Общая характеристика d элементов реферат

Обновлено: 05.07.2024

1. Особенности d-элементов по сравнению с элементами главных подгрупп.

2. Элементы подгруппы марганца.

3. Элементы подгруппы хрома.

4. Макро- и микроэлементы в земледелии.

15.1 Особенности d-элементов по сравнению с элементами главных подгрупп.

Всего известно 35 d-элементов, из них 30 есть в земной коре, а 5 искусственные и радиоактивные. Все эти элементы называют переходными металлами

d-элементы расположены в периодической системе в больших периодах между s- и p-элементами. Характерной особенностью переходных элементов является то, что в их атомах заполняются орбитали не внешнего слоя, а предвнешнего слоя. У d-элементов валентными являются энергетически близкие девять орбиталей – одна ns-орбиталь, три np-орбитали и пять (n-1) d-орбиталей.

Во внешнем слое у атомов d-элементов находятся 1 – 2 электрона. Остальные валентные электроны расположены в (n-1) d-состоянии, т. е. в предвнешнем слое.

Подобное строение электронных оболочек атомов определяет ряд общих свойств d-элементов:

1. все d-элементы – металлы, отличающиеся от s-металлов меньшей восстановительной способностью и иногда химической инертностью;

2. для большинства d-элементов характерно проявление нескольких степеней окисления, сравнимых по термодинамической устойчивости в обычных условиях. Это значит, что для них характерно большое число окислительно-восстановительных реакций;

3. многие d-элементы в высших степенях окисления проявляют кислотные свойства, в промежуточных амфотерные, а в низших основные;

4. d-элементы способны образовывать разнообразные комплексные соединения;

5. в отличие от соединений s-металлов большинство соединения d-элементов имеют характерные окраски.

15.2 Элементы подгруппы марганца.

В состав этой подгруппы входят марганец Mn, технеций Tc и рений Re.

Валентные орбитали ns 2 (n-1)d 5

Оксид и гидроксид марганца(II) - MnO (серо-зеленые кристаллы) и Mn(OH)2 (осадок телесного цвета) обладают основными свойствами. Оксид марганца (III) Mn2O3 (бурые кристаллы) тоже основной. Ему соответствует гидроксид Mn(OH)3 (черно-коричневого цвета).

Оксид и гидроксид марганца(IV) – MnO2 (черные кристаллы) и Mn(OH)4 – амфотерны, со слабо выраженными основными и кислотными свойствами.

Оксид марганца (VI) MnO3 и, соответствующая ему марганцовистая кислота H2MnO4, в свободном состоянии не получены. Соли этой кислоты (манганаты) в водных раствора окрашены в зеленый цвет.

Mn2O7 (зеленовато-бурая маслянистая жидкость) и HMnO4 (известна только в водных растворах и относится к сильным кислотам) это кислотные соединения. Ангидрид, кислота и ее соли пермаганаты - сильные окислители. Соединения марганца(IV) проявляют окислительно-восстановительную двойственность, а соединения марганца(II) – восстановители.

Элементы подгуппы марганца образуют комплексные соединения: K2[Mn(OH)6], Na2[ReF8], [Mn2(CO)10].

Марганец входит в состав многих металлоферментов растений и животных, без которых не может работать цикл Кребса. Это один из важнейших биохимических циклов любой живой клетки, вырабатывающий энергию и запасащий её в аденозинтрифосфате (АТФ). В качестве марганцевого микроудобрения используют MnSO4 ×H2O.

15.3 Элементы подгруппы хрома.

Шестую побочную подгруппу образуют металлы: хром Cr, молибден Mo, вольфрам W. Валентные орбитали ns 1 (n-1)d 5 .

Степени окисления у хрома +2, +3, +6, 0.

В степени окисления +2 хром образует CrO и Cr(OH)2 основного характера, крайне неустойчивые соединения – сильные восстановители. Самая устойчивая степень окисления для хрома +3. Оксид хрома Cr2O3 и гидроксид Cr(OH)3 – амфотерны. Эти соединения под действием сильных окислителей проявляют восстановительные свойства.

Соединения хрома(VI) – CrO3 и его гидратные формы H2Cr2O7 – дихромовая кислота и H2CrO4 - хромовая кислота проявляют кислотные свойства. Обе кислоты существуют в водном растворе и, при попытке выделить их из раствора, распадаются на хромовый ангидрид и воду. Устойчивы их соли – дихроматы и хроматы. Хроматы устойчивы в щелочной, а дихроматы в кислой среде.

Соединения хрома(VI) являются сильными окислителями.

Для молибдена и вольфрама наиболее характерна степень окисления +6, поэтому их соединения устойчивы, проявляют кислотные свойства (менее выраженные по сравнению с соединениями хрома) и не проявляют окислительных свойств.

Для хрома, молибдена и вольфрама характерно образование комплексных соединений: K3[Сr(OH)6], [Cr(H2O)6]Cl3, H2[WF8], K2[MoCl8] и т.д.

Как микроэлемент хром изучен недостаточно, но его биогенная роль не вызывает сомнений. Он входит в состав некоторых ферментов, осуществляющих окислительно-восстановительные реакции в клетках. Хром входит в состав пепсина, расщепляющего белки в пищеварительном тракте животных, участвуют в регуляции усвоения глюкозы тканями животных.

15.4 Макро- и микроэлементы в земледелии.

Макроэлементы это биогенные элементы, необходимые для нормального функционирования клетки. К ним относятся O, H, N, C. Фосфор и калий не входят в их число, но играют очень важную роль в нормальной жизнедеятельности растительных и животных организмов. Азотные, калийные и фосфорные удобрения необходимо вносить в почву центнерами на гектар, так как азот, фосфор и калий это не восполняемые элементы и то количество, которое есть в природе, не может удовлетворить потребности сельского хозяйства. Кислород, водород, углерод, азот, фосфор и калий получили названия макроэлементов, поскольку они в больших количествах входят в состав живых организмов, а удобрения, в которые они входят, получили названия макроудобрений.

Металлы, которые необходимы для всех живых организмов и содержание которых не превышает 10 -5 %, называют микроэлементами. К микроэлементам относят Mn, Co, Ni, Zn, Mo и в меньшей мере V и Cr. К микроэлементам относится бор.

Металлы-микроэлементы должны обладать определенными свойствами: они должны быть достаточно распространенными и достаточно рассеянными, т.е. быть доступными для усвоения из почв; они должны обладать изменчивостью химических свойств т.е. образовывать комплексы с различными лигандами, иметь различные степени окисления и легко переходить из одной степени окисления в другую. Этими свойствами в полной мере обладают d-элементы. Эти свойства позволяют микроэлементам активизировать ферменты. Микроэлементы подходят к ферментам как ключ к замку. Они комплементарныферментам.

Микроэлементы входят в состав микроудобрений (соли d-элементов), которые вносят в почву килограммами на гектар. Например: кобальт вносят в почву в виде соли CoSO4 ×7H2O и CoCl2 ×6H2O; медь в виде CuSO4 ×5H2O; цинк в виде ZnSO4 ×7H2O; молибден в виде раствора молибдата аммония (NH4)2MoO4.

Роль кобальта: образует каталитически активные центры многих ферментов, необходимые для синтеза ДНК и метаболизма аминокислот.

Роль никеля: стимулирует синтез аминокислот в клетке, ускоряет регенерацию белков плазмы крови, нормализует содержание гемоглобина у больных.

Роль меди: медь входит в состав голубых белков, которые являются переносчиками и хранителями запасов молекулярного кислорода. В растительных организмах усиливает фотосинтез и углеводный обмен.

Роль цинка: известно более ста цинксодержащих ферментов, без которых не возможен гидролиз белков, полисахаридов, липидов, эфиров фосфорной кислоты, АТФ и других биологически важных органических веществ любой клетки.

Молибден – один из важнейших микроэлементов. Он входит во многие ферменты, осуществляющие окислительно-восстановительные превращения в клетке. При недостатке молибдена в почве растения не плодоносят и погибают в результате разнообразных заболеваний.

Лекция 16. Предмет аналитической химии. Качественный и количественный анализ. Аналитический сигнал. Химические, физические и физико-химические методы анализа(самостоятельно)

1. Предмет аналитической химии. Качественный и количественный анализ.

2. Аналитический сигнал. Методы анализа в аналитической химии (химические, физические и физико-химические).

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

d-элементы I-ой группы и их соединения

Природные ресурсы – 3

Простые вещества Cu, Ag, Au - 4

а)Соединения меди - 6

б)Соединения серебра - 11

в)Соединения золота - 13

Экспериментальная часть - 15

Список использованной литературы - 19

2. Простые вещества Cu, Ag, Au

Медь, серебро и золото – мягкие блестящие металлы; медь имеет красноватую окраску, золото – желтую. Эти металлы могут быть получены в виде тончайшей проволоки или фольги. Обладают высокой электро- и теплопроводностью. Серебро – наиболее электропроводный из металлов. Некоторые свойства Сu, Ag и Au указаны в табл.

Строение внешней и предвнешней электронных оболочек атома

3s 2 p6d 10 4s 1

4s 2 p6d 10 5s 1

5s 2 p6d 10 6s 1

Радиус атома, пм

Энергия ионизации Э, эВ

Радиус иона , пм

Стандартная энтальпия атомизации металла при 250°C, кДж на 1 моль атомов

Плотность, г/см 3

Температура плавления, °C

Температура кипения, °C

Стандартный электродный потенциал процесса

Строение внешних электронных оболочек атомов: Сu 3d 10 4s 1 , Ag 4d 10 5s 1 , Au 4f 14 5d 10 6s l .

Химическая активность металлов Сu, Ag, Au сравнительно невелика. С кислородом реагирует только медь, благородные металлы Ag и Au не окисляются кислородом даже при нагревании. При комнатной температуре медь практически не взаимодействует со фтором вследствие образования прочной защитной пленки фторида. При нагревании Сu и Ag реагируют с серой, образуя сульфиды Cu2S и Ag2S. Хлориды CuCl2, AgCl, AuCl3 также образуются в результате взаимодействия элементных веществ при нагревании.

Cu, Ag, Аu не вытесняют водород из растворов кислот, так как находятся в ряду напряжений после водорода.

Исключение представляет взаимодействие меди с очень конц. НCl, так как в результате комплексообразования потенциал меди значительно сдвигается в область отрицательных значений:

Аналогичный окислительно-восстановительный процесс, обусловленный комплексообразованием, протекает в растворах цианидов:

Медь и серебро легко окисляются азотной кислотой:

3олото реагирует с селеновой кислотой:

В азотной кислоте золото не растворяется, но быстро взаимодействует с царской водкой

Для элементов подгруппы 1Б, как и других побочных подгрупп, наблюдается стабилизация высших степеней окисления с увеличением их порядкового номера. Ионы Au + в водных растворах диспропорционируют на Au 0 и Au +3 ; в водной среде Au + существует только в виде прочных комплексов, например [Au(CN)2] – .

Для Сu, Ag, Au весьма характерно комплексообразование, причем связи металл-лиганд в комплексных соединениях этих металлов в значительной степени ковалентны. Доля ковалентной связи велика также в галогенидах этих металлов, поэтому они более легкоплавки и летучи, чем галогениды элементов подгруппы IA.

Медь и серебро обладают высокой каталитической активностью, в частности, высокодисперсное серебро – эффективный катализатор окисления многих органических веществ.

3. Соединения. Соединения элементов подгруппы IБ значительно различаются (различия большие, чем в предшествующих побочных подгруппах), поэтому рассмотрим их отдельно для каждого элемента.

Соединения меди.

С водородом медь непосредственно не взаимодействует. Легко разлагающийся гидрид меди (I) получают, действуя алюмогидридом лития на CuI в эфирном растворе:

Менее чистый (содержащий воду) гидрид меди СuН получают при восстановлении сульфата меди фосфорноватистой кислотой H3PO2 в водном растворе. Гидрид меди – красно-бурый порошок, легко окисляющийся на воздухе.
С кислородом медь образует два оксида – черный СuО и красный Сu2O. Оксид меди (II) СuО получается при нагревании меди до 400-500° С в присутствии кислорода, выше 1100°С СuО разлагается на Сu2O и O2, поэтому при высокотемпературном окислении меди образуется Сu2O. Оксид СuО удобно получать термическим разложением основного карбоната меди:

Оксид меди (II) легко восстанавливается водородом:

Оксид меди (I) Сu2O готовят, добавляя к раствору CuSO4 щелочь и восстановитель – глюкозу, гидразин или гидроксиламин (при нагревании). Сначала выпадает желтый осадок высокодисперсного Сu2O, который довольно быстро превращается в красный Сu2O, состоящий из более крупных частиц.

Оба оксида меди Сu2O и СuО не взаимодействуют с водой. С кислотами реагируют с образованием солей Сu + и Сu +2 . Легко растворяются в водном растворе NH3 с образованием комплексных соединений:

Вторая реакция используется для очистки газов от примеси кислорода:
газ подают в сосуд с медными стружками, залитыми раствором NH3, кислород окисляет медь, образовавшийся СuО сразу растворяется и поверхность меди остается чистой, способной далее реагировать с O2.

При сплавлении СuО со щелочами образуются темно-синие кугфаты (II) M2 + CuO2.

При действии щелочей на растворы солей Сu осаждается синий гидроксид Сu(ОН)2. Это слабое основание, обладающее в небольшой степени амфотерными свойствами – оно растворяется в концентрированных растворах щелочей с образованием ярко-синих растворов гидроксокупратов (III) М2 + [Сu(ОН)4] и в разбавленных кислотах с образованием аквакомплексов [Сu(H2O)6] 2+ .

Гидроксид меди (II) легко разлагается при нагревании на СuО и H2O. Этот процесс происходит и при кипячении раствора с осадком Сu(ОН)2.

Медь образует два хлорида – белый, мало растворимый в воде CuCl и темно-коричневый (в растворе голубой), хорошо растворимый в воде CuCl2.

Для получения хлорида меди (I) нагревают смесь CuCl2, конц. НCl и порошкообразной меди:

Малоустойчивый комплекс H[СuСl2] при сильном разбавлении водой раствора диссоциирует на НCl и CuCl, последний выпадает в осадок.

С хлоридами щелочных металлов CuCl образует хлорокупраты (I), например K[СuСl2] с аммиаком – бесцветные аммиакаты, в частности [Сu(NH3)3]Cl.

При добавлении к раствору CuSO4 иодида калия выделяются иод и белый осадок иодида меди(I):

Эта реакция обусловлена неустойчивостью Cuh, который сразу разлагается. Нестоек также цианид меди(II) Cu(CN)2, поэтому при действии цианидов на растворы солей Сu +2 образуется CuCN (осадок) и дициан C2N2. Осадок CuI растворяется при действии Na2S2O3:

Не все соли Сu + устойчивы в водном растворе. Так, получаемый действием 100%-ной H2SO4 на Сu2O бесцветный сульфат меди(I) Cu2SO4 при внесении в воду сразу диспропорционирует на Сu 0 и CuSO4. Такая реакция не происходит с [Сu(NH3)2]2SO4 – комплексообразование обычно стабилизирует неустойчивую степень окисления.

Хлорид меди (II) получают действием НCl на СuО, Сu(ОН)2 или Сu2(ОН)2СO3. При упаривании раствора можно выделить сине-зеленые кристаллы CuCl2·2H2O. Безводную соль получают нагреванием кристаллогидрата в токе хлороводорода (обезвоживание на воздухе дает продукт, загрязненный в результате гидролиза основными солями). С хлоридами щелочных металлов CuCl2 образует хлорокупраты (II), напримерK2[CuCl4]. По cтруктуре CuCl2 – неорганический полимер, в его паре находятся цепные молекулы

В кристаллической решетке эти цепи расположены друг над другом так, что каждый атом Сu окружает 6 атомов Cl, образующих искаженный октаэдр.

Известно много других солей Сu +2 . На практике часто применяется синий CuSO4·5H2O – медный купорос. В кристаллической решетке этого соединения ион Сu 2+ окружен 4 молекулами H2O, центры которых образуют квадрат, одна молекула H2O является мостиковой и она связана водородными связями с ионом SO4 2– и одной из молекул H2O, находящихся около иона Сu 2+ . При нагревании медный купорос обезвоживается. Безводный сульфат CuSO4 бесцветен.

Нитрат меди (II) образует кристаллогидрат Cu(NO3)2·6H2O синего цвета. Нагреванием этого соединения нельзя получить безводный нитрат, так как происходит разложение:

Безводный нитрат меди (II) (сине-зеленая окраска) получают взаимодействием меди с жидким N2O4).

При действии на растворы, содержащие Cu 2+ , карбонатов щелочных металлов образуется основной карбонат меди (зеленовато-голубой осадок):

Ионы S 2– дают с Сu 2+ черный осадок сульфида меди (II) CuS. Черный сульфид меди (I) Cu2S получают взаимодействием меди с серой при нагревании. Это нестехиометрическое соединение, приведенная формула приблизительно отражает его состав.

Известно много комплексов, содержащих Сu 2+ . Так, при действии избытка водного аммиака на растворы, содержащие ионы Сu 2+ образуются комплексы [Cu(NH3)4(H2O)2] 2+ . Сульфат тетраамминмеди (II) [Cu(NH3)4]SO4·H2O (темно-синие кристаллы) выделяется при добавлении к раствору, содержащему CuSO4 и NH3, этилового спирта, в котором данный комплекс мало растворим.

Известно несколько соединений меди (III), в частности, оксид Сu2O3 (красная окраска):

Сu2O3 – очень сильный окислитель.

Достижения последних лет – открытие в 1986-87 гг. керамических высокотемпературных сверхпроводников, содержащих медь в степени окисления больше +2. Эти вещества сравнительно просто получают спеканием соответствующих оксидов. Одно из наиболее употребимых соединений этого типа приближенной формулы YВа2Сu3O7 переходит в сверхпроводящее состояние при ?90К, имеет решетку типа перовскита (см. рис. 3.78), в которую включены слои атомов меди. Аналогичную структуру имеют и другие подобные сверхпроводники (содержат вместо Сu таллий или висмут). Пока нет теории, показывающей связь свойств этих веществ с их химической природой.

Соединения серебра

. Для серебра наиболее распространены соединения Ag + .
При действии щелочей на растворы, содержащие ионы Ag + , выпадает оксид Ag2O (бурый осадок):

Образование этого оксида обусловлено тем, что гидроксид серебра AgOH существует только в очень разбавленном растворе, при выделении он разлагается. Оксид Ag2O немного растворим в воде (0,01 г в 1 л H2O при 20° С); раствор имеет щелочную реакцию, так как AgOH – сильное основание. Поэтому соли Ag + не подвергаются гидролизу.

Оксид серебра (I) разлагается при 300° С на Ag и O2.

Наиболее широко применяемым соединением серебра является нитрат AgNO3, получаемый растворением металлического серебра в конц. HNO3.

Растворимость галогенидов AgГ уменьшается при переходе от AgF к AgI. Фторид серебра AgF (белый) хорошо растворим в воде, a AgCl (белый),
AgBr (желтоватый), AgI (желтый) выпадают в осадок при взаимодействии с водном растворе Ag + с F – . Хлорид серебра растворяетется в водном аммиаке с образованием амминкомплекса:

Аналогичная реакция происходит с AgBr, но не идет с AgI,, так как эта соль очень мало растворима (ПР = 8,5·10 –17 )
Все галогениды серебра растворяются в растворе Na2S2O3

Одно из наиболее прочных соединений серебра – сульфид Ag2S (черный). Он образуется при взаимодействии Ag + (p) и S 2– (р), а также при действии на серебро H2S и других сернистых соединений (в присутствии кислорода). Этим процессом объясняется постепенное почернение изделий из серебра.

Соединения серебра легко восстанавливаются до Ag 0 . В определенных условиях серебро выделяется в виде блестящего осадка, прочно закрепляющегося на поверхности реакционного сосуда. На этом основано серебрение стекла. В качестве восстановителей используют различные органические соединения, в частности, формальдегид:

Известно довольно много соединений Ag +2 , но они не получили пока значительного применения.

Фторид AgF2 получается при действии фтора на "молекулярное" серебро.

Оксид AgO получают окислением серебра с помощью O3 или действием K2S2O8 на Ag2O в щелочной среде при 90° С.

Известен ряд комплексов Ag +2 .

Соединения золота

Из соединений золота наиболее используются тетрахлороаурат (III) водорода, или тетрахлорозолотая кислота H[AuCl4]·4H2O (желтые игольчатые кристаллы), получаемая растворением золота в царской водке, и хлорид золота AuCl3 (красные игольчатые кристаллы), образующийся при действии хлора на золото.

При растворении AuCl3 в воде образуется гидроксотри-хлороаурат(III) водорода:

При действии щелочей на растворы AuCl3 или H[AuCl4] осаждается бурый гидроксид золота (III) Au(ОН)3. При его высушивании образуется метагидроксид AuО(ОН), а при осторожном нагревании до 140-150,°С получается оксид Au2O3, который при нагревании выше 160,°С разлагается на Au и O2.

Гидроксид золота (III) – амфотерное соединение, при его взаимодействии со щелочами образуются гидроксоаураты(III), например желтый К[Au(OH)4]·H2O зеленый Ва[Au(ОН)4]2·5H2O мало растворим в воде.

Известно много комплексов Au +3 .

Получен ряд соединений Au + . Так, AuCl образуется при нагревании AuCl3 до 185°С, а AuI получается аналогично CuI при диспропорционировании иодида золота AuI3, образующегося при взаимодействии Au 3+ и I – в водном растворе.

Соединения золота являются окислителями и восстановливаются легче, чем соединения серебра. Например, в водном растворе быстро происходит реакция с сульфатом железа:

Эту реакцию используют в химическом анализе для отделения золота от других элементов.

Соединения золота (V), (VII). Взаимодействие золота и фторида криптона (II) получен пентафторид золота AuF- кристаллическое вещество красно-коричневого цвета:

2Au + 5KrF = 2AuF + 5Kr

Пентафторид AuF проявляет кислотные свойства, с основными фторидами образует фтороаураты (V), например:

NaF + AuF = Na[AuF]

Известны также соединения типа.; .

Соединения Сu, Ag, Au ядовиты, особенно соединения меди.

Реактивы:CuSO4·H2O, концентрированный раствор

Сульфат тетрааммин меди (II) [Cu(NH3)4]SO4 - темно синие крупные, ромбические кристаллы, растворимые в воде, не растворимые в спирте; при нагревании до 120°C теряют воду и часть аммиака, при 260°C теряет весь аммиак. При хранении не воздухе соль разлагается.

Измельченный в тонкий порошок медный купорос (CuSO4·5H2O) в количестве 10 г растворяют в смеси 15 мл концентрированного раствора аммиака и 10 мл воды. К раствору прибавляют около 15-20 мл спирта и раствором аммиака, затем смесью спирта с эфиром и высушивают при 50-60°C.

(методика: В.Н. Табунченкр, Л.Г. Голубовская)

2) Реактивы: (CuSO4·5H2O), аммиак, 10 %-ый (по массе) раствор, этиловый спирт.

В стакане растворяют 20 г(CuSO4·5H2O) в 70 мл аммиака. В

цилиндр вместимостью 200 мл наливают 70 мл спирта,

через капельную воронку вводят 10 мл воды, а под слой

вводят аммиачный раствор сульфата меди (II):

Через некоторое время образуются крупные темно-синие кристаллы. Если аммиачный раствор меди налить непосредственно в спирт, то получаются мелкие кристаллы. Кристаллы извлекают из цилиндра, отжимают между листами фильтровальной бумаги, высушивают при 30-40°C и хранят в плотно закрывающейся склянке.

Медный купорос измельчают в тонкий порошок и 10 г его растворяют в смеси 15 мл концентрированного раствора аммиака и 10 мл воды. К раствору прибавляют около 15-20 мл спирта и смесь охлаждают. Кристаллы отфильтровывают, промывают смесью спирта с раствором аммиака и высушивают при 50-60°C.

Комплекс – кристаллический порошок голубого цвета ромбической структуры.

4) Отвесить на технохимических весах 8,75 г пентагидрата сульфата меди и поместить в химический стакан. Рассчитать количество 25 % раствора аммиака, необходимое для образования комплексного соединения; отмерить мензуркой удвоенный объем (для увеличения выхода продукта, т.к. растворимость комплексного соединения уменьшается при добавлении аммиака). Растворить в стакане взвешенную соль в отмеренном количестве аммиака и тщательно перемешать стеклянной палочкой до полного растворения соли. К полученному раствору добавить 10 мл этилового спирта (растворимость комплексного соединения в спирте меньше, чем в воде) и оставить кристаллизоваться не 20=25 минут.

Отфильтровать выпавшие кристаллы на воронке Бюхнера и отсоединить колбу с воронкой от насоса. Затем промыть кристаллы на фильтре 2 раза смесью равных объемов спирта и 25 % раствора NH3 . Для этого налить в воронку смесь спирта с аммиаком, дать смеси пропитать осадок и снова присоединить колбу к насосу. Если не отключать насос, то спирт слишком быстро проходит через осадок и промывание получается недостаточным. Взвесить на технохимических весах бюкс, перенести в него кристаллы с фильтра и поместить в сушильный шкаф при t=50-60C на 20 мин. Затем охладить и снова взвесить бюкс. Рассчитать выход комплексного соединения по отношению к взятому пентагидрату меди (II).

СОД — супероксиддисмутаза — медьсодержащий белок. Ускоряет реакцию разложения супероксид-иона, свободный радикал. Этот радикал вступая во взаимодействие с компонентами клети разрушает ее. СОД переводит супероксид-ион в пероксид водорода. Который, в свою очередь, разлагается в организме под действием фермента каталазы. В периодах (слева направо) наблюдается уменьшение энергии ионизации, энергии… Читать ещё >

Элементы d-блока периодической системы ( реферат , курсовая , диплом , контрольная )

1. Химические свойства и биологическая роль элементов d-блока

К d-блоку относятся 32 элемента периодической системы. Они расположены в побочных подгруппах периодической системы в 4−7 больших периодах между sи p-элементами.

Характерной особенностью элементов d-блока является то, что в их атомах последними заполняются орбитали не внешнего слоя (как у sи p-элементов), а предвнешнего [(n — 1) d] слоя. В связи с этим, у d-элементов валентными являются энергетически близкие девять орбиталей — одна ns-орбиталь, три nр-орбитали внешнего и пять (n — 1) d-орбиталей предвнешнего энергетического уровней:

Строение внешних электронных оболочек атомов d блока описывается формулой ( n -1) d a ns b , где а=1~10, b=1~2.

2. Общая характеристика d-элементов

В периодах (слева направо) с увеличением заряда ядра радиус атома возрастает медленно, непропорционально числу электронов, заполняющих оболочку атома.

Причины — лантаноидное сжатие и проникновение ns электронов под d-электронный слой (в соответствии с принципом наименьшей энергии). Происходит экранирование заряда ядра внешними валентными электронами: у элементов 4-го периода внешние электроны проникают под экран электронов 3d-подуровня, а у элементов 6-го периода — под экран 4f и 5d электронов (двойное экранирование).

В периодах (слева направо) наблюдается уменьшение энергии ионизации, энергии сродства к электрону. Поскольку изменения энергии ионизации и энергии сродства к электрону незначительны, химические свойства элементов и их соединений изменяются мало.

В группах (сверху вниз) с увеличением заряда ядра атома возрастают энергия ионизации, относительная электроотрицательность элементов (ОЭО), нарастают неметаллические и кислотные свойства, уменьшаются металлические свойства элементов.

3. Кислотно-основные и окислительно-восстановительные свойства и закономерности их изменения

Элементы d-блока находящиеся в III, IV, V, VI, VII B группах имеют незавершенный d-электронный слой (предвнешний эн. уровень). Такие электронные оболочки неустойчивы. Этим объясняется переменная валентность и возможность проявлять различные степени окисления d-элементов. Степени окисления элементов d-блока в соединениях всегда только положительные.

Соединения с высшей степенью окисления проявляют кислотные и окислительные свойства (в растворах представлены кислородсодержащими анионами). Соединения с низшей степенью окисления — основные и восстановительные свойства (в растворах представлены катионами). Соединения с промежуточной степенью окисления — проявляют амфотерные свойства.

В периоде с возрастанием заряда ядра атома уменьшается устойчивость соединений с высшей степенью окисления, возрастают их окислительные свойства.

В группах увеличивается устойчивость соединений с высшей степенью окисления, уменьшаются окислительные и возрастают восстановительные свойства элементов.

4. Окислительно-восстановительные свойства d-элементов в организме человека

Вследствие разнообразия степеней окисления для химии 3d-элементов характерны окислительно-восстановительные реакции.

В свою очередь, способность 3d-элементов изменять степень окисления, выступая в роли окислителей или восстановителей, лежит в основе большого количества биологически важных реакций.

В ходе эволюции природа отбирала элементы в такой степени окисления, чтобы они не были ни сильными окислителями, ни сильными восстановителями.

Нахождение в организме человека d-элементов в высшей степени окисления возможно только в том случае, если эти элементы проявляют слабые окислительно-восстановительные свойства.

Например, Мо +6 в комплексных соединениях в организме в организме имеет степень окисления +5 и +6.

Катионы Fe +3 и Cu +2 в биологических средах не проявляют восстановительных свойств.

Существование соединений в низших степенях окисления оправдано для организма. Ионы Mn +2 , Co +2 , Fe +3 при рН физиологических жидкостей не являются сильными восстановителями. Окружающие их лиганды стабилизируют ионы именно в этих степенях окисления.

5. Комплексообразующая способность d-элементов

Возможность создания химических связей с участием d-электронов и свободных d-орбиталей обуславливает ярко выраженную способность d-элементов к образованию устойчивых комплексных соединений.

При низких степенях окисления для d-элементов более характерны катионные, а при высоких — анионные октаэдрические комплексы.

КЧ d-элементов непостоянны, это четные числа от 4 до 8, реже 10,12.

Используя незаполненные d-орбитали и неподеленные пары d-электронов на предвнешнем электронном слое, d-элементы способны выступать как донорами электронов — дативная связь, так и акцепторами электронов.

Пример соединений с дативной связью: [HgI]Ї, [CdCl4]Ї.

6. Металлоферменты

Октаэдрическое строение иона комплексообразователя определяется способностью его орбиталей к d 2 sp 3 -гибридизаци. Например, для хрома (III), d 2 sp 3 -гибридизация будет выглядеть следующим образом:

Бионеорганические комплексы d-элементов с белковыми молекулами называют биокластерами. Внутри биокластера находится полость, в которой находится ион металла определенного размера, размер иона должен точно совпадать с диаметром полости биокластера. Металл взаимодействует с донорными атомами связующих групп: гидроксильныеОНЇ, сульфгидрильныеSHЇ, карбоксильныеСООЇ, аминогруппы белков или аминокислот — NH2.

Биокластеры, полости которых образуют центры ферментов, называют металлоферментами.

В зависимости от выполняемой функции биокластеры условно подразделяют на:

— транспортные, доставляют организму кислород и биометаллы. Хорошими транспортными формами м/б комплексы металлов с АМК. В качестве координирующего металла могут выступать: Со, Ni, Zn, Fe. Например — трансферрин.

— аккумуляторные , накопительные. Например — миоглобин и ферритин (19, "https://referat.bookap.info").

— биокатализаторы и активаторы инертных процессов .

Реакции, катализируемые этими ферментами подразделяются на:

Кислотно-основные реакции. Карбоангидраза катализирует процесс обратимой гидратации CO2 в живых организмах.

Катализируются металлоферментами, в которых металл обратимо изменяет степень окисления.

А. Карбоангидраза , карбоксипептидаза, алкогольдегидрогеназа.

Карбоангидраза — Zn содержащий фермент. Фермент крови, содержится в эритроцитах. Карбоангидраза катализирует процесс обратимой гидратации CO2, также катализирует реакции гидролиза, в которых участвует карбоксильная группа субстрата.

Координационное число цинка 4. Три координационные места заняты аминокислотами, четвертая орбиталь связывает воду или гидроксильную группу.

Обратимая гидратация CO2 в активном центре карбоангидразы

Карбоксипептидаза Zn содержащий фермент. Объектами концентрации являются печень, кишечник, поджелудочная железа.

Участвует в реакциях гидролиза пептидных связей.

Схема реакции гидролиза пептидных связей карбоксипетидазы:

Алкогольдегидрогеназа этосодержащий фермент.

Б. Цитохромы, каталаза, пероксидаза.

Цитохром С . (см лекцию КС). Гемсодержащий фермент, имеет октаэдрическое строение.

Перенос электронов в окислительно-восстановительной цепи с участием этого фермента осуществляется за счет изменения состояния железа:

ЦХ*Fe 3+ +? — ЦХ*Fe 2+

Группы ферментов, катализирующие реакции окисления водородпероксидом, называются каталазами и пероксидазами. Они имеют в своей структуре гем, центральный атомом является Fe 3+ . Лигандное окружение в случае каталазы представлено АМК (гистидин, тирозин), в случае пероксидазы — лигандами являются белки. Концентрируются ферменты в крови и в тканях. Каталаза ускоряет разложение пероксида водорода, образующегося в результате реакций метаболизма:

Фермент пероксидаза ускоряет реакции окисления органических веществ (RH) пероксидом водорода:

В. СОД, ОКГ, ЦХО, ЦП.

СОД — супероксиддисмутаза — медьсодержащий белок. Ускоряет реакцию разложения супероксид-иона, свободный радикал. Этот радикал вступая во взаимодействие с компонентами клети разрушает ее. СОД переводит супероксид-ион в пероксид водорода. Который, в свою очередь, разлагается в организме под действием фермента каталазы.

Схематически процесс можно представить:

ОКГ — оксигеназы — ферменты, активирующие молекулу кислорода, которая участвует в процессе окисления органических соединений. Оксигеназы присоединяют оба атома кислорода с образованием пероксидной цепочки.

Механизм действия оксигеназ можно представить следующим образом:

Цитохромоксидаза — ЦХО — важнейший дыхательный фермент.

Катализирует завершающий этап тканевого дыхания. В ходе каталитического процесса степень окисления меди ЦХО обратимо изменяется: Cu 2+ -Cu 1+ .

Окисленная форма ЦХО (Cu 2+ ) принимает электроны, переходя в восстановленную форму (Cu 1+ ), окисляющуюся молекулярным кислородом, который сам при этом восстанавливается.

Затем кислород принимает протоны из окружающей среды и превращается в воду. Схема действия ЦХО:

Церулоплазмин — ЦП — медьсодержащий белок содержится в плазме млекопитающих. ЦП содержит 8 атомов меди на 1 молекулу белка. ЦП участвует в окислении железа:

Параллельно идет процесс окисления протонированных субстратов (RH) с образованием свободнорадикальных промежуточных продуктов:

В то же время ЦП катализирует восстановление кислорода до воды:

О2 + 4? + 4Н + >ЦП> 2Н2О Выполняя транспортную функцию, ЦП регулирует баланс меди и обеспечивает выведение избытка меди из организма.

7. Железо, кобальт, хром, марганец, цинк, медь, молибден в организме: содержание, биологическая роль

Содержание в организме (взрослого человека)

5 г (около 70% в гемоглобине)

В связанной форме находится в некоторых белках, выполняющих роль переносчиков железа.

Влияет на углеводный, минеральный, белковый и жировой обмен, принимает участие в кроветворении.

Участвует в синтезе витаминов С и В, доказано его участие в синтезе хлорофилла.

Участвует в процессе аккумуляции и переноса эрги.

Участвует в кроветворении.

Важный микроэлемент для растений: принимает участие в мягкой фиксации азота.

s, p, d элементы в таблице менделеева

Понятие переходный элемент обычно используется для обозначения любого элемента с валентными d- или f-электронами. Эти элементы занимают в периодической таблице переходное положение между электроположительными s-элементами и электроотрицательными p-элементами.

d-Элементы принято называть главными переходными элементами. Их атомы характеризуются внутренней застройкой d-подоболочек. Дело в том, что s-орбиталь их внешней оболочки обычно заполнена уже до того, как начинается заполнение d-орбиталей в предшествующей электронной оболочке. Это означает, что каждый новый электрон, добавляемый в электронную оболочку очередного d-элемента, в соответствии с принципом заполнения, попадает не на внешнюю оболочку, а на предшествующую ей внутреннюю подоболочку. Химические свойства этих элементов определяются участием в реакциях электронов обеих указанных оболочек.

переходные металлы

d-Элементы образуют три переходных ряда — в 4-м, 5-м и 6-м периодах соответственно. Первый переходный ряд включает 10 элементов, от скандия до цинка. Он характеризуется внутренней застройкой 3d-орбиталей. Орбиталь 4s заполняется раньше, чем орбиталь 3d, потому что имеет меньшую энергию (правило Клечковского).

Следует, однако, отметить существование двух аномалий. Хром и медь имеют на своих 4s-орбиталях всего по одному электрону. Дело в том, что полузаполненные или полностью заполненные подоболочки обладают большей устойчивостью, чем частично заполненные подоболочки.

В атоме хрома на каждой из пяти 3d-орбиталей, образующих 3d-подоболочку, имеется по одному электрону. Такая подоболочка является полузаполненной. В атоме меди на каждой из пяти 3d-орбиталей находится по паре электронов. Аналогичная аномалия наблюдается у серебра.

Все d-элементы являются металлами.

Характерные степени окисления d элементов:

Характерные степени окисления d элементов

Хром находится в 4-м периоде, в VI группе, в побочной подгруппе. Это металл средней активности. В своих соединениях хром проявляет степени окисления +2, +3 и +6. CrO — типичный основный оксид, Cr 2 O 3 — амфотерный оксид, CrO 3 — типичный кислотный оксид со свойствами сильного окислителя, т. е. рост степени окисления сопровождается усилением кислотных свойств.

характеристика хрома, оксиды и степени окисленияхрома

Железо находится в 4-м периоде, в VIII группе, в побочной подгруппе. Железо — металл средней активности, в своих соединениях проявляет наиболее характерные степени окисления +2 и +3. Известны также соединения железа, в которых оно проявляет степень окисления +6, которые являются сильными окислителями. FeO проявляет основные, а Fe 2 O 3 — амфотерные с преобладанием основных свойств.

железо

Медь находится в 4-м периоде, в I группе, в побочной подгруппе. Ее наиболее устойчивые степени окисления +2 и +1. В ряду напряжений металлов медь находится после водорода, ее химическая активность не очень велика. Оксиды меди: Cu2O CuO. Последний и гидроксид меди Cu(OH)2 проявляют амфотерные свойства с преобладанием основных.

Цинк находится в 4-м периоде, во II-группе, в побочной подгруппе. Цинк относится к металлам средней активности, в своих соединениях проявляет единственную степень окисления +2. Оксид и гидроксид цинка являются амфотерными.

Читайте также: