Обработка деталей машин реферат

Обновлено: 30.06.2024

Механическая обработка — обработка заготовки из различных материалов при помощи механического воздействия различной природы с целью создания по заданным формам и размерам, а также требуемым показателям качества изделия или заготовки для последующих технологических операций.

Прикрепленные файлы: 1 файл

реф 2 продолжение.docx

Механическая обработка — обработка заготовки из различных материалов при помощи механического воздействия различной природы с целью создания по заданным формам и размерам, а также требуемым показателям качества изделия или заготовки для последующих технологических операций.

Виды механической обработки

Обработка резанием

Обработка резанием осуществляется на металлорежущих станках путём внедрения инструмента в тело заготовки с последующим выделением стружки и образованием новой поверхности. Виды резания:

наружные цилиндрические поверхности — точение, шлифова ние, притирка, обкатывание, су перфиниширование;

внутренние цилиндрические поверхности — растачивание, св ерление, зенкерование, разверт ывание, протягивание, шлифован ие, притирка,хонингование, дол бление;

плоскости — строгание, фрезеро вание, шлифование.

При обработке резанием механическая обработка также разделяется по чистоте обработанной поверхности:

Черновая обработка

Получерновая обработка

Чистовая обработка

Получистовая обработка

Суперфиниш

Обработка методом пластической деформации

Осуществляется под силовым воздействием внешней силы, при этом меняется форма, конфигурация, размеры, физикомеханические свойства детали. Это процессы: ковка, штамповка, пр ессование, накатывание резьбы.

Обработка методом деформирующего резания

Обработка методом деформирующего резания основана на совмещении процессов резания и пластического деформирования подрезанного слоя. Используется для получения поверхностей с регулярным макрорельефом (теплообменных, фильтрующих), для восстановления размеров изношенных поверхностей трения.

Электрофизическая обработка

Основана на использовании специфических явлений электрического тока: искра (электроэрозионная обработка), электрохимия (Электрохимическая обработка), дуга (электрическая дуговая сварка).

Режущий инструмент на производстве

В работе машиностроительных предприятий большую роль играет инструментальная оснастка. От степени ее совершенства в значительной мере зависят производительность труда и экономика машиностроения, возможности автоматизации технологических процессов и темпы технического прогресса.

Инструментальная оснастка – это зажимающие, направляющие (или настроечные), установочные, делительные и поворотные устройства, а также механизированные (пневматические, механические, гидравлические и др.) приводы, предназначенные для перемещения установочных, зажимающих и прочих элементов. Иными словами, инструментальная оснастка представляет собой множество приспособлений, предназначенных для установки и крепления инструмента и заготовок, а также транспортировки деталей, изделий и заготовок, осуществления операций сборки.

Сегодня инструментальную оснастку можно условно разделить на контрольные, блокировочные, защитные, и подналадочные устройства.

Контрольные средства, как правило, связаны напрямую с процессом обработки, взаимосвязаны с основным приспособлением. Их функция заключается в подаче командного импульса на прекращение обработки при достижении деталью заданного размера.

Защитные и блокировочные устройства служат для мгновенного прекращения обработки при выходе из строя инструмента, сбое настроек и прочих подобных ситуациях.

Подналадочные устройства подают командный импульс для автоматической корректировки настроек механизмов, а также обеспечивают контроль детали непосредственно после ее обработки

Металлорежущие станки широко применяются в машиностроении, промышленности и приборостроении.

В зависимости от своего предназначения, металлорежущие станки условно делятся на следующие виды:
· токарные станки;
· фрезерные станки;
· сверлильные станки;
· разрезные станки;
· шлифовальные станки;
· строгальные металлорежущие станки;
· многопозиционные станки.

На сегодняшний день особенной популярностью пользуются металлорежущие станки с ЧПУ. Причина в том, что подобные модели практически не допускают брака, поскольку человеческий фактор при их использовании сведен к минимуму.
Металлорежущие станки, оснащенные ЧПУ, могут работать как в автоматическом, так и в полуавтоматическом режимах.

Использование металлов человеком началось в глубокой древности (более пяти тысячелетий до н. э.). Вначале находили применение цветные металлы (медь, сплавы меди, золото, серебро, олово, свинец и др.), позднее начали применять черные — железо и сплавы на его основе.

Длительное время производство металлов носило примитивный характер и по объему было весьма незначительным. Однако в конце XIX в. мировая выплавка стали резко возросла с 0,5 млн. т в 1870 г. до 28 млн. т в 1900 г. Еще в большем объеме растет металлургическая промышленность в XX столетии. Наряду с увеличением выплавки стали появилась необходимость организовать в больших масштабах получение меди, цинка, вольфрама, молибдена, алюминия, магния, титана, бериллия, лития и других металлов.

Металлургическое производство подразделяется на две основные стадии. В первой получают металл заданного химического состава из исходных материалов. Во второй стадии металлу в пластическом состоянии придают ту или иную необходимую форму при практически неизменном химическом составе обрабатываемого материала.

Для изготовления отдельных деталей и изделия в целом используют различные способы обработки металлов и других материалов. Наиболее распространенные виды обработки металлов будут рассмотрены ниже.

Сваркой называют технологический процесс получения неразъемных соединений из металлов (или пластмасс), осуществляемый установлением межатомных (у пластмасс — межмолекулярных) связей между свариваемыми частями изделия при их местном или общем нагреве, или пластическом деформировании, или при совместном действии этих двух факторов. Между свариваемыми частями изделия образуется сварной шов.

Сварка является одной из распространенных технологических операций, широко применяемой в машиностроении, на транспорте и в строительстве. Объясняется это значительной экономией металлов по сравнению с болтовыми и заклепочными соединениями, высокой прочностью и низкой стоимостью сварных конструкций.

В зависимости от состояния металла в сварочной зоне все виды сварки можно разделить на две группы: по способу соединения свариваемых частей изделия и по виду используемой энергии. В первом случае различают сварку плавлением и сварку давлением. При сварке плавлением сварной шов образуется из общей сварочной ванны расплавленных металлов соединяемых частей изделия. При сварке давлением, для повышения пластичности металла в зоне сварки, соединяемые части изделия нагревают и сдавливают. К сварке плавлением относятся: дуговая, электрошлаковая, электронно-лучевая, лазерная, газовая, термитная; к сварке давлением — контактная, диффузионная, электрозвуковая, трением, взрывом и др. Электрической дугой можно производить не только дуговую сварку, но и резку металлов. Однако образующаяся при этом поверхность разреза имеет неровности с наплывами. Поэтому электродуговую резку обычно применяют. Для разделки металлолома и отделения прибылей и литников в деталях, полученных при литье в песчано-глинистые формы.

По виду используемой энергии сварку подразделяют на термическую (сварка дуговая, плазменная, газовая и др.), термомеханическую (сварка контактная, диффузионная и др.) и механическую (сварка взрывом, трением, ультразвуковая и др.).

При сварке плавлением образуется литой сварной шов с характерным дендритным строением. При сварке давлением образуется Шов, представляющий собой зону сросшихся кристаллитов металла соединяемых частей изделия. Зону, непосредственно примыкающую к сварному шву, называют зоной термического влияния. Она имеет крупнозернистое строение и является наиболее механически слабой в сварном соединении. Этот дефект можно устранить отжигом.

Наиболее распространенные виды сварных соединений — стыковые, внахлестку, угловые и тавровые. При сварке внахлестку свариваемые элементы изделия накладываются друг на друга с перекрытием, равным 3—5 толщинам пластин. При этом не требуется подготовка кромок. Угловые и тавровые соединения также не всегда требуют подготовки кромок. При стыковой сварке характер подготовки кромок зависит от толщины свариваемых элементов.

Пайка — это процесс получения неразъемных соединений в результате расплавления припоя, смачивания им металла, растекания припоя по поверхности металла и заполнения зазора между соединяемыми заготовками (деталями) и, наконец, затвердевания припоя.

В отличие от сварки при пайке не требуется расплавления основного металла, что позволяет производить распай деталей. Наиболее широко пайку применяют в электро- и радиотехнике и приборостроении. В этих отраслях промышленности пайку производят для создания механически прочного, иногда герметичного, шва или для получения постоянного (нескользящего или разрывного) электрического контакта с небольшим переходным сопротивлением.

Литейное производство

Литейным производством называют процесс получения литых заготовок, называемых отливками, путем заливки расплавленного металла в рабочую полость литейной формы. Полученные отливки приобретают конфигурацию и размеры рабочей полости.

Литье является наиболее простым и дешевым промышленным способом получения заготовок, в том числе имеющих сложную геометрическую форму.

Все виды литья, применяемые в промышленности, можно разделить по материалу, литейной форме, способу заливки металла в форму, требуемых точности размеров и шероховатости поверхности отливок и по другим признакам. Рассмотрим две основные группы литья: литье в песчано-глинистые формы и специальные виды литья.

Литье в песчано-глинистые формы. Для изготовления литейной формы служит формовочная смесь, представляющая собой многокомпонентную систему, состав которой определяется типом и массой отливки и природой металла. Основными компонентами формовочной смеси являются кварцевый песок и формовочная глина. Глина является связующим и при оптимальном содержании воды (4—5%) придает формовочной смеси необходимую прочность и пластичность. Песок увеличивает пористость и, следовательно, газопроницаемость формовочной смеси. Кроме того, в формовочную смесь вводят противопригарные добавки (каменноугольную пыль, графит), защитные присадочные материалы (борную кислоту, серный цвет) и другие ингредиенты. Для изготовления стержней используют стержневые смеси, состоящие из кварцевого песка и самотвердеющихся неорганических (жидкое стекло с добавкой 10% раствора NaOH) или органических (фенолформальдегидная или карбамидофурановая смолы) связующих.

Специальные виды литья. К специальным видам литья относятся: литье в оболочковые формы, литье по выплавляемым моделям, литье в металлические формы, литье под давлением и центробежное литье. Эти методы позволяют получать отливки повышенной геометрической точности, с малой шероховатостью поверхности, минимальным припуском на механическую обработку или исключающую ее полностью и имеющие высокую производительность.

Центробежное литье — это литье в быстровращающиеся литейные формы: металлические, песчаные, оболочковые, по выплавляемым моделям. Под действием центробежных сил расплавленный металл оттесняется к наружной поверхности формы, где затвердевает ровным слоем. Легкие примеси и газы оттесняются к внутренней поверхности отливки. В результате этих процессов металл в отливке уплотняется и ее механические свойства улучшаются. Этим методом получают водопроводные и канализационные трубы, колеса, шкивы, зубчатые колеса и т.п. Преимущества те же, что и при литье в кокили, однако качество внутренней поверхности по причинам, изложенным выше, хуже, чем наружной.

Обработка металлов давлением

Обработка металлов давлением основана на их пластической деформации под действием внешних сил, в результате которой металлическая заготовка приобретает определенную форму и размеры. В ходе пластической деформации зерна измельчаются, структура металла в целом улучшается и, как следствие, улучшаются механические свойства.

Основными видами ОМД являются: прокатка, прессование, волочение, ковка, объемная и листовая штамповка.

Прокатка заключается в пластической деформации металла в результате обжатия заготовки между двумя вращающимися валками. Силы трения Pw втягивают заготовку между валками, и под действием сил Р, нормальных к поверхности валков, уменьшается толщина заготовки. Цель прокатки — получение продукции разнообразной формы и различными размерами поперечного сечения. Форму поперечного сечения прокатанной продукции называют профилем. Перечень разных профилей, имеющих различные геометрические размеры, составляет сортамент проката. Сортамент прокатываемых профилей разделяют на следующие пять основных групп: сортовой прокат, листовой, трубный, специальный и периодический.

Прессование — это технологическая операция, заключающаяся в продавливании заготовки, находящейся в форме, через отверстие матрицы с помощью давящего пуансона. Форма и размеры поперечного сечения получаемого профиля соответствуют форме и размерам отверстия матрицы. Чем выше температура металла, тем легче протекает процесс прессования. Этим методом получают прутки, трубы и другие изделия более сложных профилей.

Волочение. Процесс волочения состоит из протягивания заготовки через сужающееся отверстие матрицы (волочильной доски). В результате площадь поперечного сечения заготовки уменьшается, и она приобретает профиль и размеры отверстия (глазка) волочильной доски; длина заготовки при этом увеличивается. Сортамент изделий, изготавливаемых волочением, разнообразен: проволока диаметром 0,002—10 мм и различные фасонные профили. Для получения стальной проволоки диаметром до 0,5 мм используют волочильные доски со вставными глазками (фильерами) из твердых сплавов, а для получения тонкой медной или вольфрамовой проволоки диаметром до 0,25 мм — алмазные глазки. Волочение применяют также для калибровки прутков различного профиля. Полученные изделия имеют точные размеры и гладкую поверхность.

Свободная ковка. Различают ковку свободную и в штампах (штамповка). При свободной ковке заготовка не ограничивается стенками специальных форм (штампов), и формообразование происходит свободно в пространстве между бойками молота путем пластической деформации металла заготовки. Этот процесс и качество поковки во многом зависят от искусства оператора-кузнеца. Свободная ковка делится на ручную и машинную.

Штамповка — это процесс получения поковок, заключающийся в пластической деформации металла в закрытой полости специальной формы, называемой штампом. Форма и размеры полости штампа соответствуют форме и размерам будущей детали с учетом припуска на механическую обработку, если таковая предусмотрена. Обычно штампованные поковки механически обрабатывают только в местах сопряжения с другими деталями: эта обработка может сводиться только к шлифованию. Штамп — это дорогостоящий инструмент и пригоден для изготовления только какой-то одной, конкретной детали. Поэтому штамповку используют только при массовом изготовлении поковок. Различают штамповку объемную и листовую.

Обработка металлов резанием

Обработка металлов резанием заключается в срезании с поверхности заготовки слоя металла, называемого припуском, с целью получения изделия требуемых геометрической формы, размеров и шероховатости поверхностей. Срезание припуска производят с помощью режущего инструмента.

В большинстве случаев изделия, полученные литьем, прокаткой, ковкой, штамповкой, сваркой и другими методами, подвергают обработке резанием. Удаляемый при этом припуск превращается в стружку, которая является характерным признаком всех процессов обработки металлов резанием (ОМР). ОМР бывает механической, когда припуск срезают на металлорежущих стенках, и слесарной, когда припуск удаляют вручную с помощью соответствующего слесарного инструмента. ОМР применяют и как самостоятельный способ изготовления деталей.

Основными видами механической ОМР являются: точение; строгание; долбление; сверление (зенкерование, развертывание и зенкование); фрезерование и шлифование, — производимые на металлорежущих стенках соответствующей группы. Станки различают токарной группы, строгальной и долбежной, сверлильной и расточной, фрезерной, шлифовальной и др. При ОМР используют различный режущий инструмент: резцы, сверла, зенкера, развертки, фрезы, которые имеют специально заточенную режущую часть, а также применяют шлифовальные абразивные круги, зерна которых обладают острыми гранями и углами. Режущий инструмент изготавливают из материала повышенной твердости, прочности, термо- и износостойкости, различных форм и размеров.

Долбление. Эта операция является разновидностью строгания и производится на долбежных станках. На них главный вид движения ν (возвратно-поступательный) осуществляет резец в вертикальной плоскости, а движение подачи s — заготовка в горизонтальной плоскости. Долбление применяют для получения канавок, плоских и фасонных поверхностей небольшой высоты, но значительных поперечных размеров.

Сверление. При сверлении (зенкеровании, развертывании, зенковании) обычно главное движение ν и движение подачи s сообщают режущему инструменту. При сверлении главное движение сообщают заготовке. Сверление применяют для получения сквозных и глухих цилиндрических отверстий. Зенкерование — для увеличения диаметра отверстия, предварительно полученного литьем, штамповкой или сверлением, и придания ему более правильной геометрической формы, достижения наименьшей шероховатости поверхности, чем при сверлении или рассверливании. Развертывание обеспечивает получение отверстий с высокой точностью размеров и высоким качеством поверхности; его применяют в основном для окончательной обработки отверстий. Зенкование — получение отверстий под потайные и полупотайные головки болтов и заклепок.

Фрезерование. При фрезеровании главное движение ν сообщается многолезвийному режущему инструменту — фрезе, а движение подачи s — заготовке. Существуют схемы фрезерования, когда главное движение и движение подачи сообщают фрезе. Фрезерование применяют при обработке горизонтальных, вертикальных и наклонных плоскостей, фасонных поверхностей, пазов и канавок различного профиля, при изготовлении зубчатых колес. Особенность процесса фрезерования заключается в прерывистости резания каждым зубом фрезы. Зуб фрезы вступает в контакт с заготовкой и выполняет работу только на некоторой части своего оборота. Затем зуб фрезы, продолжая движение, не касается заготовки до следующего врезания; в этот момент он охлаждается, что удлиняет срок службы фрезы. Каждый зуб фрезы имеет такие же элементы и углы, что и токарный резец. Поэтому фрезу можно рассматривать как набор токарных резцов.

Шлифование. Процесс шлифования применяют как отделочно-доводочную операцию с получением размеров деталей с точностью по 6—7-му квалитетам и шероховатостью поверхности R2 = 0,08—0,32 мкм. Используют шлифование и как обдирочную операцию при очистке литья, поковок и т.д. Шлифование — это обработка поверхностей изделия шлифовальными абразивными кругами. Для обдирочной обработки применяют крупнозернистые абразивы, а для чистового шлифования — мелкозернистые. Используют абразивы естественные — наибольшее применение получили минерал корунд и алмаз, и искусственные — электрокорунд с различными добавками, карбид кремния, нитрид бора и др.

Развитие народного хозяйства страны в значительной мере определяется ростом объема производства металлов, расширением сортамента изделий из металлов и сплавов и повышением их качественных показателей, что в значительной мере зависит от условий механической обработки. Знание закономерностей обработки металлов помогает выбирать наиболее оптимальные режимы технологических процессов, требуемое основное и вспомогательное оборудование и технически грамотно его эксплуатировать.

Список литературы

1. С. Н. Колесов, И. С. Колесов, Материаловедение и технология конструкционных материалов, М:. Высшая школа. 2004 г.

Подготовка заготовок для обработки на металлорежущих станках. Электрические методы обработки. Обработка наружных поверхностей тел вращения, шпоночных канавок и шлицевых отверстий. Особенности использования токарных многорезцовых и фрезеровальных станков.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 18.07.2015
Размер файла 1,2 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

    Предварительная обработка заготовок
  • Электрические методы обработки
  • Обработка наружных поверхностей тел вращения
  • Обработка на токарных многорезцовых станках
  • Обработка шпоночных канавок
  • Обработка шлицев. Обработка шлицевых отверстий
  • Фрезерование шлицев на фрезеровальном станке
  • Шлифование шлицев
  • Накатывание шлицев
  • Протягивание и строгание шлицев
  • Обработка шлицевых отверстий
  • Нарезание наружной резьбы
  • Нарезание внутренней резьбы
  • Обработка шлифованием
  • Бесцентровое шлифование
  • Отделочная обработка цилиндрических поверхностей

Предварительная обработка заготовок

Подготовка заготовок для обработки на металлорежущих станках заключается в том, что заготовкам придается такое состояние или вид, при котором можно производить механическую обработку. Подготовка имеет различный характер в зависимости от рода заготовок и производится в тех же цехах, где изготовляются заготовки.

Отливки после извлечения из форм подвергаются обрубке и очистке. Эти операции выполняются в литейном цехе. Литники, прибыли, заливы и все неровности отливки или срубаются вручную зубилом и зачищаются напильником, или удаляются с помощью пневматических зубил, циркулярных пил и абразивных кругов. Очистка литья от пригоревшего к его поверхности формовочного материала производится различными способами: на дробеметных установках с механической подачей дроби, вращающимися проволочными щетками, вручную проволочными щетками, на абразивных станках, абразивными кругами с гибким валом и т.д.

Электрические методы обработки

Из применяемых в промышленности методов обработки с непосредственным использованием электрической энергии можно указать электрохимический, электротермический, электроэрозионный, электрогидравлический, ультразвуковой и электронной и светолучевой.

Электрохимический метод обработки (электрохимическое полирование металлов и анодно-химическая обработка) основан на явлениях, связанных с прохождением электрического тока через растворы электролитов. Этот метод обработки позволяет очищать поверхности; обрабатываемых материалов от оксидных пленок, ржавчины, жировых пленок и других загрязнений, а также сглаживать, доводить, шлифовать и полировать поверхности заготовки.

Электроэрозионный метод обработки основан на разрушении металла в результате разрядов между поверхностями обрабатываемой заготовки и инструмента. Ультразвуковой метод применяют в настоящее время для обработки твердых и хрупких материалов (например, стекла, рубина, алмаза, керамики и др.), с большим трудом обрабатываемых обычными методами. Использование ультразвуковых колебаний для обработки основано на создании высокой скорости изнашивания обрабатываемого материала при контакте вибрирующего инструмента и абразивов (в виде пасты, водной или масляной суспензии) с местом обработки.

Поверхности тел вращения представляют собой наиболее распространенный вид обрабатываемых поверхностей заготовок, торцы которых подрезают или фрезеруют, а если по технологическому процессу намечена дальнейшая обработка заготовок в центрах, их центрируют.

Для центрования применяют типовые наборы инструмента - спиральные сверла и конические зенковки, а также комбинированные центровочные сверла.

Рис. 1. Зенковка коническая.

Центровые отверстия обрабатывают на токарных, револьверных, сверлильных и двусторонних центровальных станках. Однако наиболее производительным способом является их обработка на фрезерно-центровальном полуавтомате, предназначенном для последовательной обработки заготовки: сначала фрезерование торцов, а затем сверление центровочных отверстий.

Обработка на токарных многорезцовых станках

Принцип концентрации операций при токарной обработке осуществляется при обтачивании одновременно нескольких поверхностей вращения несколькими инструментами - резцами - на многорезцовых станках. Такие станки-полуавтоматы широко применяются в серийном и массовом производстве.

Рис. 2. Токарный многорезцовый станок.

Сквозные и закрытые с одной стороны шпоночные канавки изготовляются фрезерованием дисковыми фрезами. Фрезерование канавки производится за один-два прохода. Этот способ наиболее производителен и обеспечивает достаточную точность ширины канавки.

Этот метод является наиболее рациональным для изготовления шпоночных канавок в серийном и массовом производствах, так как дает вполне точную канавку, обеспечивающую взаимозаменяемость в шпоночном соединении.

Сквозные шпоночные канавки можно обрабатывать на строгальных станках. Канавки на длинных валах, например на ходовом вале токарного станка, строгают на продольно-строгальном станке. Канавки на коротких валах строгают на поперечно-строгальном станке - преимущественно в индивидуальном и мелкосерийном производстве. Шпоночные канавки под сегментные шпонки изготовляются фрезерованием с помощью концевых дисковых фрез.

Шпоночные канавки в отверстиях втулок зубчатых колес, шкивов и других деталей, надевающихся на вал со шпонкой, обрабатываются в индивидуальном и мелкосерийном производствах на долбежных станках, в крупносерийном и массовом-на протяжных станках.

Рис. 3. Фрезерование закрытой шпоночной канавки в валу.

Форма шлицев бывает прямоугольная эвольвентная и треугольная. Технологический процесс изготовления шлицев валов зависит от того, какой принят способ центрирования вала и втулки. Наиболее точным является способ центрирования по внутреннему диаметру шлицев вала; он применяется, например, в станкостроительной и реже в автомобильной промышленности.

Шлицы на валах и других деталях изготовляются различными способами, к числу которых относятся: фрезерование с последующим шлифованием, накатывание (шлиценакатывание), протягивание, строгание (шлицестрогание).

Наиболее распространенным способом изготовления шлицев является фрезерование. А остальные способы получения шлицев целесообразно применять в крупносерийном и массовом производстве.

Фрезерование шлицев на фрезеровальном станке

Шлицы валов небольших диаметров (до 100 мм) обычно фрезеруют за один проход, больших диаметров - за два прохода. Черновое фрезерование шлицев, в особенности больших диаметров, иногда производится фрезами на горизонтально-фрезерных станках, имеющих делительные механизмы.

Чистовое фрезерование шлицев дисковыми фрезами производится только в случае отсутствия специального станка или инструмента, так как оно не дает достаточной точности по шагу и ширине шлицев.

Более точное фрезерование шлицев производится методом обкатки при помощи шлицевой червячной фрезы. Фреза помимо вращательного движения имеет продольное перемещение вдоль оси нарезаемого вала. Этот способ является наиболее точным и наиболее производительным.

Шлифование шлицев

При центрировании шлицевых валов по наружному диаметру шлифуют только наружную цилиндрическую поверхность вала на обычных круглошлифовальных станках.

Если шлицевые валы после чернового фрезерования прошли термическую обработку в виде улучшения или закалки, то после этого они не могут быть профрезерованы начисто; необходимо шлифовать по поверхностям впадины (т.е. по внутреннему диаметру) и боковых сторон шлицев. Наиболее производителен способ шлифования фасонным кругом, но при таком способе шлифовальный круг изнашивается неравномерно ввиду неодинаковой толщины снимаемого слоя у боковых сторон и впадины вала, поэтому требуется частая правка круга.

Для объединения двух операций шлифования в одну применяются станки, на которых шлицы шлифуют одновременно тремя кругами. Один шлифует впадину, а два других боковые поверхности шлицев.

Накатывание шлицев

Накатывание шлицев без нагрева детали осуществляется роликами, имеющими профиль, соответствующий форме поперечного сечения шлицев.

Рис. 4. Холодное импульсное накатывание шлицев.

Протягивание и строгание шлицев

Одним из методов изготовления шлицев на поверхности валов или подобных деталей является протягивание их на горизонтально-протяжных станках с применением специального приспособления.

Для протягивания сквозных шлицев применяется специальная протяжка с ножами, профиль режущей части которых ответствует форме шлица. Каждый шлиц протягивается поочередно с помощью делительного устройства.

Обработка шлицевых отверстий

Обработка шлицевых поверхностей в отверстии втулок, зубчатых колес и др. деталей обычно производится протягиванием. Шлицевые отверстия диаметром до 50 мм. Протягивают одной комбинированной протяжкой. Если втулка или зубчатое колесо подвергается термической обработки, то после этого на внутришлифовальном станке шлифуется цилиндрическая поверхность отверстия, которая сопрягается с дном впадины шлицевого вала.

Наружную резьбу нарезают плашками различных конструкций, резьбонарезными головками (с раздвигающимися плашками), резьбовыми резцами, гребенками, дисковыми и групповыми резьбовыми фрезами, шлифовальными кругами, а также накатыванием. Круглыми плашками нарезают резьбы невысокой точности, так как у этих плашек профиль резьбовой нитки не шлифуют.

Рис. 5. Нарезание наружной резьбы: а - круглая плашка, б - призматическая (раздвижная) плашка, в - нарезание резьбы.

Нарезание внутренней резьбы

Внутреннюю резьбу нарезают в основном метчиками. Используют также резцы, гребенки, резьбовые фрезы, В зависимости от способа нарезания резьбы метчики разделяют на машинные для нарезания резьбы на станках и ручные, или слесарные, применяющиеся при нарезании резьбы вручную.

При нарезании машинными метчиками резьба нарезается за один ход одним метчиком. Лишь в случаях нарезания длинных резьб или резьб в глухих отверстиях применяют два метчика. Точные резьбы после нарезания доводят калибровочным метчиком вручную или на станке. Ручными метчиками резьбу нарезают за два или три рабочих хода в зависимости от размера резьбы соответственно различными метчиками, входящими в комплект. Машинными метчиками резьбу нарезают как в сквозных, так и в глухих отверстиях на резьбонарезных, сверлильных, револьверных станках, токарных автоматах и полуавтоматах.

Рис. 6. Метчики: а - метчик-сверло; б - комбинированный; в - самодельный из болта; г - вилка для извлечения сломанного метчика; д - нарезание червячной шестерни; е - нарезание резьбы с помощью воротка

Шлифование - это вид обработки, осуществляемый с помощью абразивного инструмента, режущим элементом которого являются зерна абразивных материалов. При этом достигаются высокая точность и малая шероховатость обрабатываемых поверхностей. При обработке на шлифовальных станках режущим инструментом являются шлифовальные абразивные круги, которые состоят из мелких зерен абразивных материалов, сцементированных связующим веществом - связкой. Твердость абразивных материалов значительно выше твердости закаленной стали.

Наиболее распространенным является обычное точное шлифование, при котором точность обработки наружных цилиндрических поверхностей достигает 2-го класса, а шероховатость поверхности - 7-9-го классов.

Тонкое шлифование дает возможность получить более высокую степень точности обработки, соответствующую 1-му классу точности, и более высокое качество поверхности, соответствующее 10-11-му классам шероховатости.

Тонкое шлифование осуществляется мягким мелкозернистым шлифовальным кругом при большой скорости его вращения (более 40м/с) при малой скорости вращения обрабатываемой детали (до 10 м/мин) и малой глубине резания (до 5 м/с); шлифование сопровождается усиленным охлаждением обрабатываемой детали.

Шлифование наружных цилиндрических и конических поверхностей (называемое "круглым" шлифованием) производят на кругло-шлифовальных станках, причем обрабатываемая деталь может быть установлена в центрах станка, цанге, патроне или в специальном приспособлении. Скорость вращения детали при шлифовании в зависимости от ее диаметра применяется от 10 до 50 м/мин; скорость шлифовального круга составляет обычно у многих станков 30 м/сек, а при использовании более прочных кругов достигает 50 м/сек. Продольная подача и глубина резания варьируются в зависимости от способов шлифования.

Рис. 7. Тонкое шлифование.

обработка станок многорезцовый фрезеровальный

Бесцентровое шлифование

При бесцентровом шлифовании деталь 2 не закрепляется в центрах, как на кругло-шлифовальных станках, а свободно (без крепления) помещается между двумя шлифовальными кругами, из которых круг большего диаметра является шлифующим, а круг меньшего диаметра - ведущим кругом, который вращает деталь и сообщает ей продольную подачу.

Рис. 8. Бесцентровое шлифование.

Отделочная обработка цилиндрических поверхностей

Для получения тонкой и чистой окончательно отделанной наружной цилиндрической поверхности зависимости от предъявляемых требований и характера детали различные виды чистовой отделочной обработки. К их числу относятся: тонкое (алмазное) точение, шлифование, притирка (доводка), механическая доводка абразивными колеблющимися брусками (суперфиниширование), полирование, обкатывание роликами, обдувка дробью.

Тонкое (алмазное) точение применяется главным образом для отделочной обработки деталей из цветных металлов и сплавов (бронзы, латуни, алюминиевых сплавов и т.п.) и отчасти для деталей из чугуна и стали.

Притирка служит для окончательной отделки предварительно отшлифованных поверхностей деталей. Притирка наружных цилиндрических поверхностей выполняется притиром, изготовляемым из чугуна, бронзы или меди. Для изготовления абразивного порошка используют корунд, окись хрома, окись железа и др.

Механическая доводка абразивными колеблющимися брусками (суперфиниш)

Суперфиниш представляет собой метод особо чистой доводки поверхностей: плоских, круглых, выпуклых, вогнутых, внутренних наружных и пр., применяемый наиболее часто в автомобильной промышленности. Суперфиниш представляет собой обработку поверхности головкой с абразивными колеблющимися брусками, причем осуществляются три, а иногда и более движений: помимо вращения детали и продольного передвижения брусков последние совершают и колебательное движение. Главным рабочим движением является колебательное движение головки с абразивными брусками, направленное вдоль их оси; при этом ход брусков составляет 2-6 мм, а число двойных ходов (колебаний) в минуту 200-1000.

Одна из задач суперфиниша - уничтожить, насколько возможно, риски, оставшиеся на поверхности от предыдущей механической обработки. Шероховатость поверхности, обработанной методом суперфиниша, достигает 14-го класса.

Полирование - это процесс чистовой обработки поверхности мягким кругом с нанесенным на него мелкозернистым абразивным порошком, смешанным со смазкой.

Рис. 9. Сепаратор для доводки цилиндрических н у плоских поверхностей: % 1 - диск; 2-шайба; 3 - втулка; 4 - регулировочный винта 5 - стакан; 6 - гайка.

Подобные документы

Методика выбора оптимальных маршрутов обработки элементарных поверхностей деталей машин: плоскостей и торцев, наружных и внутренних цилиндрических. Выбор маршрутов обработки зубчатых и резьбовых поверхностей, отверстий. Суммарный коэффициент трудоемкости.

методичка [232,5 K], добавлен 21.11.2012

Проектирования технологических процессов обработки деталей. Базирование и точность обработки деталей. Качество поверхностей деталей машин. Определение припусков на механическую обработку. Обработка зубчатых, плоских, резьбовых, шлицевых поверхностей.

курс лекций [7,7 M], добавлен 23.05.2010

Основные понятия и определения токарной обработки. Особенности конструкции токарно-программных станков и особенности их применения. Технологическая оснастка. Образование стружки и сопровождающие его явления. Автоматизация и механизация токарной обработки.

курсовая работа [5,8 M], добавлен 05.12.2009

Применение метода обработки без снятия стружки для деталей с ужесточением эксплуатационных характеристик машин. Данный метод обработки основан на использовании пластических свойств металлов. Обкатывание, раскатывание и алмазное выглаживание поверхностей.

реферат [508,5 K], добавлен 20.08.2010

Токарная обработка и классификация токарных станков. Сущность обработки металлов резанием. Геометрические параметры режущего инструмента. Влияние смазочно-охлаждающей жидкости на процесс резания. Образование стружки и сопровождающие его явления.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

КЛАССИФИКАЦИЯ

ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ОБРАБОТКИ ИЗДЕЛИЙ

В МАШИНОСТРОЕНИИ

1. Признаки классификации методов изготовления деталей машин 4

Классификация по природе и характеру воздействия

2. Виды методов изготовления деталей по схемам формообразования 6

ЗАКЛЮЧЕНИЕ 9

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ 10

Прежде, чем непосредственно приступить к выделению видов технологических процессов обработки изделий, следует раскрыть такое важнейшее понятие как технологический процесс.

Под технологическим процессом понимают последовательное изменение формы, размеров, свойств материала или полуфабриката в целях получения детали или изделия в соответствии с заданными техническими требованиями.

Следует также отметить, что технологический процесс механической обработки деталей является частью общего производственного процесса изготовления всей машины.

Целью данной работы является привести классификации методов обработки, в основу которых могут быть положены различные признаки, которые будут рассмотрены далее.

1. Признаки классификации методов изготовления деталей машин

В основу классификации методов обработки могут быть положены следующие признаки:

природа воздействия, играющего главную роль в формообразовании;

характер воздействия на заготовку;

схема формообразования (сочетание вида инструмента и кинематики формообразования)

характер связи формообразующего элемента инструмента с последним звеном энергетического комплекса, сообщающего движение инструменту;

динамика процесса формообразования.

По природе воздействия различают: механическую обработку, электрическую (электроэрозионную, электрохимическую, ультразвуковую), светолучевую, плазменную, комбинированную.

В результате механического воздействия происходит пластическое деформирование части материала заготовки (чаще всего с последующим вязким или хрупким разрушением). При светолучевой и плазменной обработке главным является тепловое воздействие, приводящее к плавлению или испарению материала заготовки. При электроэрозионной обработке локальный нагрев обрабатываемой поверхности является результатом короткого искрового или более длительного искродугового электического разряда между инструментом и заготовкой. В основе процесса электрохимической обработки лежат явления анодного растворения металла электролитом под действием электрического тока или выделение металла из электролита с его осаждением на поверхности заготовки[ 1 ].

По характеру (результату) воздействия на заготовку различают обработку: с частичным удалением материла заготовки, с частичным перераспределением материала заготовки за счет его пластического деформирования, с нанесением (присоединением) материала на заготовку, комбинированными способами воздействия.

При обработке с частичным удалением материала заготовки удаляемый слой называют припуском, если форма заготовки подобна форме обрабатываемой поверхности, и напуском, если форма заготовки существенно отличается от формы детали (т.е. проще ее).

2. Виды методов изготовления деталей по схемам формообразования

Схема формообразования дает наименование способу и поэтому является основным признаком классификации. Например, точение – это способ обработки с помощью резца, когда заготовке сообщается вращение, а инструменту – поступательное движение вдоль и (или) поперек оси вращения заготовки. Учитывая неопределенность этого признака, часто уточняют название способа указанием вида обрабатываемой поверхности (например, нарезание резьбы резцом; круглое, плоское или внутреннее шлифование).

Несмотря на коренные различия в природе воздействия на заготовку, всем известным методам и способам обработки присущ общий признак – наличие относительного перемещения заготовки и инструмента в процессе формообразования. При этом форму обрабатываемой поверхности можно рассматривать как след линии (образующей), движущейся в пространстве в соответствии с законом, который определяется другой линией (направляющей); либо как огибающую некоторого семейства поверхностей. В последнем случае образующей является линия соприкосновения огибающей и огибаемой поверхностей. В процессе обработки образующую и направляющую будем различать по следующим признакам: 1) образующая подвижна в пространстве, а направляющая неподвижна; 2) форма и размеры образующей в общем случае переменны, а направляющей – неизменны; 3) скорость образования (генерации) образующей существенно выше, чем направляющей.

Во времени образующая и направляющая могут возникать прерывисто (П), непрерывно (Н) или единовременно (Е). По этому признаку можно выделить следующие схемы формообразования:

образующая и направляющая возникают прерывисто (ПП); сюда относят фрезерование телевращения, зубофрезерование червячной фрезой, дробеструйную обработку и т.д.;

направляющая возникает прерывисто, а образующая – непрерывно (ПН); сюда можно отнести продольное точение, строгание, торцовое фрезерование плоскости и т.д.;

направляющая возникает во времени прерывисто, а образующая – единовременно (ПЕ); сюда относят фрезерование фасонных канавок, плоскостей цилиндрической фрезой и т.д.;

направляющая и образующая возникает непрерывно (НН); к данной схеме можно отнести поперечное точение с тангенциальной подачей;

направляющая возникает во времени непрерывно, а образующая – единовременно (НЕ); к этой схеме относится обработка отверстия однозубой прошивкой[ 2 ].

Прерывистый характер генерации производящих линий обрабатываемых поверхностей является одной из причин образования погрешностей формы (шероховатости, волнистости, огранки).

Частичное уменьшение погрешности формы направляющей возможно за счет увеличения длины ее контакта с формообразующим элементом инструмента. Для повышения устойчивости процесса резания часто уменьшают длину контакта формообразующего элемента с образующей.

На станке каждое движение обеспечивается соответствующей кинематической цепью. Все устройства, выполняющие данную функцию, можно разбить на два класса: направляющие комплексы, обеспечивающие заданный вид траектории в неподвижной системе координат станка; энергетические комплексы, т.е. механизмы, передающие заготовке и инструменту энергию, необходимую для осуществления этого движения. Некоторых схемы формообразования позволяют отказаться от части направляющих комплексов, передав их функцию заготовке или инструменту. Поскольку каждый направляющий комплекс состоит из двух элементов (подвижного и неподвижного), передача его функции может быть полной или частичной. При частичной передаче на станке остается один элемент направляющей пары, а функции второго передаются заготовке или инструменту. При полной передаче из станка изымаются оба элемента направляющей пары, причем функции одного элемента передаются заготовке, а другого – инструменту. В некоторых случаях функции энергетических комплексов могут частично передаваться заготовке или инструменту.

По динамике процесса формообразования различают три вида обработки: предварительную (черновую), чистовую и отделочную. Цель предварительной обработки – приблизить форму обрабатываемой поверхности к заданной. При чистовой и отделочной обработке достигаются заданные параметры качества обрабатываемой поверхности. Однако рационально по возможности использовать так называемую интеграцию обработки, т.е. сразу, без предварительной обработки получать заданные точность и шероховатость. Такая однократная обработка возможна как лезвийным, так и абразивным инструментом, но она предъявляет повышенные требования к жесткости и виброустойчивости технологического оборудования и оснастки, требует повышения мощности привода.

Обычные методы обработки характеризуются одним видом подводимой энергии, одним способом ее подвода, а также одним способом воздействия на заготовку. Комбинированные методы обработки могут быть осуществлены путем подвода в зону обработки двух и более видов энергии или путем совмещения различных способов ее подвода. Комбинированные методы обработки классифицируются по следующим признакам:

1) последовательность совмещения видов энергии, способов ее подвода или способов воздействия на заготовку;

2) число совмещаемых видов энергии, способов ее подвода или способов воздействия на заготовку.

По первому признаку комбинированные методы делятся на последовательные и параллельные, а по второму – на три группы:

1) используются один вид энергии, но два разных способа подвода;

2) совмещаются два вида энергии, подводимой в зону обработки;

3) совмещаются три вида энергии или два вида энергии и два способа ее подвода в зону обработки.

Любой из методов обработки используется в определенном диапазоне показателей, обусловленном свойствами материала заготовки и инструмента. Критическими называют такими условия, когда дальнейшее повышение уровня показателей свойств обрабатываемого материала делает его использование невозможным по технических причинам или нерентабельным по экономическим соображениям. Например, условия обработки инструментом из быстрорежущей стали становятся критическими, когда твердость обрабатываемого материала приближается к 46… 51 HRCэ. В подобных ситуациях выходом из положения часто является комбинирование методов обработки.

ЗАКЛЮЧЕНИЕ

В основу классификации методов обработки могут быть положены такие признаки как: природа воздействия, играющего главную роль в формообразовании; характер воздействия на заготовку; схема формообразования (сочетание вида инструмента и кинематики формообразования); характер связи формообразующего элемента инструмента с последним звеном энергетического комплекса, сообщающего движение инструменту; динамика процесса формообразования.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

Махаринский Е.И., Горохов В.А. Основы технологии машиностроения: Учебник. – Мн: Выш. шк.,1997.

Технология машиностроения: В 2-х книгах. Кн. 1. Производство деталей машин: Учеб. пособие для вузов / Э.Л. Жуков, И.И. Козырь, С.Л. Мурашкин и др.; Под ред. С.Л. Мурашкина. – Под ред. С.Л. Мурашкина. – М.: Высш. шк., 2003.

2 Махаринский Е.И. Основы технологии машиностроения: Учебник. – Мн: Выш. шк.,1997. – с. 35.

а) литьем металлов различными способами: в земляные формы, в металлические формы (кокили), центробежным способом, под давлением, по выплавляемым моделям (прецизионное литье), в оболочковые (корковые) формы, методом вакуумного всасывания (литье цветных сплавов);

б) обработкой металлов давлением (пластическим деформированием), ковкой, штамповкой (горячей и холодной), прессованием (выдавливанием), прокаткой, волочением,

в) литьем из пластмасс;

г) штамповкой пластмасс.

2 Обработка заготовок деталей машин механическими способами:

а) снятием стружки - резание металла лезвийными инструментами и абразивами на металлорежущих станках;

б) пластическим деформированием (без снятия стружки) - уплотнение металла; обкатывание и раскатывание роликами, продавливание - калибрование отверстий шариком или оправкой; накатывание (для получения рифленой поверхности);

в) холодной правкой металлических деталей;

г) дробеструйной обработкой металлических деталей, которая состоит в том, что термически обработанные детали подвергают в специальных установках ударному воздействию потока стальной или чугунной дроби, выбрасываемой механическим (или пневматическим) дробеметом. Сущность процесса заключается в том, что поверхностный слой обрабатываемой детали пластически деформируется - наклепывается, благодаря чему его твердость и прочность повышаются;

д) пластическим деформированием пластмасс.

3 Химико-механическая обработка:

а) доводка (притирка) притирами, изготовленными преимущественно из чугуна, меди или латуни и мелкозернистыми абразивными порошками, микропорошками и пастами. Материал притира должен быть мягче, чем материал обрабатываемой детали;

б) полирование мягкими кругами (из сукна, бязи, войлока, бумаги, кожи) с помощью полировальных паст, содержащих (как и притирочные пасты) поверхностно-активные вещества, химически воздействующие на обрабатываемый материал;

в) обработка (затачивание и доводка) твердосплавного инструмента в растворе сернокислой меди и помощью абразивного порошка и металлического диска.

4 Электрохимическая обработка. Сущность электрохимических методов заключается в применении электрической энергии в форме электролиза. Одним из таких методов является электрополирование, которое осуществляется в обычных электролитических ваннах с применением специальных электролитов и соответствующих режимов тока.

5 Термическая обработка. Термическая обработка применяется с целью видоизменить структуру металла для получения механических и физических свойств его, соответствующих техническим требованиям.

Термическая обработка деталей машин может быть применена на начальной, промежуточной и конечной стадиях технологического процесса. Характер операций термической обработки обусловливается конструктивными и эксплуатационными требованиями, а также требованиями технологии механической обработки.

Химико-термическая обработка металлических деталей применяется с целью улучшить физико-химические и механические свойства деталей - повысить их жаропрочность, износоустойчивость и т. д. путем изменения химического состава поверхностного слоя металла, который искусственно насыщается азотом (процесс носит название азотирования), алюминием (алитирование), углеродом и азотом одновременно с последующей закалкой (цианирование) и некоторыми другими элементами. Сюда же иногда относят широко распространенный процесс термической обработки - насыщение низкоуглеродистой стали углеродом с последующей закалкой (цементация).

6 Старение заготовок деталей. Старение имеет целью привести структуру отливки в состояние равновесия, т. е. освободить заготовку от внутренних напряжений, возникающих как при застывании металла, так и при предварительной механической обработке (обдирке).

Старение бывает естественное и искусственное. Метод естественного старения заключается в том, что заготовка после литья или после обдирки выдерживается на открытом воздухе под воздействием атмосферы в течение 0,5…6 месяцев и более.

Ввиду длительности этого процесса чаще применяется метод искусственного старения. Искусственное старение преимущественно осуществляется термической обработкой заготовки путем нагревания ее в печи (электрической, газовой, нефтяной) при температуре 450…500° С, выдержки в течение 12…15 ч и охлаждения в течение 2,5…3 ч вместе с печью, после чего заготовка окончательно охлаждается на воздухе.

Иногда искусственное старение производят другими способами, например обстукиванием детали, подвешенной на блоке, встряхиванием, пропусканием электрического тока, пропусканием детали через моечную машину с холодной и горячей водой, шлифованием необрабатываемых поверхностей детали ручными шлифовальными кругами.

Старение применяется преимущественно для крупных литых деталей, от которых требуется возможно большая стабильность формы и размеров, например для станин металлорежущих станков.

7 Электроискровой метод обработки металлов состоит в том, что между двумя сближенными металлическими электродами, находящимися под током (одним из которых - анодом - служит обрабатываемая деталь), возникает электроискровой разряд, вследствие чего происходит местное направленное разрушение (электроэрозия) металла - анода.

Этот метод электрообработки применяется для получения сквозных и глухих отверстий разного профиля в металлических заготовках (например, в штампах) при обработке закаленных металлов, твердых сплавов и других труднообра­батываемых токопроводящих материалов.

8 Анодно-механический метод заключается в том, что при прохождении постоянного тока через электролит и электроды происходит процесс растворения поверхности анода с образованием пленки, которая принудительно снимается вращающимся диском.

Анодно-механический метод обработки применяется при разрезании труднообрабатываемых металлов, заточке и доводке режущего инструмента из твердых сплавов, отделочном шлифовании твердых магнитных сплавов.

Анодно-механическое разрезание металла осуществляется диском-электро­дом, вращающимся с большой скоростью. Диск-электрод присоединен к отрицательному полюсу (зажиму), заготовка - к положительному. В зону обработки подается водный раствор жидкого стекла - электролит; между диском и заготовкой непрерывно проходит электрический ток. Питание установки происходит от источника постоянного тока. Врезание диска достигается поперечной подачей его. Диск изготовляется из материала с твердостью ниже твердости разрезаемой заготовки - из мягкой стали, меди, чугуна.

9 Ультразвуковой метод заключается в том, что энергия вибрирующего инструмента в виде ультразвуковых колебаний воздуха передается частицам абразивного микропорошка, которые поступают взвешенными в воде или масле под торцовую поверхность инструмента и разрушают обрабатываемый материал.

Этот метод позволяет обрабатывать отверстия любого профиля в деталях, изготовляемых из труднообрабатываемых материалов, таких, как, например, алмаз, стекло, керамика, твердые сплавы, кварц и др.

10 Покрытие металлами и сплавами поверхностей деталей. Для покрытия поверхностей деталей слоем других металлов наиболее широко применяется гальванический метод, основанный на электролизе. Этим методом пользуются для покрытия деталей слоем хрома, никеля, цинка, меди и др.

Хромирование поверхностей деталей производится с целью предохранения их от коррозии, увеличения сопротивляемости механическому изнашиванию, продления срока службы, восстановления размеров изношенных поверхностей, для придания деталям красивого вида и блеска.

Никелирование применяется для придания изделиям красивой блестящей поверхности и в меньшей степени для предохранения деталей от коррозии.

Омеднению подвергают части цементируемой детали (не подлежащие последующей закалке) для предохранения их от науглероживания в целях облегчения последующей механической обработки.

Металлизация - покрытие посредством распыления (пульверизации) расплавленного металла - применяется для ремонта и восстановления изношенных деталей, исправления брака, повышения жароупорности деталей (например, покрытие алюминием), придания антикоррозионных свойств (оцинковка). Покрытие твердыми сплавами с целью повышения износо­устойчивости деталей производится путем наварки или наплавки твердых спла­вов на поверхности деталей.

11 Сварка металлов - один из способов соединения металлических деталей; подразделяется на химическую (газовая, термитная и др.) и электрическую (электродуговая, контактная и др.). Сварка может заменить пайку, клепку, ковку, литье; во многих случаях с помощью сварки достигается значительная экономия металла (уменьшается трудоемкость изготовления продукции, удешевляется производство).

12 Балансировка деталей. Во избежание возникновения вибраций детали, вращающиеся с большой скоростью, должны быть отбалансированы. Вращающаяся деталь будет отбалансированной или уравновешенной в том случае, когда ее центр тяжести и главная ось инерции совпадают с осью вращения. Причинами неуравновешенности деталей и узлов могут быть неоднородность материала, неточность размеров и формы поверхностей, несимметричное расположение массы металла относительно оси вращения, несовпадение осей сопрягаемых деталей, вращающихся совместно.

Детали, совершающие возвратно-поступательное движение (например, поршень с шатуном в двигателе внутреннего сгорания), подвергаются подгонке по весу (массе).

13 Очистка, промывка и покрытие деталей смазкой. В процессе обработки и после обработки деталей производится их очистка, промывка, просушка и покрытие смазкой. Очистка производится механическими или химическими способами, промывка - в моечных баках или моечных машинах, просушка - обдувкой сжатым воздухом. Детали покрывают смазкой в целях предохранения их от коррозии.

Читайте также: