру также удалось выделить алюминий, используя реакцию восстановления гексафторалюмината натрия металлическим калием:

Алюминий в этом случае легко отделяется от фторидов калия KFи натрия NaF, хорошо растворимых в воде.

Na[AlCl4] + 3Na= Al + 4NaCl.[1]

Нержавеющая железная колонна

Эта знаменитая Кутубская колонна высотой около семи метров и массой 6,5 т. Надпись на колонне говорит о том, что она была поставлена в 9 в. До н. э. Ржавление железа- образование метагидроксида железа FeO(OH)- связано со взаимодействием его с влагой и кислородом воздуха:

Однако эта реакция при отсутствии в железе различных примесей, и прежде всего углерода, кремния и серы, не протекает. Колонна была изготовлена из очень чистого материала: железа в колонне оказалось 99,72%. Этим и объясняется её долговечность и коррозионная устойчивость.[1]

Польза пероксида. Пероксид водорода H2O2, вернее, его водный 3%-й раствор, известен как крововосстанавливающее средство при травмах кожи. При лечении открытых травм H2O2 служит для обогащения крови больного кислородом O2 непосредственно возле поврежденного места тела:

2O -1 - 2e - → O2 0 (окисление) 1

2O -1 + 2e - → 2O -2 (восстановление) 1

После хирургической обработки раны пациенту делают инъекции 0,01%-го водного раствора пероксида водорода, вводя его в артерии, снабжающие кровью орган или участок тела.[1]

Озонное старение каучуков, резин и пластмасс.

Скорость реакции озона с двойной связью С=С в 100 000 раз выше, чем скорость реакции озона с одинарной связью С-С. Поэтому от озона в первую очередь страдают каучуки и резины.

Озон реагирует с двойной связью с образованием промежуточного комплекса:

У комплекса есть две возможности:

1) Образовать молозонид:

2) При соударении с другой молекулой олефина (каучука) дать исходные продукты:

Основной путь предотвращения озонной деструкции и резин – поиск веществ, которые реагируют с озоном быстрее, чем озон реагирует с двойными связями каучуков и резин.Примеры реакций антиозонантов с озоном:

В технологической практике наибольший эффект достигается при применении антиозонантов в сочетании с восками (предельные углеводороды).

Заключение.

Изучение окислительно-восстановительных реакций является актуальной задачей в настоящее время. Они принадлежат к числу наиболее распространенных химических реакций и играют важную роль в природе и технике. Около 80% всех химических превращений происходит в живой и неживой природе в результате процессов окисления-восстановления. Проявление различных жизненных функций организма связано сзатратой энергии, которую наш организм получает из пищи в результате окислительно-восстановительных реакций.

Весь окружающий нас мир можно рассматривать как гигантскую химическую лабораторию, в которой ежесекундно протекают окислительно-восстановительные процессы. Это фотосинтез и круговорот веществ, гниение и брожение, нервная деятельность человека и животных.

Большинство химических процессов , осуществляемых человеком в его практической деятельности, представляют собой окислительно-восстановительные реакции. Их можно наблюдать при сгорании топлива в топках паровых котлов и двигателей внутреннего сгорания, в процессах коррозии металлов. Получение металлов и неметаллов, кислот, щелочей, строительных материалов, высокомолекулярных соединений, медикаментов и т.д. основано на использовании окислительно- восстановительных реакций

В последние годы разработаны электрохимические преобразователи информации и электрохимические устройства, в основе действия которых лежат законы электролиза. Широко используются в технике различные источники тока.

Окислительно-восстановительные процессы, протекающие в природе и технике, нередко наносят огромный ущерб. В качестве примеров можно привести коррозию металлов, лесные пожары, окисление азота при сжигании топлива, образование чрезвычайно токсичных диоксидов и т.д. При помощи окислительно- восстановительных реакций проводят анализ различных веществ, очищают многие вещества, природные и сточные воды, газовые выбросы электростанций и т.д. [11]

Читайте также: