Нормируемые метрологические характеристики средств измерений реферат

Обновлено: 05.07.2024

2.2 Метрологические характеристики средств измерений и их нормирование.

Для каждого вида средств измерений (СИ), исходя из их специфики и назначения, нормируется определенный комплекс метрологических характеристик, указываемый в нормативно-технической документации на СИ. В этот комплекс должны включатся такие характеристики, которые позволяют определить погрешность данного СИ в известных рабочих условиях его применения. Общий перечень основных нормируемых метрологических характеристик СИ, формы их представления и способы нормирования установлены в ГОСТ 8.009-72. В него входят :

пределы измерений, пределы шкалы;

цена деления равномерной шкалы аналогового прибора или многозначной меры, при неравномерной шкале – минимальная цена деления;

выходной код, число разрядов кода, номинальная цена единицы наименьшего разряда цифровых СИ;

номинальное значение однозначной меры, номинальная статическая характеристика преобразования измерительного преобразователя;

вариация показаний прибора или выходного сигнала преобразователя ;

полное входное сопротивление измерительного устройства;

полное выходное сопротивление измерительного преобразователя или меры;

неинформативные параметры выходного сигнала измерительного преобразователя или меры;

динамические характеристики СИ;

наибольшие допустимые изменения метрологических характеристик СИ в рабочих условиях применения.

Нормирование метрологических характеристик необходимо для решения следующих задач :

придания всей совокупности однотипных СИ требуемых одинаковых свойств и уменьшения их номенклатуры;

обеспечение возможности оценки инструментальных погрешностей и сравнения СИ по точности;

обеспечение возможности оценки погрешности измерительных систем по погрешностям отдельных СИ. Погрешности, присущие конкретным экземплярам СИ, устанавливаются только для образцовых СИ при их аттестации.

Рассмотрим указанные характеристики, а также ряд важных понятий, связанных с ними.

О
тсчетные устройства приборов. На рис. 4 показано отсчетное устройство аналогового прибора.

Деление шкалы – промежуток l между двумя соседними отметками шкалы. Длина деления шкалы – расстояние между осями двух соседних отметок. Цена деления шкалы – разность значений величины, соответствующих двум соседним отметкам шкалы.

Шкалы бывают равномерными и неравномерными. Равномерная шкала в отличие от неравномерной – шкала с делениями постоянной длины и с постоянной ценой деления.

Отсчетом называется число, определенное по отсчетному устройству.

Показание прибора – значение величины, определяемое по отсчетному устройству и выраженное в принятых единицах этой величины.

В многопредельных приборах, где одна и та же шкала используется для на разных пределах измерения, показание прибора равно отсчету, умноженному на цену деления для соответствующего предела измерения. В некоторых случаях показание определяется с помощью отсчета, по прилагаемой к прибору градуированной характеристике – зависимости между отсчетом и значением величины на входе прибора, представленной в виде таблицы, графика или формулы.

Диапазон показаний (ДП) – область значений шкалы, ограниченная конечным (наибольшим) и начальным (наименьшим) значениями физической величины, указанными на шкале.

Диапазон измерений (ДИ) – область значений измеряемой величины, для которой нормирована погрешность средства измерений.

Предел измерений – наибольшее или наименьшее значение диапазона измерений. Диапазон показаний и диапазон измерений могут не совпадать (см. рис. 4).

Отсчетное устройство цифрового прибора характеризуется числом десятичных разрядов и ценой (деления) единицы младшего разряда, которая, очевидно, не может быть меньше шага квантования. Цифровое отсчетное устройство эквивалентно равномерной шкале, так как одинаковому цифрового кода соответствует одинаковое приращение показаний. Поэтому наличие нелинейности преобразования измеряемой величины в код приводит к погрешности цифрового прибора. Соответственно к преобразователям цифровых приборов предъявляется требование высокой линейности. В то же время в аналоговом приборе нелинейная зависимость перемещения указателя от изменения измеряемой величины может быть учтена введением соответствующей нелинейности (неравномерности) шкалы.

Параметры входного и выходного сигналов СИ, влияющие величины, функции влияния.

На метрологические характеристики СИ сильно влияют внешние физические воздействия (климатические, механические, электромагнитные) и изменения параметров источников питания – влияющие величины.

По условиям применения СИ, различают нормальные и рабочие условия. Они отличаются диапазоном изменения неинформативных параметров входного сигнала и влияющих величин.

Нормальными называются условия, для которых нормируется основная погрешность СИ. При этом влияющие величины и неинформативные параметры входного сигнала имеют нормальные значения. Например, для генератора определенного типа установлены нормальные температурные условия +10..+35 С. В этом температурном диапазоне гарантируется основная погрешность прибора, указанная в его паспорте. Но прибор может работать и в более широком диапазоне температур, например, от 0 до +40 С. Этот диапазон называется рабочим. Для нормальных условий нормируется основная погрешность СИ, для рабочих – дополнительная.

Условия эксплуатации СИ оговаривают в соответствующих стандартах и делят на группы, различающиеся значениями влияющих величин.

Функция влияния – зависимость изменения метрологической характеристики СИ от изменения влияющей величины или неинформативного параметра входного сигнала в пределах рабочих условий эксплуатации. Функция влияния может нормироваться в виде формулы, графика или таблицы.

Наряду с условиями применения для всех СИ задаются предельные условия транспортирования и хранения, не изменяющие метрологические свойства СИ после его возвращения в рабочие условия.

Характеристики преобразования. Быстродействие СИ.

Статическая характеристика преобразования – связь, выражающая зависимость информативного параметра выходного сигнала от постоянного информативного параметра входного сигнала. Ее можно представить в аналитическом виде, графическом или табличном. В аналитическом виде характеристика преобразования - уравнения y=F(x), которое может быть может быть линейным (рис. 5-а.) или нелинейным (рис. 5-б., 5-в.).

З
аметим, что для прибора, шкала которого проградуирована в значениях измеряемой величины, всегда y=x и графическая характеристика преобразования представляет прямую линию под углом 45 градусов относительно оси х. В то же время угол отклонения указателя аналогового отсчетного устройства этого прибора при наличии нелинейных преобразователей (например, в квадратичном вольтметре) будет нелинейной функцией х. В цифровых приборах из-за квантования сигнала характеристика преобразователя является ступенчатой функцией (рис. 6-г.), определяемой выражением у=nx, где у – показания прибора,x – шаг квантования, n – цифровой код измеряемой величины х. При нелинейных преобразователях необходимо линеаризовать характеристики преобразования прибора. В аналоговых приборах для этого используют шкалу с соответствующей неравномерностью. В цифровых приборах отсчетное устройство эквивалентно равномерной шкале. Для линеаризации характеристики преобразования необходимо в прибор вводить аналоговые линеаризирующие преобразователи либо вычислительные средства, выполняющие необходимое преобразование цифрового кода.

Динамические характеристики СИ определяют инерционные свойства СИ и представляют собой зависимость информативного параметра выходного сигнала от меняющихся во времени параметров входного сигнала. К числу динамических характеристик относятся : импульсная g(t), является реакцией преобразователя на дельта – функцию (t); переходная h(t) – реакция на единичный ступенчатый сигнал; дифференциальное уравнение СИ; передаточная функция, является отношением операторных изображений выходной величины к входной К(р) = y(p)/x(p); амплитудно-частотная и фазо-частотная.

Динамические свойства СИ характеризуются также быстродействием – скоростью и временем измерения (временем установления показаний). Скорость измерения (преобразования) определяется максимальным числом измерений (преобразований) в единицу времени, выполняемых с нормированной погрешностью. Время измерения (преобразования) – время, прошедшее с момента начала измерения (преобразования) до получения результата с нормированной погрешностью.

Чувствительность, порог чувствительности, разрешающая способность СИ.


Ч
увствительностью СИ называется отношение изменения выходной величины (информативного параметра) к вызывающему его изменению входной величины (информативного параметра входного сигнала). Различают абсолютную и относительную чувствительность. Абсолютная чувствительность равна производной от характеристики преобразования СИ : S = dy/dx = x/y . Приближенное равенство для определения чувствительности через конечные приращения х и у используется при экспериментальном определении чувствительности. Для линейных СИ (y=kx) чувствительность постоянна S=k и может быть определена как S=x/y (рис. 6-а.) для нелинейных чувствительность зависит от входного сигнала (рис. 6-б и 6-в.).

Для показывающих приборов признаком линейности или нелинейности характеристики преобразования является равномерность или неравномерность шкалы. В ряде случаев (например, в электрических мостах) для характеристики чувствительности используется относительная чувствительность S= y/(x/x), где x/x – относительное изменение входной величины. Наименьшее значение входной величины, которое можно обнаружить с помощью данного СИ, называется его порогом чувствительности.

Разрешающей способностью СИ называется наименьшее различаемое с помощью данного СИ изменение измеряемой величины, или наименьшее различимое отличие друг от друга двух одноименных величин. Порог чувствительности и разрешающая способность имеют размерность измеряемой величины и обычно определяются уровнем его внутренних шумов и нестабильностью элементов. У цифровых приборов порог чувствительности и разрешающая способность, как правило, равны цене единицы младшего разряда.

Погрешность средств измерений.

Погрешность прибора характеризует отличие его показаний от истинного или действительного значения измеряемой величины. Погрешность преобразователя определяется отличием номинальной (т.е. приписываемой преобразователю) характеристики преобразования или коэффициента преобразования от их истинного значения.

Погрешность меры характеризует отличие номинального значения меры от истинного значения воспроизводимой ею величины.

Точность СИ – качество, отражающее близость к нулю его погрешности. Например, при погрешности прибора =10 -4 (0,01 %) точность – 10 4 . Возникновение погрешности СИ объясняется рядом причин, в том числе приближенным расчетом характеристик, отличием параметров элементов и узлов прибора от требуемых расчетных значений, старением элементов и узлов, паразитными параметрами элементов, внутренними шумами, изменением влияющих величин и неинформативных параметров входного сигнала и др. Погрешности СИ оцениваются при его поверке.

Поверка СИ – определение метрологической организацией погрешностей СИ и установление его пригодности к применению. Поскольку погрешность во времени может изменяться, поверку проводят с определенной периодичностью.

По способу выражения различают погрешности :

абсолютная погрешность прибора – разность между показаниями прибора xп и истинным значением измеряемой величины x :  = xп – x.

относительная погрешность прибора – отношение абсолютной погрешности прибора к истинному (действительному) значению измеряемой величины : = /x или в процентах = 100/x, где если x >> , то вместо x с достаточной степенью точности можно использовать xп .

приведенная погрешность прибора – отношение в процентах абсолютной погрешности прибора к нормирующему значению :  = 100/xнорм.

В соответствии с ГОСТ 8.401-80 xнорм принимается равным :

большему из пределов измерений или большему из модулей пределов измерений для СИ с равномерной или степенной шкалой, если нулевая отметка находится на краю или вне диапазона измерений;

арифметической сумме модулей пределов измерений, если нулевая отметка находится внутри диапазона измерений;

установленному номинальному значению для СИ с установленным номинальным значением измеряемой величины.

Всей длине шкалы для приборов с существенно неравномерной шкалой, при этом абсолютные погрешности также выражают в единицах длины.

Во всех остальных случаях нормирующее значение устанавливается стандартами для соответствующих видов СИ.

Для преобразователей определение абсолютных и относительных погрешностей несколько сложнее. Они определяются по входу вх и выходу вых и характеризуют отличие реальной характеристики преобразования yp = Fp(x) от номинальной yн=Fн(x). (см. рис. 7.)


Для оценки погрешности по выходу находят значения yр и yн при заданной величине x. Тогда вых = yр- yн , а относительная погрешность = вых/yр. По входу вх = xн- x; где xн =Fн -1 (yр) определяется через значение yр и функцию, обратную Fн , т.е. xн – такое значение x, которое при номинальной характеристики дало бы на входе значение yр;  =вх/x – относительная погрешность.

Уже отмечалось, что в зависимости от условий применения СИ погрешности делятся на основную (при нормальных условиях) и дополнительную (при рабочих условиях).

В зависимости от поведения измеряемой величины во времени различают статическую и динамическую погрешности, а также погрешность в динамическом режиме.

Статическая погрешность СИ (ст) – погрешность СИ, используемого для измерения постоянной величины (например, амплитуды периодического сигнала). Погрешность в динамическом режиме (дин.р.) – погрешность СИ, используемого для измерения переменной во времени вел

Раздел: Технология
Количество знаков с пробелами: 43931
Количество таблиц: 0
Количество изображений: 5

Нормируемые метрологические характеристики средств измерений. Абсолютные и относительные, случайные и систематические, основные и дополнительные, инструментальные и методические погрешности. Классы точности средств измерения. Эталоны единиц величин.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 15.06.2014
Размер файла 33,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

Обработка результатов прямых многократных измерений

Классы точности средств измерения

Эталоны единиц величин

Развитие науки и техники, повышение требований к качеству продукции и эффективности производства привели к радикальному изменению требований к измерениям. Один из основных аспектов этих требований - обеспечение возможности достаточно достоверной оценки погрешности измерений. Отсутствие данных о точности измерений или недостаточно достоверные ее оценки полностью или в значительной степени обесценивают информацию о свойствах объектов и процессов, качестве продукции, об эффективности технологических процессов, о количестве сырья, продукции и т. п., получаемую в результате измерений.

Погрешности измерений

Погрешность результата измерения -- это отклонение результата измерений (Хизм) от истинного (действительного) значения (Хист(действ) измеряемой величины. Чаще всего она указывает границы неопределенности значения измеряемой величины. Погрешность средства измерения -- разность между показанием средства измерения и истинным (действительным) значением измеряемой величины. Она характеризует точность результатов измерений, проводимых данным средством. Эти два понятия во многом близки друг другу и классифицируются по одинаковым признакам. По форме представления погрешности разделяются на абсолютные, относительные и приведенные.

Погрешность измерений, как правило, представляют в виде абсолютной погрешности, выраженной в единицах измеряемой величины

или в виде относительной погрешности д -- отношения абсолютной погрешности к истинному (действительному) значению измеряемой величины или принятому опорному значению (ГОСТ Р ИСО 5725) или в процентах.

Для указания и нормирования погрешности средств измерений используется еще одна разновидность погрешности -- приведенная. Приведенная погрешность средства измерений -- это относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона:

По закономерностям проявления погрешности измерений делятся на систематические и случайные.

Систематическая погрешность - одна из составляющих погрешности результата измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же измеряемой величины. Эти погрешности могут быть выявлены, изучены и результат измерения может быть уточнен путем введения поправок, если числовые значения этих погрешностей определены, или путем исключения влияния этой систематической погрешности без ее определения. Чем меньше систематическая погрешность, тем ближе результат измерения к истинному значению измеряемой величины, тем выше качество и правильность измерений. Систематическая погрешность данного средства измерений, как правило, отличается от систематической погрешности другого экземпляра средства измерений этого же типа.

В зависимости от характера изменения систематические погрешности подразделяют на постоянные и переменные.

Наиболее часто встречаются постоянные погрешности, которые сохраняют свое значение в течение всего периода выполнения измерений.

Переменные погрешности -- это погрешности, изменяющие свое значение в процессе измерения. Они могут быть непрерывно возрастающими или убывающими. Эти погрешности определяются процессами износа или старения узлов и деталей средств измерения. К ним могут относиться погрешности от износа контактирующих деталей средств измерения, старения отдельных элементов (конденсаторов, резисторов и т.д.) средств измерения. В настоящее время существует много способов определения систематической погрешности средств измерений.

Один из них -- это сравнение результатов измерения одной и той же величины, полученных с помощью изучаемого и эталонного средства измерения.

Случайными называются погрешности, изменяющиеся случайным образом (по знаку и значению) при одинаковых повторных измерениях одной и той же величины. Эта погрешность возникает в результате влияния на процесс измерения многочисленных случайных факторов, учесть которые достаточно сложно. Поэтому случайные погрешности не могут быть исключены из результата измерения в отличие от систематических.

К случайным погрешностям, как правило, относится и промах (грубая погрешность измерений), характеризующийся тем, что погрешность результата отдельного измерения, входящего в ряд измерений, для данных условий резко отличается от остальных результатов этого ряда. Причинами этого вида погрешностей являются ошибки оператора, неисправность измерительных приборов резкое изменение условий наблюдения, ошибки в записях и вычислениях и др.

По условиям проведения измерений погрешности средств измерений разделяются на основные и дополнительные.

Основной называется погрешность средства измерений, применяемого в установленных условиях, которые называются нормальными. Эти условия устанавливаются в нормативно-технических документах на данный вид или тип средств измерений (температура окружающей среды, влажность, давление, напряжение питающей электрической сети и др.) и при них нормируется его погрешность. Значения погрешностей средств измерений, эксплуатируемых в условиях, отличающихся от нормальных, будут различными и плохо контролируемыми. Составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального его значения или вследствие ее выхода за пределы нормальной области значений, называется дополнительной погрешностью.

Инструментальная погрешность обусловлена несовершенством средств измерений и его конструктивными особенностями. Иногда эту погрешность называют приборной или аппаратурной.

Методическая погрешность обусловлена несовершенством и недостатками применяемого в средстве измерений метода измерений и упрощений при разработке конструкции средства измерений, а также возможными недостатками методик измерений.

Субъективная (личная) погрешность измерения обусловлена погрешностью отсчета оператором показаний по шкале средства измерений вследствие индивидуальных особенностей оператора (внимание, зрение, подготовка и др.). Эти погрешности практически отсутствуют при использовании автоматических или автоматизированных средств измерений.

По характеру измерения величины погрешности средства измерений разделяются на статические и динамические.

метрологический измерение погрешность эталон

Обработка результатов прямых многократных измерений

Прямые многократные измерения делятся на равно- и неравноточные. Равноточные измерения -- это ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью. Перед проведением обработки результатов измерений необходимо убедиться в том, что все измерения этого ряда являются равноточными. В большинстве случаев при обработке прямых равноточных измерений исходят из предположения закона нормального распределения результатов и погрешностей измерений.

Неравноточные измерения - это измерения какой-либо величины, выполненные различающимися по точности средствами измерений и (или) в разных условиях. Обработку таких измерений проводят с учетом оценки доверия к тому или иному отдельному результату измерения, входящему в ряд неравноточных измерений.

Классы точности средств измерений

В повседневной практике при эксплуатации средств измерений принято нормирование метрологических характеристик на основе классов точности средств измерений. Под классом точности понимается обобщенная характеристика данного типа средств измерений, определяемая пределами допускаемых значений основной и дополнительной погрешностей, а также другими характеристиками, влияющими на точность выполненных с их использованием измерений.

Пределы допускаемой основной абсолютной погрешности устанавливают по формулам:

если границы абсолютной погрешности средств измерений практически неизменны в пределах диапазона измерений:

если границы абсолютной погрешности изменяются практически линейно:

где A -- пределы допускаемой основной абсолютной погрешности, выраженной в единицах измеряемой величины или в делениях шкалы; х -- значение измеряемой величины на входе (выходе) средств измерений или число делений, отсчитанных по шкале прибора;

a, b -- положительные числа, не зависящие от x. В обоснованных случаях пределы допускаемой абсолютной погрешности устанавливают по более сложным формулам.

Классы точности средств измерений обозначаются условными знаками (буквами, цифрами). Для средств измерений, пределы допускаемой основной погрешности которых выражают в форме приведенной погрешности или относительной погрешности, классы точности обозначаются числами, равными этим пределам в процентах.

Чтобы отличить относительную погрешность от приведенной, обозначение класса точности в виде относительной погрешности обводят кружком.

Если погрешность нормирована в процентах от длины шкалы, то под обозначением класса ставится знак.

Пределы всех основных и дополнительных допускаемых погрешностей выражаются не более чем двумя значащими цифрами, при этом погрешность округления при вычислении пределов не должна превышать 5%.

Утверждение типа средств измерений

Утверждение типа средств измерений является формой государственного регулирования и проводится в целях обеспечения единства измерений, постановки на производство и выпуска в обращение средств измерений, соответствующих требованиям, установленным в нормативных документах. Тип средств измерений, применяемых в сфере государственного обеспечения единства измерений, подлежит обязательному утверждению.

Утверждения типа средств измерений включают:

-испытания средств измерений для целей утверждения типа;

-принятие решения об утверждении типа, его государственную регистрацию и выдачу свидетельства об утверждении типа;

-нанесение знака утверждения типа средств измерения,

-регистрацию в Федеральном информационном фонде по обеспечению единства измерений.

Эталоны единиц величин

Одной из основных задач метрологии является необходимость обеспечения единства измерений. Под единством измерений понимается такое состояние измерений, которое характеризуется тем, что их результаты выражаются в узаконенных единицах величин, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные границы. Обеспечением единства измерений занимаются метрологические службы, одной из задач которых является деятельность, направленная на достижение и поддержание единства измерений в соответствии с законодательными актами, а также правилами и нормами, установленными национальными стандартами и другими нормативными документами по обеспечению единства измерений.

Под эталоном единицы величины понимается средство измерений или комплекс средств измерений, обеспечивающий воспроизведение, хранение и передачу ее размера нижестоящим по поверочной схеме средствам измерений и утвержденный в качестве эталона в установленном порядке. Конструкция эталона, его свойства и способ воспроизведения единицы определяются природой данной величины и уровнем развития измерительной техники в данной области измерений. Эталон должен обладать, по крайней мере, тремя тесно связанными друг с другом существенными признаками -- неизменностью, воспроизводимостью и сличаемостью.

Неизменность -- свойство эталона удерживать неизменным размер воспроизводимой им единицы в течение длительного интервала времени. При этом все изменения, зависящие от внешних условий, должны быть строго определенными функциями величин, доступных точному измерению.

Воспроизводимость -- возможность воспроизведения единицы величины с наименьшей погрешностью для достигнутого уровня развития техники измерений.

Сличаемость -- возможность обеспечения сопоставления с эталоном других средств измерений, нижестоящих по поверочной схеме, с наибольшей точностью для достигнутого уровня развития техники измерений.

Дадим основные понятия, которые входят в определение эталона, -- воспроизведение, хранение и передача.

Воспроизведение единицы величины -- совокупность операций по материализации этой единицы величины с помощью государственного первичного эталона. Различают воспроизведение основных и производных единиц.

Передача размера единицы величины - это приведение размера единицы величины, хранимой средством измерений, к размеру единицы величины, воспроизводимой эталоном данной единицы величины или стандартным образцом. Размер единицы величины передается от более точных средств измерений к менее точным.

Хранение единицы величины -- это совокупность операций, обеспечивающих неизменность во времени размера единицы, присущего данному средству измерений.

Различают следующие виды эталонов:

Первичный -- обеспечивает воспроизведение единицы величины с наивысшей в стране (по сравнению с другими эталонами той же единицы) точностью; первичный эталон, утвержденный в этом качестве в установленном порядке и применяемый как исходный на территории Российской Федерации, называется государственным. Примером первичного государственного эталона является комплекс средств измерений для воспроизведения килограмма с помощью плати-ноиридиевой гири и эталонных весов;

Специальный -- воспроизводит единицу величины в особых условиях, когда прямая передача размера единицы от существующих эталонов технически неосуществима с требуемой точностью (высокие и сверхвысокие частоты, энергии, давления и т.д.) и заменяет в этих условиях первичный эталон;

Вторичный -- эталон, получающий размер единицы непосредственно от первичного эталона данной единицы. Вторичные эталоны широко используются в метрологической практике, создаются и утверждаются в тех случаях, когда это необходимо для организации поверочных работ, а также для обеспечения сохранности и наименьшего износа государственных эталонов;

Сравнения -- эталон, применяемый для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличены друг с другом;

Рабочий -- эталон, предназначенный для передачи размера единицы рабочим средствам измерений. Рабочее средство измерений -- это предназначенное для измерений техническое средство, имеющее нормированные метрологические характеристики, воспроизводящие или хранящие единицу величины, размер которой принимается неизменным (в пределах установленной погрешности) в течение определенного интервала времени. При необходимости рабочие эталоны подразделяются на разряды -- 1-й, 2-й.. n-й;

Исходный -- эталон, обладающий наивысшими метрологическими свойствами в данной лаборатории, организации, на предприятии, от которых передают размер единицы подчиненным эталонам и имеющимся средствам измерений. Исходным эталоном в стране служит первичный эталон, исходным эталоном для республики, региона, министерства или предприятия может быть вторичный или рабочий эталон.

Кроме национальных эталонов, признанных официальным решением в качестве исходных для одной страны, существуют международные эталоны, которые принимаются по международному соглашению в качестве международной основы для согласования с ними размеров единиц, воспроизводимых и хранимых национальными эталонами. В качестве примера международного эталона можно привести эталон единицы массы -- 1 килограмм, воспроизведенный в виде платиноиридиевой гири, хранящейся в Международном бюро мер и весов. Государственные первичные эталоны единиц величин подлежат сличению с эталонами единиц величин Международного бюро мер и весов и национальными эталонами единиц величин иностранных государств.

Список литературы

Подобные документы

Метрологические характеристики, нормирование погрешностей и использование средств измерений. Класс точности и его обозначение. Единицы средств измерений геометрических и механических величин. Назначение и принцип работы вихретоковых преобразователей.

контрольная работа [341,3 K], добавлен 15.11.2010

Общая характеристика объектов измерений в метрологии. Понятие видов и методов измерений. Классификация и характеристика средств измерений. Метрологические свойства и метрологические характеристики средств измерений. Основы теории и методики измерений.

реферат [49,4 K], добавлен 14.02.2011

Общие вопросы основ метрологии и измерительной техники. Классификация и характеристика измерений и процессы им сопутствующие. Сходства и различия контроля и измерения. Средства измерений и их метрологические характеристики. Виды погрешности измерений.

контрольная работа [28,8 K], добавлен 23.11.2010

Классификация погрешностей по характеру проявления (систематические и случайные). Понятие вероятности случайного события. Характеристики случайных погрешностей. Динамические характеристики основных средств измерения. Динамические погрешности измерений.

курсовая работа [938,8 K], добавлен 18.04.2015

Средство измерений как техническое средство снятия параметров, имеющее нормированные метрологические характеристики. Порядок разработки и требования к методикам поверки средств измерения, сущность методов поверки, их классификация и порядок сертификации.

Погрешности измерений и средств измерений

Погрешность результатов измерения является важной характеристикой измерения, она вычисляется или оценивается, или приписывается полученному результату.

Погрешность результата измерения — это отклонение результата измерений (Хизм) от истинного (действительного) значения (Хист(действ) измеряемой величины. Чаще всего она указывает границы неопределенности значения измеряемой величины. Погрешность средства измерения — разность между показанием средства измерения и истинным (действительным) значением измеряемой величины. Она характеризует точность результатов измерений, проводимых данным средством. Эти два понятия во многом близки друг другу и классифицируются по одинаковым признакам. По форме представления погрешности разделяются на абсолютные, относительные и приведенные.

Погрешность измерений, как правило, представляют в виде абсолютной погрешности, выраженной в единицах измеряемой величины

или в виде относительной погрешности — отношения абсолютной погрешности к истинному (действительному) значению измеряемой величины или принятому опорному значению (ГОСТ Р ИСО 5725)

или в процентах


δ

Для указания и нормирования погрешности средств измерений используется еще одна разновидность погрешности — приведенная. Приведенная погрешность средства измерений — это относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона:


γ*100%

По закономерностям проявления погрешности измерений делятся на систематические и случайные.

Систематическая погрешность — одна из составляющих погрешности результата измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же измеряемой величины, Эти погрешности могут быть выявлены, изучены и результат измерения может быть уточнен путем введения поправок, если числовые значения этих погрешностей определены, или путем исключения влияния этой систематической погрешности без ее определения. Чем меньше систематическая погрешность, тем ближе результат измерения к истинному значению измеряемой величины, тем выше качество и правильность измерений. Систематическая погрешность данного средства измерений, как правило, отличается от систематической погрешности другого экземпляра средства измерений этого же типа.

В зависимости от характера изменения систематические погрешности подразделяют на постоянные и переменные.

Наиболее часто встречаются постоянные погрешности, которые сохраняют свое значение в течение всего периода выполнения измерений.

Переменные погрешности — это погрешности, изменяющие свое значение в процессе измерения. Они могут быть непрерывно возрастающими или убывающими. Эти погрешности определяются процессами износа или старения узлов и деталей средств измерения. К ним могут относиться погрешности от износа контактирующих деталей средств измерения, старения отдельных элементов (конденсаторов, резисторов и т.д.) средств измерения. В настоящее время существует много способов определения систематической погрешности средств измерений.

Один из них — это сравнение результатов измерения одной и той же величины, полученных с помощью изучаемого и эталонного средства измерения.

Случайными называются погрешности, изменяющиеся случайным образом (по знаку и значению) при одинаковых повторных измерениях одной и той же величины. Эта погрешность возникает в результате влияния на процесс измерения многочисленных случайных факторов, учесть которые достаточно сложно. Случайные погрешности поэтому не могут быть исключены из результата измерения в отличие от систематических..

К случайным погрешностям, как правило, относится и промах (грубая погрешность измерений), характеризующийся тем, что погрешность результата отдельного измерения, входящего в ряд измерений, для данных условий резко отличается от остальных результатов этого ряда. Причинами этого вида погрешностей являются ошибки оператора, неисправность измерительных приборов резкое изменение условий наблюдения, ошибки в записях и вычислениях и др.

По условиям проведения измерений погрешности средств измерений разделяются на основные и дополнительные.

Основной называется погрешность средства измерений, применяемого в установленных условиях, которые называются нормальными. Эти условия устанавливаются в нормативно-технических документах на данный вид или тип средств измерений (температура окружающей среды, влажность, давление, напряжение питающей электрической сети и др.) и при них нормируется его погрешность. Значения погрешностей средств измерений, эксплуатируемых в условиях, отличающихся от нормальных, будут различными и плохо контролируемыми. Составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального его значения или вследствие ее выхода за пределы нормальной области значений, называется дополнительной погрешностью.

Инструментальная погрешность обусловлена несовершенством средств измерений и его конструктивными особенностями. Иногда эту погрешность называют приборной или аппаратурной.

Методическая погрешность обусловлена несовершенством и недостатками применяемого в средстве измерений метода измерений и упрощений при разработке конструкции средства измерений, а также возможными недостатками методик измерений.

Субъективная (личная) погрешность измерения обусловлена погрешностью отсчета оператором показаний по шкале средства измерений вследствие индивидуальных особенностей оператора (внимание, зрение, подготовка и др.). Эти погрешности практически отсутствуют при использовании автоматических или автоматизированных средств измерений.

По характеру измерения величины погрешности средства измерений разделяются на статические и динамические.

Обработка результатов прямых многократных измерений

Прямые многократные измерения делятся на равно- и неравноточные. Равноточные измерения — это ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью. Перед проведением обработки результатов измерений необходимо убедиться в том, что все измерения этого ряда являются равноточными. В большинстве случаев при обработке прямых равноточных измерений исходят из предположения закона нормального распределения результатов и погрешностей измерений.

Неравноточные измерения - это измерения какой-либо величины, выполненные различающимися по точности средствами измерений и (или) в разных условиях. Обработку таких измерений проводят с учетом оценки доверия к тому или иному отдельному результату измерения, входящему в ряд неравноточных измерений.

Классы точности средств измерений

В повседневной практике при эксплуатации средств измерений принято нормирование метрологических характеристик на основе классов точности средств измерений. Под классом точности понимается обобщенная характеристика данного типа средств измерений, определяемая пределами допускаемых значений основной и дополнительной погрешностей, а также другими характеристиками, влияющими на точность выполненных с их использованием измерений.

Пределы допускаемой основной абсолютной погрешности устанавливают по формулам:

если границы абсолютной погрешности средств измерений практически неизменны в пределах диапазона измерений:

если границы абсолютной погрешности изменяются практически линейно:

где A — пределы допускаемой основной абсолютной погрешности, выраженной в единицах измеряемой величины или в делениях шкалы; х — значение измеряемой величины на входе (выходе) средств измерений или число делений, отсчитанных по шкале прибора;

a, b — положительные числа, не зависящие от x. В обоснованных случаях пределы допускаемой абсолютной погрешности устанавливают по более сложным формулам.

Пределы всех основных и дополнительных допускаемых погрешностей выражаются не более чем двумя значащими цифрами, при этом погрешность округления при вычислении пределов не должна превышать 5%.

Утверждение типа средств измерений

Утверждение типа средств измерений является формой государственного регулирования и проводится в целях обеспечения единства измерений, постановки на производство и выпуска в обращение средств измерений, соответствующих требованиям, установленным в нормативных документах. Тип средств измерений, применяемых в сфере государственного обеспечения единства измерений, подлежит обязательному утверждению.

Утверждения типа средств измерений включают:

испытания средств измерений для целей утверждения типа;

принятие решения об утверждении типа, его государственную регистрацию и выдачу свидетельства об утверждении типа;

нанесение знака утверждения типа средств измерения

регистрацию в Федеральном информационном фонде по обеспечению единства измерений.

На испытание средств измерений для целей утверждения типа заявитель представляет:

образец средств измерения;

программу испытаний типа, утвержденную государственным центром испытаний средств измерений;

нормативный документ по поверке;

описание типа с фотографиями общего вида;

— документ организации-разработчика о допустимости опубликования описания типа в открытой печати.

Эталоны единиц величин

Одной из основных задач метрологии является необходимость обеспечения единства измерений. Под единством измерений понимается такое состояние измерений, которое характеризуется тем, что их результаты выражаются в узаконенных единицах величин, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные границы. Обеспечением единства измерений занимаются метрологические службы, одной из задач которых является деятельность, направленная на достижение и поддержание единства измерений в соответствии с законодательными актами, а также правилами и нормами, установленными национальными стандартами и другими нормативными документами по обеспечению единства измерений.

Под эталоном единицы величины понимается средство измерений или комплекс средств измерений, обеспечивающий воспроизведение, хранение и передачу ее размера нижестоящим по поверочной схеме средствам измерений и утвержденный в качестве эталона в установленном порядке. Конструкция эталона, его свойства и способ воспроизведения единицы определяются природой данной величины и уровнем развития измерительной техники в данной области измерений. Эталон должен обладать, по крайней мере, тремя тесно связанными друг с другом существенными признаками — неизменностью, воспроизводимостью и сличаемостью.

Неизменность — свойство эталона удерживать неизменным размер воспроизводимой им единицы в течение длительного интервала времени. При этом все изменения, зависящие от внешних условий, должны быть строго определенными функциями величин, доступных точному измерению.

Воспроизводимость — возможность воспроизведения единицы величины с наименьшей погрешностью для достигнутого уровня развития техники измерений.

Сличаемость — возможность обеспечения сопоставления с эталоном других средств измерений, нижестоящих по поверочной схеме, с наибольшей точностью для достигнутого уровня развития техники измерений.

Дадим основные понятия, которые входят в определение эталона, — воспроизведение, хранение и передача.

Воспроизведение единицы величины — совокупность операций по материализации этой единицы величины с помощью государственного первичного эталона. Различают воспроизведение основных и производных единиц.

Передача размера единицы величины - это приведение размера единицы величины, хранимой средством измерений, к размеру единицы величины, воспроизводимой эталоном данной единицы величины или стандартным образцом. Размер единицы величины передается от более точных средств измерений к менее точным.

Хранение единицы величины — это совокупность операций, обеспечивающих неизменность во времени размера единицы, присущего данному средству измерений.

Различают следующие виды эталонов:

первичный — обеспечивает воспроизведение единицы величины с наивысшей в стране (по сравнению с другими эталонами той же единицы) точностью; первичный эталон, утвержденный в этом качестве в установленном порядке и применяемый как исходный на территории Российской Федерации, называется государственным. Примером первичного государственного эталона является комплекс средств измерений для воспроизведения килограмма с помощью плати-ноиридиевой гири и эталонных весов;

специальный — воспроизводит единицу величины в особых условиях, когда прямая передача размера единицы от существующих эталонов технически неосуществима с требуемой точностью (высокие и сверхвысокие частоты, энергии, давления и т.д.) и заменяет в этих условиях первичный эталон;

вторичный — эталон, получающий размер единицы непосредственно от первичного эталона данной единицы. Вторичные эталоны широко используются в метрологической практике, создаются и утверждаются в тех случаях, когда это необходимо для организации поверочных работ, а также для обеспечения сохранности и наименьшего износа государственных эталонов;

сравнения — эталон, применяемый для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличены друг с другом;

рабочий — эталон, предназначенный для передачи размера единицы рабочим средствам измерений. Рабочее средство измерений — это предназначенное для измерений техническое средство, имеющее нормированные метрологические характеристики, воспроизводящие или хранящие единицу величины, размер которой принимается неизменным (в пределах установленной погрешности) в течение определенного интервала времени. При необходимости рабочие эталоны подразделяются на разряды — 1-й, 2-й.. n-й;

исходный — эталон, обладающий наивысшими метрологическими свойствами в данной лаборатории, организации, на предприятии, от которых передают размер единицы подчиненным эталонам и имеющимся средствам измерений. Исходным эталоном в стране служит первичный эталон, исходным эталоном для республики, региона, министерства или предприятия может быть вторичный или рабочий эталон.

Кроме национальных эталонов, признанных официальным решением в качестве исходных для одной страны, существуют международные эталоны, которые принимаются по международному соглашению в качестве международной основы для согласования с ними размеров единиц, воспроизводимых и хранимых национальными эталонами. В качестве примера международного эталона можно привести эталон единицы массы — 1 килограмм, воспроизведенный в виде платиноиридиевой гири, хранящейся в Международном бюро мер и весов. Государственные первичные эталоны единиц величин подлежат сличению с эталонами единиц величин Международного бюро мер и весов и национальными эталонами единиц величин иностранных государств.

В практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются измерения таких величин, как длина, объем, вес, время и другие. Измерения являются одним из важнейших путей познания природы человеком. Они дают количественную характеристику окружающего мира, раскрывая человеку действующие в природе закономерности.

Содержание

Введение
1. Общие понятия в метрологии
2. Виды средств измерений
3. Метрологические характеристики средств измерений
3.1. Классификация и метрологические характеристики средств измерений
3.2. Диапазон и предел измерений
3.3. Погрешность средств измерений
Заключение
Список литературы

Прикрепленные файлы: 1 файл

РЕФЕРАТ метрологические характеристики средств измерений.docx

РЕФЕРАТ

СЛУШАТЕЛЬ:

ТЕМА: Основные метрологические характеристики средств измерений

Хабаровск, 2013 г.

Содержание

Введение

1. Общие понятия в метрологии

2. Виды средств измерений

3. Метрологические характеристики средств измерений

3.1. Классификация и метрологические характеристики средств измерений

3.2. Диапазон и предел измерений

3.3. Погрешность средств измерений

Заключение

Введение

В практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются измерения таких величин, как длина, объем, вес, время и другие.

Измерения являются одним из важнейших путей познания природы человеком. Они дают количественную характеристику окружающего мира, раскрывая человеку действующие в природе закономерности.

Все отрасли техники не могли бы существовать без развернутой системы измерений, определяющих как все технологические процессы, контроль и управление ими, так и свойства и качество выпускаемой продукций.
Отраслью науки, изучающей измерения, является метрология.

Слово "метрология" образовано из двух греческих слов: метрон - мера и логос - учение. Дословный перевод слова "метрология" - учение о мерах. Долгое время метрология оставалась в основном описательной наукой о различных мерах и соотношениях между ними. С конца 19-го века благодаря прогрессу физических наук метрология получила существенное развитие. Большую роль в становлении современной метрологии как одной из наук физического цикла сыграл Д. И. Менделеев, руководивший отечественной метрологией в период 1892 - 1907 гг.

1 . Общие понятия в метрологии

Метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Под измерением понимают познавательный процесс, заключающийся в сравнении путем физического эксперимента данной физической величины с известной физической величиной, принятой за единицу измерения. Технические измерения определяют класс измерений, выполняемых в производственных и эксплуатационных условиях, когда точность измерения определяется непосредственно средствами измерения.

Единство измерений - состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности известны с заданной вероятностью. Единство измерений необходимо для того, чтобы можно было сопоставить результаты измерений, выполненных в разное время, с использованием различны методов и средств измерении, а также в различных по территориальному расположению местах.

Единство измерений обеспечивается их свойствами: сходимостью результатов измерений; воспроизводимостью результатов измерений; правильностью результатов измерений.

Средство измерения - техническое устройство, используемое при измерениях и имеющее нормированные метрологические характеристики.

Результат измерения - значение физической величины, найденное путем ее измерения.

В процессе измерения на средство измерения, оператора и объект измерения воздействуют различные внешние факторы, именуемые влияющими физическими величинами. Эти физические величины не измеряются средствами измерения, но оказывают влияние на результаты измерения. Несовершенство изготовления средств измерений, неточность их градуировки, внешние факторы (температура окружающей среды, влажность воздуха, вибрации и др.), субъективные ошибки оператора и многие другие факторы, относящиеся к влияющим физическим величинам, являются неизбежными причинами появления погрешности измерения.

2. Виды средств измерений

Для измерения физической величины применяют технические средства, которые называются средствами измерений.

Средство измерения — это техническое средство, предназначенное для измерения, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимается неизменным (в пределах установленной погрешности) в течение известного интервала времени. Средства измерения — это основа метрологического обеспечения, они имеют нормированные погрешности.

Средства измерения основаны на использовании различных физических эффектов, например, пьез и термоэлектрические, эффекты Холла и Фарадея, фотоэлектрические и др.

К средствам измерений относятся: меры, измерительные преобразователи, приборы, системы и установки, принадлежности.

Мера — это средство измерения, предназначенное для воспроизведения или хранения физической величины заданного размера, например, гири, концевые меры длин и др.

На практике используют однозначные меры, которые воспроизводят величину только одного размера (например гиря); многозначные меры, когда воспроизводят несколько размеров физической величины (например, длину объекта в миллиметрах или сантиметрах); набор мер (например, набор гирь) и магазин мер, где меры объединены в одно целое с возможностью путем переключения устройств, связанных с возможностью отсчета, соединять меры в нужном сочетании (например, магазин электрических сопротивлений).

К однозначным мерам относятся стандартные образцы и стандартные вещества.

Стандартный образец — это образец вещества (материала), который аттестуется с количественными значениями величин, характеризующими свойства или состав этого вещества (материала).

При пользовании мерами учитывают их номинальное и действительное значение, ее погрешность и разряд. Номинальное значение указывается на мере, действительное — в специальном свидетельстве. Действительное значение меры определяется на основании высокоточного измерения с помощью официального эталона. Разность между действительным и номинальным значениями меры называется погрешностью меры. При аттестации (поверке) тоже могут быть погрешности, поэтому меры подразделяют на разряды (первый, второй и т. д.), а сами меры называются разрядными эталонами (образцовыми измерительными средствами), которые используют для поверки измерительных средств.

Измерительный преобразователь — это техническое средство, предназначенное для выработки сигнала измерительной информации в форме удобной для передачи, дальнейшего преобразования, обработки и хранения, но не доступной для непосредственного восприятия наблюдателем. Основной метрологической характеристикой измерительного преобразователя считается соотношение между входной и выходной величинами, которое называется функцией преобразования. К измерительным преобразователям относятся термопары, измерительные трансформаторы и усилители, преобразователи давления. Не следует отождествлять измерительные преобразователи с преобразовательными элементами, например, трансформатор не имеет метрологических характеристик.

Первичные преобразователи непосредственно воспринимают информацию об измеряемой величине; передающие — преобразуют информацию в форму, удобную для ее регистрации или передачи на расстояние; промежуточные преобразователи работают как первичные или передающие, так и в их сочетании, не изменяя вид физической величины.

Измерительные приборы — средства измерений, предназначенные для переработки сигнала измерительной информации в другие формы, доступные для непосредственного восприятия наблюдателем. Различают приборы прямого действия и приборы сравнения.

Приборы прямого действия отображают измеряемую величину на показывающем устройстве, имеющем градуировку в соответствующих единицах физической величины, например, амперметры, вольтметры и т. п.

Приборы сравнения (компараторы) сравнивают измеряемые величины с величинами, значения которых известны, например, электроизмерительные потенциометры.

Измерительные системы и установки — это совокупность функционально объединенных автоматизированных или автоматических средств измерения, предназначенных для измерения одной или нескольких физических величин объекта измерений.

Измерительные принадлежности — вспомогательные средства, используемые для обеспечения необходимых условий чтобы выполнить измерения с требуемой точностью. Например, психрометр используется при измерении параметра объекта, если оговаривается влажность окружающей среды.

По метрологическому назначению средства измерений делятся на рабочие средства измерения и эталоны.

По способу отсчета измеряемой величины средства как правило, делятся на показывающие (например, аналоговые и цифровые) и регистрирующие (бумажная или магнитная лента).

3. Метрологические характеристики средств измерений

3.1. Классификация и метрологические характеристики средств измерений

Средства измерений, утвержденные Госстандартом России, регистрируются в государственном Реестре средств измерений, удостоверяются сертификатами соответствия и только после этого допускаются для применения на территории Российской Федерации.

• измерения геометрических величин;

• измерения механических величин;

• измерения параметров потока, расхода, уровня объема веществ;

• измерения давления, вакуумные измерения;

• измерения физико-химического состава и свойств веществ;

• измерения времени и частоты;

• измерения электротехнических и магнитных величин;

• радиотехнические и радиоэлектронные измерения;

• измерения характеристик ионизирующих и ядерных констант;

• оптические и оптико-физические измерения;

• средства измерений медицинского назначения;

• теплофизические и температурные измерения.

В справочных изданиях принята следующая структура описания средств измерений: регистрационный номер, наименование, номер и срок действия сертификата об утверждении типа средства измерения, местонахождение изготовителя и основные метрологические характеристики. Последние оценивают пригодность средств измерений к измерениям в известном диапазоне с известной точностью.

Метрологические характеристики средств измерений обеспечивают:

• возможность установления точности измерений;

• достижение взаимозаменяемости и сравнение средств измерений между собой;

• выбор нужных средств измерений по точности и другим характеристикам;

• определение погрешностей измерительных систем и установок;

• оценку технического состояния средств измерений при их поверке.

Все метрологические свойства средств измерений можно разделить на две группы:

  • свойства, определяющие область применения СИ;
  • свойства, определяющие точность (правильность и прецизионность) результатов измерения.

К основным метрологическим характеристикам, определяющим свойства первой группы, относятся диапазон измерений и порог чувствительности.

К метрологическим свойствам второй группы относятся два главных свойства точности: правильность и прецизионность результатов.

3.2. Диапазон и предел измерений

Диапазон измерений — область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значения величины, ограничивающие диапазон измерений снизу или сверху (слева и справа), называют соответственно нижним или верхним пределом измерений.

Различают полный и рабочий диапазоны измерения измеряемой величины .

Диапазон, в котором относительная погрешность не превышает 100 %, называ-ется полным диапазоном. Полный диапазон огра- ничивается снизу порогом чувствительности Dпор., а сверху – конечным значе- нием Xk, т.е. Хп = Dпор … Xk или Дп = Xk/Dпор. Под порогом чувствительности понимается такое значение измеряемой величины, когда Х = Dпор и относительная погрешность её измерения d = 100 % .

Читайте также: